โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ไฟฟ้า

ดัชนี ไฟฟ้า

ฟฟ้า (ήλεκτρον; electricity) เป็นชุดของปรากฏการณ์ทางฟิสิกส์ มีที่มาจากภาษากรีกซึ่งในสมัยนั้นหมายถึงผลจากสิ่งที่เกิดขึ้นตามธรรมชาติเนื่องจากการปรากฏตัวและการไหลของประจุไฟฟ้า เช่นฟ้าผ่า, ไฟฟ้าสถิต, การเหนี่ยวนำแม่เหล็กไฟฟ้าและกระแสไฟฟ้า นอกจากนี้ ไฟฟ้ายังทำให้เกิดการผลิตและการรับคลื่นแม่เหล็กไฟฟ้า เช่นคลื่นวิทยุ พูดถึงไฟฟ้า ประจุจะผลิตสนามแม่เหล็กไฟฟ้าซึ่งจะกระทำกับประจุอื่น ๆ ไฟฟ้าเกิดขึ้นได้เนื่องจากหลายชนิดของฟิสิกซ์ดังต่อไปนี้.

133 ความสัมพันธ์: ชาร์ล-โอกุสแต็ง เดอ กูลงฟิสิกส์ฟ้าผ่าพ.ศ. 2189พ.ศ. 2295พ.ศ. 2334พ.ศ. 2364พ.ศ. 2370พ.ศ. 2479พลังงานลมพลังงานศักย์พลังงานจลน์พลังงานทดแทนพลังงานไฟฟ้าพลาสมาพลินีผู้อาวุโสกฎของโอห์มกระแสไฟฟ้ากราวด์ (ไฟฟ้า)กรีซโบราณกรงฟาราเดย์กังหันไอน้ำการประมวลผลสัญญาณภาษาอาหรับมวลมอเตอร์ระบบรังสีแม่เหล็กไฟฟ้ารางวัลโนเบลสาขาฟิสิกส์ลุยจี กัลวานีวัตต์วิลเลียม กิลเบิร์ตวิลเลียม ทอมสัน บารอนเคลวินที่ 1วิศวกรรมกำลังไฟฟ้าวิศวกรรมอิเล็กทรอนิกส์วิศวกรรมไฟฟ้าวงจรรวมว่าวศักย์ไฟฟ้าสภาพพาสซีฟสวิตช์สสารสายล่อฟ้าสารกึ่งตัวนำสนามแม่เหล็กสนามไฟฟ้าหม้อแปลงไฟฟ้าหลอดสุญญากาศอะลูมิเนียมอะตอม...อัตราเร็วของแสงอันตรกิริยาพื้นฐานอันตรกิริยาอย่างเข้มอาเลสซานโดร โวลตาอำพันอิเล็กทรอนิกส์อิเล็กตรอนอิเล็กโทรดอียิปต์โบราณอนุภาคย่อยของอะตอมอ็องเดร-มารี อ็องแปร์อเล็กซานเดอร์ เกรแฮม เบลล์ฮันส์ คริสเทียน เออร์สเตดผู้ป่วยจอร์จ ไซมอน โอห์มจอร์จ เวสติงเฮาส์ทรานซิสเตอร์ทฤษฎีแม่เหล็กไฟฟ้าทอมัส เอดิสันทะเลเมดิเตอร์เรเนียนคลื่นวิทยุความสูงความต้านทานและการนำไฟฟ้าความโน้มถ่วงคูลอมบ์งาน (ฟิสิกส์)ตัวต้านทานตัวนำไฟฟ้าตัวเก็บประจุตัวเหนี่ยวนำฉนวนปฏิกิริยานิวเคลียร์ปฏิยานุภาคปฏิสสารประจุไฟฟ้าปลากระเบนไฟฟ้าปลาดุกไฟฟ้าปลาไฟฟ้าปวดศีรษะปั๊มความร้อนนิวยอร์ก (แก้ความกำกวม)นิโคลา เทสลาแบตเตอรี่แมวแม่น้ำไนล์แม่เหล็กแม่เหล็กไฟฟ้าชีวภาพแรงแรงแม่เหล็กไฟฟ้าแสงแอมแปร์ใยแก้วนำแสงโรคเกาต์โรเบิร์ต บอยล์โวลต์โวลเตจโซลิดสเตตโซลิดสเตตไดรฟ์โปรตอนไฟฟ้ากระแสสลับไฟฟ้ากระแสตรงไฟฟ้าสถิตไมโครโพรเซสเซอร์ไมเคิล ฟาราเดย์ไอออนไอน้ำไฮน์ริช เฮิรตซ์ไดโอดไดโอดเปล่งแสงเชื้อเพลิงซากดึกดำบรรพ์เบนจามิน แฟรงคลินเอนโทรปีเจมส์ จูลเธลีสเครือข่ายไฟฟ้าเครื่องกำเนิดไฟฟ้าเครื่องรับวิทยุเครื่องปรับอากาศเซลล์กัลวานีเซลล์ประสาทเซลล์แสงอาทิตย์เซลล์ไฟฟ้าเคมีเนตเวิร์กสวิตช์ ขยายดัชนี (83 มากกว่า) »

ชาร์ล-โอกุสแต็ง เดอ กูลง

ร์ล-โอกุสแต็ง เดอ กูลง (Charles-Augustin de Coulomb; 14 มิถุนายน ค.ศ. 1736 - 23 สิงหาคม ค.ศ. 1806) เป็นนักฟิสิกส์ชาวฝรั่งเศส รู้จักกันดีในฐานะผู้วางกฎว่าด้วยแรงระหว่างประจุ ซึ่งต่อมาชื่อของเขาได้ใช้เป็นหน่วยเอสไอสำหรับประจุไฟฟ้า คือ คูลอมบ์ (C).

ใหม่!!: ไฟฟ้าและชาร์ล-โอกุสแต็ง เดอ กูลง · ดูเพิ่มเติม »

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ใหม่!!: ไฟฟ้าและฟิสิกส์ · ดูเพิ่มเติม »

ฟ้าผ่า

ฟ้าผ่า เป็นปรากฏการณ์ทางธรรมชาติที่เกิดขึ้นจากอิเล็กตรอนจำนวนมากเคลื่อนที่กันไปมาระหว่างเมฆกับเมฆหรือเมฆกับพื้นโลก มีพลังงานสูงมาก ๆ จนอาจก่อให้เกิดอันตรายหรือทำลายสิ่งที่กีดขวาง เช่น คน สัตว์ บ้านเรือนหรือสิ่งปลูกสร้างต่าง.

ใหม่!!: ไฟฟ้าและฟ้าผ่า · ดูเพิ่มเติม »

พ.ศ. 2189

ทธศักราช 2189 ใกล้เคียงกั.

ใหม่!!: ไฟฟ้าและพ.ศ. 2189 · ดูเพิ่มเติม »

พ.ศ. 2295

ทธศักราช 2295 ใกล้เคียงกั.

ใหม่!!: ไฟฟ้าและพ.ศ. 2295 · ดูเพิ่มเติม »

พ.ศ. 2334

ทธศักราช 2334 ใกล้เคียงกั.

ใหม่!!: ไฟฟ้าและพ.ศ. 2334 · ดูเพิ่มเติม »

พ.ศ. 2364

ทธศักราช 2364 ตรงกับปีคริสต์ศักราช 1821.

ใหม่!!: ไฟฟ้าและพ.ศ. 2364 · ดูเพิ่มเติม »

พ.ศ. 2370

ทธศักราช 2370 ใกล้เคียงกั.

ใหม่!!: ไฟฟ้าและพ.ศ. 2370 · ดูเพิ่มเติม »

พ.ศ. 2479

ทธศักราช 2479 ตรงกับปีคริสต์ศักราช 1936.

ใหม่!!: ไฟฟ้าและพ.ศ. 2479 · ดูเพิ่มเติม »

พลังงานลม

กังหันลมแห่งหนึ่งในเยอรมนี สำหรับเปลี่ยนพลังงานลมมาเป็นพลังงานไฟฟ้า กังหันโรงสีใน Greetsiel, Germany กังหันสูบน้ำที่ Oak Park Farm, Shedd, Oregon ใบเรือ มนุษย์ใช้ประโยชน์จากพลังงานลมมาแต่โบราณ พลังงานลม เป็นพลังงานตามธรรมชาติที่เกิดจากความแตกต่างของอุณหภูมิ ความกดดันของบรรยากาศและแรงจากการหมุนของโลก สิ่งเหล่านี้เป็นปัจจัยที่ก่อให้เกิดความเร็วลมและกำลังลม เป็นที่ยอมรับโดยทั่วไปว่าลมเป็นพลังงานรูปหนึ่งที่มีอยู่ในตัวเอง ซึ่งในบางครั้งแรงที่เกิดจากลมอาจทำให้บ้านเรือนที่อยู่อาศัยพังทลายต้นไม้ หักโค่นลง สิ่งของวัตถุต่าง ๆ ล้มหรือปลิวลอยไปตามลม ฯลฯ ในปัจจุบันมนุษย์จึงได้ให้ความสำคัญและนำพลังงานจากลมมาใช้ประโยชน์มากขึ้น เนื่องจากพลังงานลมมีอยู่โดยทั่วไป ไม่ต้องซื้อหา เป็นพลังงานที่สะอาดไม่ก่อให้เกิดอันตรายต่อสุขภาพ ภาพแวดล้อม และสามารถนำมาใช้ประโยชน์ได้อย่างไม่รู้จักหมดสิ้น พลังงานลมก็เหมือนกับพลังงานแสงอาทิตย์คือไม่ต้องซื้อ ซึ่งปัจจุบันได้มีการนำเอาพลังงานลมมาใช้ประโยชน์มากขึ้น พื้นที่ยังมีปัญหาในการวิจัยพัฒนานำเอาพลังงานลมมาใช้งานเนื่องจากปริมาณของลมไม่สม่ำเสมอตลอดปี แต่ก็ยังคงมีพื้นที่บางพื้นที่สามารถนำเอาพลังงานลมมาใช้ให้เกิดประโยชน์ได้ เช่น พื้นที่บริเวณชายฝั่งทะเลเป็นต้น ซึ่งอุปกรณ์ที่ช่วยในการเปลี่ยนจากพลังงานลมออกมาเป็นพลังงานในรูปอื่น ๆ เช่น ใชั กังหันลม (windturbine) เพื่อเปลี่ยนให้เป็น พลังงานไฟฟ้า, กังหันโรงสี (หรือ windmill) เพื่อเปลี่ยนให้เป็น พลังงานกล คือเมื่อต่อเข้ากับระหัดวิดน้ำเพื่อระบายน้ำหรือต่อเข้ากับจักรกลก็สามารถใช้สีข้าวหรือนวดแป้งได้, กังหันสูบน้ำ (หรือ windpump, sails หรือใบเรือ เพื่อขับเคลื่อนเรือ เป็นต้น windfarm จะประกอบด้วยกังหันลมเป็นจำนวนมาก และต่อเข้ากับสายส่งกลางเพื่อผลิตไฟฟ้าให้กับผู้ผลิตไฟฟ้าหลัก (ในไทยคือ กฟผ) ลมในทะเลจะมีความแรงและแน่นอนกว่าลมบนบก แต่การสร้างในทะเลถึงจะไม่ทำให้รกหูรกตามากนักแต่ค่าใช้จ่ายและการบำรุงรักษาจะแพงกว่าการสร้างบนบกมากเลยทีเดียว แต่ก็ไม่แพงไปกว่าการก่อสร้างโรงไฟฟ้าที่ใช้เชื้อเพลิงฟอสซิลทั่วไป พลังงานลมถูกนำมาใช้เป็นพลังงานทางเลือกเพื่อมาแทนทีพลังงานฟอสซิล มีปริมาณมาก มีอยู่ทั่วไป สะอาด หมุนเวียนได้ และมีผลกระทบทางด้านสิ่งแวดล้อมน้อยมาก พลังงานลมมีความสม่ำเสมอในแต่ละปี อาจมีบางช่วงที่ขาดหายไปบ้างแต่ก็จะไม่สร้างปัญหาในการผลิตไฟฟ้าถ้าออกแบบให้มีประสิทธิภาพเพียง 20% ของปริมาณความต้องการไฟฟ้าทั้งหมด การติดตามสภาพอากาศอย่างใกล้ชิดจะสามารถลดปัญหาลงได้.

ใหม่!!: ไฟฟ้าและพลังงานลม · ดูเพิ่มเติม »

พลังงานศักย์

ในฟิสิกส์ พลังงานศักย์ (Potential energy) คือ พลังงานที่มีในวัตถุเนื่องด้วยตำแหน่งในสนามแรง หรือมีในระบบนั้นเนื่องด้วยการกำหนดค่าในส่วนนั้น ชนิดของพลังงานศักย์ที่พบได้บ่อยคือ พลังงานศักย์โน้มถ่วงของวัตถุที่ขึ้นอยู่กับมวลและตำแหน่งแนวดิ่ง พลังงานศักย์ยืดหยุ่น ของสปริงที่ยืดหยุ่น และพลังงานศักย์ไฟฟ้าของประจุในสนามไฟฟ้า หน่วยเอสไอของพลังงานนี้คือ จูล (สัญลักษณ์คือ J).

ใหม่!!: ไฟฟ้าและพลังงานศักย์ · ดูเพิ่มเติม »

พลังงานจลน์

ลังงานจลน์ (Kinetic Energy) คือพลังงานที่เกิดกับวัตถุที่กำลังเคลื่อนที่ เช่น รถยนต์กำลังแล่น เครื่องบินกำลังบิน พัดลมกำลังหมุน น้ำกำลังไหลหรือน้ำตกจากหน้าผา ธนูที่พุ่งออกจากคันศร จักรยานที่กำลังเคลื่อนที่ เป็นต้น จึงกล่าวได้ว่า พลังงานจลน์ ล้วนเป็นพลังงานกลที่สามารถเปลี่ยนรูปกลับไป กลับมาได้ "วัตถุที่กำลังเคลื่อนที่ล้วนมีพลังงานจลน์ทั้งสิ้น ปริมาณพลังงานจลน์ในวัตถุจะมีมากหรือน้อยขึ้นอยู่กับมวลและความเร็วของวัตถุนั้น" ถ้าวัตถุมีการเคลื่อนที่ด้วยความเร็วสูงจะมีพลังงานจลน์มาก แต่ถ้าเคลื่อที่เท่ากันวัตถุที่มีมวลมากกว่าจะมีพลังงานจลน์มากกว่า จากนิยามเขียนเป็นสมการได้ว่า Ek.

ใหม่!!: ไฟฟ้าและพลังงานจลน์ · ดูเพิ่มเติม »

พลังงานทดแทน

ตัวอย่างพลังงานทดแทน พลังงานทดแทน โดยทั่วไปหมายถึงพลังงานที่ใช้ทดแทนพลังงานจากฟอสซิล เช่น ถ่านหิน, ปิโตรเลียม และ แก๊สธรรมชาติซึ่งปล่อยคาร์บอนไดออกไซด์มหาศาลอันเป็นสาเหตุโลกร้อน ตัวอย่างพลังงานทดแทนที่สำคัญเช่น พลังงานลม, พลังงานน้ำ, พลังงานแสงอาทิตย์, พลังงานน้ำขึ้นน้ำลง, พลังงานคลื่น, พลังงานความร้อนใต้พิภพ, เชื้อเพลิงชีวภาพ พลังงานนำมันดิบ น้ำมันปาลม์ พลังงานน้ำมันพืช เป็นต้น ในปี 2555 ประเทศไทยใช้พลังงานทดแทนเพียง 18.2% ของพลังงานทั้งหมด เพิ่มขึ้นจากปีก่อนหน้า เพียง 1.8% โดยที่พลังงานแสงอาทิตย์ และเชื้อเพลิงชีวภาพ เพิ่มขึ้น 23% แต่ พลังงานจาก ฟืน ถ่าน แกลบ และวัสดุเหลือใช้ทางเกษตร โดยนำมาใช้เป็นเชื้อเพลิงดั้งเดิม มีอัตราลดลง 10% (อาจเป็นเพราะมวลชีวภาพดังกล่าวถูกแปรรูปไปเป็นเชื้อเพลิงชีวภาพไปแล้ว) พลังงานทดแทนอีกประเภทหนึ่งเป็นพลังงานที่ถูกทำขึ้นใหม่ (renewable) ได้อย่างต่อเนื่อง (เช่นมวลของลมกลุ่มแรกผ่านกังหันลมไป มวลของลมกลุ่มใหม่ก็ตามมาอย่างต่อเนื่องเป็นต้น) เรียกว่า พลังงานหมุนเวียน (Renewal Energy) ได้แก่ แสงอาทิตย์ ลม น้ำ และไฮโดรเจน เป็นต้น (บางตำราว่า มวลชีวภาพ ก็เป็นพลังงานหมุนเวียน ขึ้นกับว่า มันทำขึ้นใหม่ได้อย่างต่อเนื่องหรือไม่) ตามแผนพัฒนาและส่งเสริมการใช้พลังงานทดแทน 15 ปี ระหว่าง 2555-2564 มีแผนที่จะให้มีการใช้พลังงานทดแทนเป็นสัดส่วน 20% ของพลังงานทั้งหมด การศึกษาและพัฒนาพลังงานทดแทนเป็นการศึกษา ค้นคว้า ทดสอบ พัฒนา และสาธิต ตลอดจนส่งเสริมและเผยแพร่พลังงานทดแทน ซึ่งเป็นพลังงานที่สะอาด ไม่มีผลกระทบต่อสิ่งแวดล้อม และเป็นแหล่งพลังงานที่มีอยู่ในท้องถิ่น เช่น พลังงานลม แสงอาทิตย์ ชีวมวล และอื่นๆ เพื่อให้มีการผลิต และการใช้ประโยชน์อย่างแพร่หลาย มีประสิทธิภาพ และมีความเหมาะสมทั้งทางด้านเทคนิค เศรษฐกิจ และสังคม สำหรับผู้ใช้ในเมือง และชนบท ซึ่งในการศึกษา ค้นคว้า และพัฒนาพลังงานทดแทนดังกล่าว ยังรวมถึงการพัฒนาเครื่องมือ เครื่องใช้ และอุปกรณ์เพื่อการใช้งานมีประสิทธิภาพสูงสุดด้วย งานศึกษา และพัฒนาพลังงานทดแทน เป็นส่วนหนึ่งของแผนงานพัฒนาพลังงานทดแทน ซึ่งมีโครงการที่เกี่ยวข้องโดยตรงภายใต้แผนงานนี้คือ โครงการศึกษาวิจัยด้านพลังงาน และมีความเชื่อมโยงกับแผนงานพัฒนาชนบทในโครงการจัดตั้งระบบผลิตไฟฟ้าประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์สำหรับหมู่บ้านชนบทที่ไม่มีไฟฟ้า โดยงานศึกษา และพัฒนาพลังงานทดแทนจะเป็นงานประจำที่มีลักษณะการดำเนินงานของกิจกรรมต่างๆ ในเชิงกว้างเพื่อสนับสนุนการพัฒนาเทคโนโลยีพลังงานทดแทน ทั้งในด้านวิชาการเชิงทฤษฎี และอุปกรณ์เครื่องมือทดลอง และการทดสอบ รวมถึงการส่งเสริมและเผยแพร่ ซึ่งจะเป็นการสนับสนุน และรองรับความพร้อมในการจัดตั้งโครงการใหม่ๆ ในโครงการศึกษาวิจัยด้านพลังงานและโครงการอื่นๆ ที่เกี่ยวข้อง เช่น การศึกษาค้นคว้าเบื้องต้น การติดตามความก้าวหน้าและร่วมมือประสานงานกับหน่วยงานที่เกี่ยวข้องในการพัฒนาต้นแบบ ทดสอบ วิเคราะห์ และประเมินความเหมาะสมเบื้องต้น และเป็นงานส่งเสริมการพัฒนาโครงการที่กำลังดำเนินการให้มีความสมบูรณ์ยิ่งขึ้น ตลอดจนสนับสนุนให้โครงการที่เสร็จสิ้นแล้วได้นำผลไปดำเนินการส่งเสริม และเผยแพร่และการใช้ประโยชน์อย่างเหมาะสมต่อไป ประโยชน์ของพลังงานทดแทน โดยในปัจจุบันหลายประเทศทั่วโลกพยายามศึกษาและค้นหาพลังงานทดแทนในรูปแบบต่างๆ อย่างต่อเนื่อง เพื่อให้สามารถนำมาใช้ประโยชน์ได้ และมีประสิทธิภาพดียิ่งกว่าพลังงานแบบเดิม เพื่อช่วยประหยัดค่าใช้จ่าย ลดปัญหามลพิษและสิ่งแวดล้อมของโลก รวมทั้งช่วยประหยัดพลังงาน ดังนั้นพลังงานทดแทนหรือพลังงานทางเลือก จึงเป็นพลังงานที่สามารถนำมาใช้ทดแทนพลังงานแบบเดิมได้อย่างไม่จำกัด ทั้งยังหาได้จากธรรมชาติและสามารถนำกลับมาใช้ใหม่ได้ เพื่อช่วยลดปัญหาการขาดแคลนพลังงาน รวมทั้งลดมลพิษอีกด้ว.

ใหม่!!: ไฟฟ้าและพลังงานทดแทน · ดูเพิ่มเติม »

พลังงานไฟฟ้า

รื่องใช้ไฟฟ้าต่างๆ ทำงานได้เพราะกระแสไฟฟ้าเดินทางจากแหล่งกำเนิดผ่านสายไฟหรือลวดตัวนำ มายังหลอดไฟหรือเครื่องใช้ไฟฟ้าก่อนย้อนกลับสู่แหล่งกำเนิดไฟฟ้าครบเป็นวงจร ดังนั้นวงจรไฟฟ้าจึงประกอบด้วยแหล่งกำเนิดไฟฟ้า ลวดตัวนำ และเครื่องใช้ไฟฟ้.

ใหม่!!: ไฟฟ้าและพลังงานไฟฟ้า · ดูเพิ่มเติม »

พลาสมา

ลาสมา คือ อะตอมของแก๊สมีตระกูล หรือ Noble Gases เช่น ฮีเลียม นีออน อาร์กอน คริปตอน ซีนอน และเรดอน.

ใหม่!!: ไฟฟ้าและพลาสมา · ดูเพิ่มเติม »

พลินีผู้อาวุโส

ลินีผู้อาวุโส (Pliny the Elder) หรือ กาอิอุส ปลีนิอุส แซกุนดุส (Gaivs Plinivs Secvndvs; ค.ศ. 23 – 25 สิงหาคม ค.ศ. 79) เป็นนักธรรมชาติวิทยา นักประพันธ์ และแม่ทัพชาวโรมันในสมัยจักรวรรดิโรมันตอนต้น และเป็นพระสหายของจักรพรรดิแว็สปาซิอานุส พลินีใช้เวลาส่วนใหญ่ในการศึกษา การเขียน และการสืบสวนเกี่ยวกับปรากฏการณ์ทางธรรมชาติและภูมิศาสตร์ งานชิ้นสำคัญที่สุดที่เขียนคือสารานุกรมชื่อ ธรรมชาติวิทยา (Natvralis Historia) ที่กลายมาเป็นแบบอย่างในการเขียนงานประเภทนี้ต่อมา พลินีเป็นลุงของพลินีผู้เยาว์ (Pliny the Younger).

ใหม่!!: ไฟฟ้าและพลินีผู้อาวุโส · ดูเพิ่มเติม »

กฎของโอห์ม

แสดงความต่างศักย์ (V)ตกคร่อมตัวนำใดๆที่มีค่าความต้านทาน (R)ทำให้เกิดกระแส (I)ไหลผ่านต้วนำนั้น ใช้อธิบายความสัมพันธ์ระหว่างกระแสไฟฟ้ากับ ความต่างศักย์ไฟฟ้า และ กระแสไฟฟ้ากับความต้านทาน กล่าวคือ กระแสไฟฟ้าที่ไหลผ่านตัวนำใดๆ แปรผันโดยตรงกับความต่างศักย์ (แรงดันไฟฟ้า หรือแรงดันตกคร่อม) (คือกระแสมีค่ามากหรือน้อยตามความต่างศักย์นั้น) เขียนเป็นสมการได้ว่า I ∝ V และกระแสไฟฟ้าจะแปรผกผันกับความต้านทานระหว่างสองจุดนั้น(คือถ้าความต้านทานมากจะทำให้กระแสไหลผ่านน้อย, ถ้าความต้านทานน้อยจะทำให้มีกระแสมาก) เขียนเป็นสมการได้ว่า I ∝ 1/R นำสูตรสมการทางคณิตศาสตร์ทั้งสองมารวมกัน, เขียนได้ดังนี้: โดยที่ V คือความต่างศักย์ มีหน่วยเป็น โวลต์, I คือกระแสในวงจร หน่วยเป็น แอมแปร์ และ R คือความต้านทานในวงจร หน่วยเป็น โอห์ม7 กฎดังกล่าวตั้งชื่อเป็นเกียรติให้กับ จอร์จ ไซมอน โอห์ม นักฟิสิกส์ชาวเยอรมัน ผู้ที่ตีพิมพ์ผลงานในปี พ.ศ. 2370 (ค.ศ. 1827) บรรยายการทดลองวัดค่าแรงดันและกระแสผ่านลวดความยาวต่าง ๆ กัน และอธิบายผลด้วยสมการ (ซึ่งซับซ้อนกว่าสมการบนเล็กน้อย).

ใหม่!!: ไฟฟ้าและกฎของโอห์ม · ดูเพิ่มเติม »

กระแสไฟฟ้า

วงจรไฟฟ้าอย่างง่าย โดยที่กระแสถูกแสดงด้วยอักษร ''i'' ความสัมพันธ์ระหว่างแรงดันไฟฟ้า (V), ตัวต้านทาน (R), และกระแส (I) คือ V.

ใหม่!!: ไฟฟ้าและกระแสไฟฟ้า · ดูเพิ่มเติม »

กราวด์ (ไฟฟ้า)

รูปแบบหนึ่งของขั้วดิน (ด้านซ้ายของท่อสีเทา) ประกอบด้วยแท่งตัวนำหนึ่งแท่งที่ฝังลงในดินที่บ้านในประเทศออสเตรเลีย กราวด์ (ground) ในด้านวิศวกรรมไฟฟ้า หมายถึงจุดๆ หนึ่งในวงจรไฟฟ้าที่ใช้เป็นจุดอ้างอิงในการวัดแรงดันไฟฟ้า หรือใช้เป็นเส้นทางกลับร่วมกันของกระแสไฟฟ้าจากหลายๆที่ หรือจุดเชื่อมต่อทางกายภาพโดยตรงกับพื้นดิน สายไฟที่ลงดิน (สายดิน) จะต้องถูกกำหนดเป็นมาตรฐานให้ใช้สีที่แน่นอนเพื่อป้องกันการใช้ที่ไม่ถูกต้อง วงจรไฟฟ้าอาจจะถูกเชื่อมต่อกับพื้นดิน (พื้นโลก) ด้วยเหตุผลหลายประการ ในอุปกรณ์ไฟฟ้าที่ใช้ไฟ AC เมนส์ ชิ้นส่วนโลหะที่ผู้ใช้สัมผัสได้จะถูกเชื่อมต่อกับพื้นดินเพื่อป้องกันผู้ใช้ไม่ให้สัมผ้สกับแรงดันไฟฟ้าที่เป็นอันตรายในกรณีที่ฉนวนไฟฟ้าล้มเหลว การเชื่อมต่อกับพื้นดินจะจำกัดกระแสไฟฟ้าสถิตที่ถูกสร้างขึ้นในการรับมือกับผลิตภัณฑ์ที่ติดไฟง่าย หรืออุปกรณ์ที่มีความไวต่อไฟฟ้าสถิต ในบางวงจรโทรเลขและบางระบบส่งกำลังไฟฟ้า แผ่นดินหรือผิวโลกเองสามารถถูกนำมาใช้เป็นหนึ่งในตัวนำสายส่งของวงจร ซึ่งจะเป็นการประหยัดค่าใช้จ่ายในการติดตั้งตัวนำสายส่งที่เป็นสายรีเทินที่แยกต่างหากไปหนึ่งเส้น (ดูระบบสายดินกลับ(single-wire earth return)) สำหรับวัตถุประสงค์ในการวัด กราวด์ทำหน้าที่เป็นจุดที่มีค่าความดันคงที่(พอสมควร) ที่สามารถถูกใช้เป็นจุดอ้างอิงสำหรับการวัดแรงดันที่จุดใดๆในวงจรได้ ระบบสายกราวด์ไฟฟ้าควรจะมีความสามารถในการเคลื่อนกระแสที่เหมาะสมในการทำหน้าที่เป็นแรงดันไฟฟ้าระดับอ้างอิงเป็นศูนย์ ในทางทฤษฎีวงจรอิเล็กทรอนิกส์ "กราวด์" ในทางอุดมคติมักจะเป็นแหล่งจ่ายประจุหรือแหล่งระบายประจุที่ไม่มีที่สิ้นสุด ที่สามารถดูดซับกระแสได้ไม่จำกัดจำนวนโดยไม่มีการเปลี่ยนแปลงแรงดันที่จุดนั้น ในขณะที่การเชื่อมต่อกับพื้นดินที่แท้จริงมักจะมีความต้านทานเกิดขึ้น ดังนั้นแรงดันของดินที่ใกล้เคียงกับศูนย์จึงไม่สามารถทำได้ แรงดันไฟฟ้ากระจัดกระจายหรือผลกระทบของแรงดันดินจะเกิดขึ้น ซึ่งอาจสร้างการรบกวนในสัญญาณต่างๆ หรือถ้าผลกระทบนั้นมีขนาดใหญ่พอ การรบกวนนั้นอาจจะสร้างอันตรายจากการช็อก(shock)ไฟฟ้าได้ การใช้คำว่ากราวด์เป็นเรื่องธรรมดาในเครื่องใช้ไฟฟ้าและอิเล็กทรอนิกส์ที่ใชัในอุปกรณ์แบบพกพาเช่นโทรศัพท์มือถือ และเครื่องเล่นสื่อในยานพาหนะที่อาจจะพูดว่ามี"กราวด์" โดยไม่ได้มีการเชื่อมต่อที่เกิดขึ้นจริงกับดินแต่อย่างใด โดยปกติจะเป็นแค่สายไฟตัวนำขนาดใหญ่ที่ต่ออยู่กับ ด้านใดด้านหนึ่งของแหล่งจ่ายไฟ (เช่น"ground plane" ในแผงวงจรพิมพ์) ซึ่งทำหน้าที่เป็น เส้นทางกลับร่วมกันสำหรับกระแสจากชิ้นส่วนต่างๆหลายจุดในวงจร.

ใหม่!!: ไฟฟ้าและกราวด์ (ไฟฟ้า) · ดูเพิ่มเติม »

กรีซโบราณ

กรีซโบราณ (Ancient Greece) เป็นคำที่ใช้เรียกถึงบริเวณที่มีการพูดภาษากรีกในโลกยุคโบราณ ซึ่งไม่เพียงอ้างถึงพื้นที่คาบสมุทรของกรีซยุคปัจจุบันเท่านั้น แต่ยังกล่าวรวมถึงอารยธรรมกรีกโบราณซึ่งเป็นที่ตั้งรกรากถิ่นฐานโดยชาวกรีกในยุคโบราณอันได้แก่ ไซปรัส, บริเวณชายฝั่งของทะเลอีเจียนของตุรกี (หรือที่รู้จักในนามไอโอเนีย), ซิซิลีและทางใต้ของอิตาลี (หรือที่รู้จักในนามแมกนา เกรเชีย) และถิ่นฐานซึ่งกระจายออกไปของชาวกรีกตามชายฝั่งต่างๆซึ่งปัจจุบันเป็นประเทศ บัลแกเรีย ฝรั่งเศส ยูเครน โรมาเนีย ลิเบีย สเปน อัลแบเนีย และอียิปต.

ใหม่!!: ไฟฟ้าและกรีซโบราณ · ดูเพิ่มเติม »

กรงฟาราเดย์

กรงฟาราเดย์หรือฟาราเดย์ชิลด์คือทรงปิดที่กีดขวางสนามไฟฟ้าได้ มันถูกสร้างจากตัวนำไฟฟ้าหรือร่างแห (mesh) ของตัวนำนั้น กรงฟาราเดย์ตั้งชื่อตาม ไมเคิล ฟาราเดย์ ผู้คิดค้นในปี ค.ศ. 1836 กรงฟาราเดย์ทำงานได้เนื่องจากสนามไฟฟ้าภายนอกทำให้ประจุภายในตัวนำไฟฟ้ากระจายไปในลักษณะที่ทำให้สนามไฟฟ้าภายในหักล้างกันเอง ปรากฏการณ์นี้ถูกใช้เพื่อปกป้องอุปกรณ์อิเล็กทรอนิกส์ที่อ่อนไหวจากการแทรกสอดของคลื่นวิทยุ (RFI) กรงฟาราเดย์อาจถูกใช้ห่อหุ้มอุปกรณ์ที่สร้าง RFI อย่าง ทรานสมิตเตอร์ เพื่อป้องกันไม่ให้คลื่นวิทยุรบกวนอุปกรณ์รอบข้าง กรงยังอาจใช้เพื่อปกป้องคนหรืออุปกรณ์จากกระแสไฟที่เกิดขึ้นในธรรมชาติอย่าง ฟ้าผ่า หรือ การถ่ายเทประจุไฟฟ้าสถิต (Electrostatic Discharge) เนื่องจากตัวกรงจะนำไฟฟ้าและปกป้องพื้นที่ภายในไว้ได้ กรงฟาราเดย์ไม่สามารถกีดขวางสนามแม่เหล็กสถิต หรือสนามแม่เหล็กที่เปลี่ยนอย่างช้าๆ ตัวอย่างเช่น สนามแม่เหล็กโลก (เข็มทิศจึงยังทำงานได้ในกรง) แต่ในกรณีการเปลี่ยนแปลงของสนามอย่างรุนแรง กรงจะสามารถป้องกันคลื่นแม่เหล็กไฟฟ้า หากวัสดุทำกรงหนาพอ และ รูภายในเล็กกว่าความยาวคลื่นตกกระทบอย่างมีนัยสำคัญ กรงฟาราเดย์สามารถกีดขวางและลดทอนคลื่นได้บางชนิดเท่านั้น คลื่นจากอุปกรณ์ RFID ชนิดความถี่สูงมีความเป็นไปได้ที่จะทะลุผ่าน กรงเหล็กแบบตันจะทำหน้าที่กีดขวางสัญญานได้ดีกว.

ใหม่!!: ไฟฟ้าและกรงฟาราเดย์ · ดูเพิ่มเติม »

กังหันไอน้ำ

รเตอร์ของกังหันไอน้ำสมัยใหม่ที่ใช้ในโรงไฟฟ้า กังหันไอน้ำ (steam turbine) เป็นอุปกรณ์หรือเครื่องจักรที่ใช้ไอน้ำแรงดันสูงมาขับกังหันให้หมุนรอบเพลา กังหันไอน้ำที่เป็นรูปธรรมมากที่สุดถูกคิดค้นโดยเซอร์ ชาร์ล พาร์ซัน (Sir Charles Parsons) ใน..

ใหม่!!: ไฟฟ้าและกังหันไอน้ำ · ดูเพิ่มเติม »

การประมวลผลสัญญาณ

การประมวลผลสัญญาณ หมายถึงการประมวลผล การขยาย และการแปลสัญญาณ รวมทั้งการวิเคราะห์และเปลี่ยนแปลงสัญญาณ.

ใหม่!!: ไฟฟ้าและการประมวลผลสัญญาณ · ดูเพิ่มเติม »

ภาษาอาหรับ

ษาอาหรับ (العربية; Arabic Language) เป็นภาษากลุ่มเซมิติก ที่มีผู้พูดมากที่สุด ซึ่งมีความสัมพันธ์ที่ใกล้ชิดพอควรกับภาษาฮีบรูและภาษาอราเมอิก โดยพัฒนามาจากภาษาเดียวกันคือภาษาเซมิติกดั้งเดิม ภาษาอาหรับสมัยใหม่ถือว่าเป็นภาษาขนาดใหญ่ แบ่งเป็นสำเนียงย่อยได้ถึง 27 สำเนียง ในระบบ ISO 639-3 ความแตกต่างของการใช้ภาษาพบได้ทั่วโลกอาหรับ โดยมีภาษาอาหรับมาตรฐานซึ่งใช้ในหมู่ผู้นับถือศาสนาอิสลาม ภาษาอาหรับสมัยใหม่มาจากภาษาอาหรับคลาสสิกซึ่งเป็นภาษาเดียวที่เหลืออยู่ในภาษากลุ่มอาหรับเหนือโบราณ เริ่มพบในพุทธศตวรรษที่ 11 และกลายเป็นภาษาทางศาสนาของศาสนาอิสลามตั้งแต่พุทธศตวรรษที่ 12 เป็นภาษาของคัมภีร์อัลกุรอาน และภาษาของการนมาซและบทวิงวอนของชาวมุสลิมทั่วโลก ชาวมุสลิมจะเริ่มศึกษาภาษาอาหรับตั้งแต่ยังเด็ก เพื่ออ่านอัลกุรอานและทำการนมาซ ภาษาอาหรับเป็นแหล่งกำเนิดของคำยืมจำนวนมากในภาษาที่ใช้โดยมุสลิมและภาษาส่วนใหญ่ในยุโรป ภาษาอาหรับเองก็มีการยืมคำจากภาษาเปอร์เซียและภาษาสันสกฤตด้วย ในช่วงยุคกลาง ภาษาอาหรับเป็นภาษาหลักในการขับเคลื่อนวัฒนธรรมโดยเฉพาะทางวิทยาศาสตร์ คณิตศาสตร์ และปรัชญา จึงทำให้ภาษาในยุโรปจำนวนมากยืมคำไปจากภาษาอาหรับ โดยเฉพาะภาษาสเปนและภาษาโปรตุเกส ทั้งนี้เพราะอารยธรรมอาหรับเคยแผ่ขยายไปถึงคาบสมุทรไอบีเรี.

ใหม่!!: ไฟฟ้าและภาษาอาหรับ · ดูเพิ่มเติม »

มวล

มวล เป็นคุณสมบัติหนึ่งของวัตถุ ที่บ่งบอกปริมาณ ของสสารที่วัตถุนั้นมี มวลเป็นแนวคิดหลักอันเป็นหัวใจของกลศาสตร์แบบดั้งเดิม รวมไปถึงแขนงวิชาที่เกี่ยวข้อง หากแจกแจงกันโดยละเอียดแล้ว จะมีปริมาณอยู่ 3 ประเภทที่ถูกนิยามว่า มวล ได้แก.

ใหม่!!: ไฟฟ้าและมวล · ดูเพิ่มเติม »

มอเตอร์

การทำงานของมอเตอร์ กระแสไฟฟ้าที่ป้อนเข้าในขดลวดที่พันรอบเหล็กอ่อนบนแกนหมุน(โรเตอร์) ทำให้เกิดอำนาจแม่เหล็กไปดูดหรือผลักกับอำนาจแม่เหล็กถาวรบนตัวนิ่ง(สเตเตอร์) หรือป้อนกลับกัน หรือป้อนทั้งสองที่ มอเตอร์ไฟฟ้าแบบต่างๆเมื่อเทียบกับแบตเตอรี 9V.

ใหม่!!: ไฟฟ้าและมอเตอร์ · ดูเพิ่มเติม »

ระบบ

ระบบ (play storeSystem, าติน systēma, ในภาษากรีก systēma,, ดูเพิ่มเติมได้จากบทความเกี่ยวกับ องค์ประกอบ หรือ "composition") ระบบ คือ ชุดของสิ่งที่มีปฏิสัมพันธ์ หรือ การพึ่งพาซึ่งกันและกัน ของสิ่งที่มีการดำรงอยู่ที่แตกต่างและ อย่างเป็นอิสระ ที่ได้ถูกควบรวมในรูปแบบบูรณาการทั้งหม.

ใหม่!!: ไฟฟ้าและระบบ · ดูเพิ่มเติม »

รังสีแม่เหล็กไฟฟ้า

ในวิชาฟิสิกส์ รังสีแม่เหล็กไฟฟ้า (electromagnetic radiation) หมายถึงคลื่น (หรือควอนตัมโฟตอน) ของสนามแม่เหล็กไฟฟ้าที่แผ่ผ่านปริภูมิโดยพาพลังงานจากการแผ่รังสีแม่เหล็กไฟฟ้า โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นองสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย คลื่นแม่เหล็กไฟฟ้าเกิดเมื่ออนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E.

ใหม่!!: ไฟฟ้าและรังสีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

รางวัลโนเบลสาขาฟิสิกส์

หรียญรางวัลโนเบล รางวัลโนเบลสาขาฟิสิกส์ (Nobelpriset i fysik, Nobel Prize in Physics) เป็นรางวัลโนเบลหนึ่งใน 5 สาขา ริเริ่มโดยอัลเฟรด โนเบล ตั้งแต่ปี ค.ศ. 1895 โดยสถาบัน Royal Swedish Academy of Sciences แห่งประเทศสวีเดน เป็นผู้คัดเลือกผู้รับรางวัล ซึ่งมีผลงานวิจัยด้านฟิสิกส์อย่างโดดเด่น มีพิธีมอบเป็นครั้งแรก เมื่อ ค.ศ. 1901 พิธีมอบรางวัลมีขึ้นในวันที่ 10 ธันวาคมของทุกปี ซึ่งตรงกับวันคล้ายวันเสียชีวิตของอัลเฟรด โนเบล ที่กรุงสตอกโฮล์ม.

ใหม่!!: ไฟฟ้าและรางวัลโนเบลสาขาฟิสิกส์ · ดูเพิ่มเติม »

ลุยจี กัลวานี

ลุยจี อาโลอีซีโอ กัลวานี (Luigi Aloisio Galvani, Aloysius Galvani; 9 กันยายน ค.ศ. 1737 – 4 ธันวาคม ค.ศ. 1798) เป็นนักฟิสิกส์และแพทย์ชาวอิตาลี เป็นผู้บุกเบิกการศึกษาแม่เหล็กไฟฟ้าชีว.

ใหม่!!: ไฟฟ้าและลุยจี กัลวานี · ดูเพิ่มเติม »

วัตต์

วัตต์ (watt, สัญลักษณ์ W) เป็นหน่วยเอสไอของกำลังตั้งชื่อตาม เจมส์ วัตต์ ตัวอย่างพลังงานในหน่วยวัตต์ เช่น หลอดไฟที่ใช้ตามบ้านใช้ 100 วัตต์ ขณะที่ เขื่อนฮูเวอร์ผลิตสองพันล้านวัตต์ 1 วัตต์ มีค่าเท่ากับ 1 จูล ของ พลังงาน ต่อ วินาที วัตต์ (watt หรือ W)คือ หน่วยวัดกำลังไฟฟ้าที่เป็นตัวบอกพลังงานไฟฟ้าของอุปกรณ์หรือเครื่องใช้ไฟฟ้าแต่ละชนิดที่ใช้ในการทำงาน เช่น หลอดไฟ 100 วัตต์ หมายความว่า หลอดไฟกินไฟ 100 จูลต่อวินาที.

ใหม่!!: ไฟฟ้าและวัตต์ · ดูเพิ่มเติม »

วิลเลียม กิลเบิร์ต

วิลเลียม กิลเบิร์ต วิลเลียม กิลเบิร์ต (William Gilbert) เกิดเมื่อ 24 พฤษภาคม ค.ศ. 1544 โคลเชสเตอร์ ในอังกฤษ และถึงแก่กรรมเมื่อ 30 พฤศจิกายน ค.ศ. 1603 (อาจจะในลอนดอน) เป็นหมอหลวงประจำพระราชินี อะลิซาเบธที่ 1 และพระเจ้าเจมส์ที่ 1 แห่งอังกฤษ ทั้งยังเป็นนักดาราศาสตร์และนักค้นคว้าวิจัยด้านวิทยาศาสตร์ เกี่ยวกับแม่เหล็กและไฟฟ้า ที่สำคัญคือ เขาเป็นคนค้นคิดคำ "electricity" หรือ ไฟฟ้า นั่นเอง ผลงานชิ้นแรกของเขา คือ De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (ว่าด้วยแม่เหล็ก และวัตถุสภาพแม่เหล็ก และว่าด้วยแม่เหล็กใหญ่ของโลก) ตีพิมพ์เมื่อ ค.ศ. 1600 ในงานชิ้นนี้ เขาได้บรรยายถึงการทดลองของเขามากมายด้วยลูกโลกจำลอง ที่เรียกว่า "เทอร์เรลลา" (terrella) จากการทดลองของเขา เขาสรุปได้ว่าโลกนั้น ก็คือตัวแม่เหล็กเอง และสรุปว่า นี่คือเหตุผลที่ทำให้เข็มทิศชี้ไปทางทิศเหนือ (ก่อนนี้บางคนเชื่อว่า เข็มทิศชี้ไปหาดาวเหนือ หรือเกาะแม่เหล็กขนาดใหญ่ทางขั้วโลกเหนือ ซึ่งเป็นตัวดึงดูดเข็มทิศ) ในหนังสือเล่มนี้ เขายังได้ศึกษาถึงไฟฟ้าสถิต โดยการใช้แท่งอำพัน (อำพัน เป็นยางไม้แข็ง สีเหลืองอมน้ำตาล ในภาษากรีกเรียกว่า เอเล็กตรอน (elektron) ด้วยเหตุนี้ กิลเบิร์ตจึงเรียกปรากฏการณ์ที่ตนค้นพบว่า "electric force" (แรงไฟฟ้า) สิ่งที่กิลเบิร์ตเรียกว่า สภาพแม่เหล็ก นั้น คือแรงที่มองไม่เห็น ที่นักปรัชญาธรรมชาติคนอื่นๆ จำนวนมาก เช่น โยฮันส์ เคปเลอร์ เคยเชื่อมั่น ว่าเป็นตัวควบคุมการเคลื่อนไหวต่างๆ ของสิ่งที่สังเกตเห็นได้ หน่วย "กิลเบิร์ต" อันเป็นหน่วยของ แรงเคลื่อนแม่เหล็ก (magnetomotive force) ซึ่งเรียกอีกอย่างหนึ่งว่า magnetic potential นั้น ก็ตั้งขึ้นเพื่อเป็นเกียรติแก่วิเลียม กิลเบิร์ตนี่เอง.

ใหม่!!: ไฟฟ้าและวิลเลียม กิลเบิร์ต · ดูเพิ่มเติม »

วิลเลียม ทอมสัน บารอนเคลวินที่ 1

วิลเลียม ธอมสัน บารอนเคลวิน ที่หนึ่ง (William Thomson, 1st Baron Kelvin; (26 มิถุนายน ค.ศ. 1824 - 17 ธันวาคม ค.ศ. 1907) เป็นนักฟิสิกส์คณิตศาสตร์และวิศวกร ที่มหาวิทยาลัยกลาสโกว์ มีผลงานสำคัญคือการคำนวณทางคณิตศาสตร์ที่พิสูจน์ผลทางด้านไฟฟ้าและอุณหพลศาสตร์ ชื่อของเขาเป็นที่รู้จักในฐานะผู้พัฒนามาตรฐานการวัดอุณหภูมิสัมบูรณ์ คือระบบเคลวิน (Kelvin) เขาได้รับบรรดาศักดิ์เป็น บารอนเคลวิน ในปี ค.ศ. 1892 เพื่อเป็นเกียรติแก่การคิดค้นของเขา โดยนำชื่อมาจากแม่น้ำเคลวิน ที่ไหลผ่านมหาวิทยาลัยกลาสโกว์ ในสก็อตแลนด์ แต่เนื่องจากเขาไม่มีทายาทสืบตระกูล ตำแหน่งบารอนเคลวินจึงมีเพียง บารอนเคลวินที่หนึ่ง เพียงคนเดียวเท่านั้น.

ใหม่!!: ไฟฟ้าและวิลเลียม ทอมสัน บารอนเคลวินที่ 1 · ดูเพิ่มเติม »

วิศวกรรมกำลังไฟฟ้า

กังหันไอน้ำ ถูกนำมาใช้เพื่อผลิตกำลังไฟฟ้า วิศวกรรมกำลังไฟฟ้า (Power engineering) หรือที่เรียกว่า วิศวกรรมระบบไฟฟ้า เป็นสาขาย่อยของ วิศวกรรมพลังงาน และ วิศวกรรมไฟฟ้า ที่เกี่ยวข้องกับ การผลิตไฟฟ้า, การส่งกำลังไฟฟ้า, การกระจายกำลังไฟฟ้า, การใช้ให้เป็นประโยชน์ (utilization) และอุปกรณ์ไฟฟ้าที่เชื่อมต่อกับระบบดังกล่าวจะรวมถึง เครื่องกำเนิดไฟฟ้า, มอเตอร์ และ หม้อแปลงไฟฟ้า แม้ว่าสาขานี้ส่วนใหญ่เกี่ยวข้องกับปัญหาของ ไฟ AC สามเฟส - ซึ่งเป็นมาตรฐานสำหรับการจัดส่งและการจัดจำหน่ายไฟฟ้าขนาดใหญ่ทั่วโลกสมัยใหม่ - ชิ้นส่วนเล็ก ๆ ที่สำคัญของสาขานี้จะเกี่ยวข้องกับการแปลงระหว่าง กำลังไฟ AC และ DC และการพัฒนาระบบกำลังพิเศษเช่นที่ใช้ในยานอากาศหรือสำหรับเครือข่ายไฟฟ้าระบบราง วิศวกรรมกำลังไฟฟ้าดึงส่วนใหญ่ของฐานทฤษฎีของมันจากวิศวกรรมไฟฟ้าและในขณะที่วิศวกรกำลังไฟฟ้าบางคนอาจได้รับการพิจารณาว่าเป็นวิศวกรพลังงาน, วิศวกรพลังงานมักจะไม่มีพื้นหลังทางทฤษฎีของวิศวกรรมไฟฟ้าที่จะเข้าใจวิศวกรรมกำลังไฟฟ้าได้.

ใหม่!!: ไฟฟ้าและวิศวกรรมกำลังไฟฟ้า · ดูเพิ่มเติม »

วิศวกรรมอิเล็กทรอนิกส์

วิศวกรรมอิเล็กทรอนิกส์ (Electronic Engineering) เดิมเป็นสาขาหนึ่งของวิศวกรรมไฟฟ้าที่ถูกแยกออกมาเพื่อให้เห็นความแตกต่างของงานทางด้านไฟฟ้ากำลัง กับงานทางด้านอิเล็กทรอนิกส์ อิเล็กทรอนิกส์ดิจิทัลคอมพิวเตอร์เครื่องแรกทำด้วยหลอดสูญญากาศ โดยทั่วไปแล้ววิศวกรรมอิเล็กทรอนิกส์หมายความครอบคลุมถึง วงจรอิเล็กทรอนิกส์ระดับสัญญาณต่ำ (small signal) ทั้งระบบแอนะล็อกและดิจิทัล ทั้งระดับPrinted Circuit Board และIntegrated Circuit และอาจรวมไปถึงระบบสื่อสารทั้งทางคลื่นแม่เหล็กไฟฟ้า, และแสง อิเล็กทรอนิกส์ เดิมทีเป็นสาขาที่เกี่ยวข้องกับการออกแบบ และ ทดสอบวงจรไฟฟ้า ซึ่งสร้างจากอุปกรณ์ที่มีคุณสมบัติเฉพาะทางแม่เหล็กไฟฟ้า ตั้งแต่อุปกรณ์ที่เป็น active เช่นหลอดสูญญากาศ, แบตเตอรี, เซลล์เชื้อเพลิง, จอแสดงผล จนถึง อุปกรณ์จากสารกึ่งตัวนำเช่น ไดโอด ทรานซิสเตอร์ และ อื่น ๆ รวมทั้งอุปกรณ์ที่เป็น พาสซีฟ เช่นตัวต้านทาน, ตัวเก็บประจุและขดลวดแม่เหล็กไฟฟ้า เพื่อให้เป็นอุปกรณ์ที่ทำงานตามจุดประสงค์ที่ต้องการ เช่น เป็นวงจรวิทยุสื่อสาร วงจรคอมพิวเตอร์ เป็นต้น ปัจจุบันขอบเขตของวิศวกรรมอิเล็กโทรนิคส์ถูกขยายออกไปเป็น subfield ได้แก่ อิเล็กทรอนิกส์แอนะลอก, อิเล็กทรอนิกส์ดิจิทัล, อิเล็กทรอนิกส์ผู้บริโภค, ระบบการฝังตัว และอิเล็กทรอนิกส์กำลัง วิศวกรรมอิเล็กทรอนิกส์ยังเข้าไปทำงานร่วมกับงาน implement ของ application, งานด้าน หลักการและ algorithm เกี่ยวกับฟิสิกส์ของ solid state, โทรคมนาคม, ระบบควบคุม, การประมวลผลสัญญาณ, วิศวกรรมระบบคอมพิวเตอร์, วิศวกรรมเครื่องมือ, วิศวกรรมควบคุมพลังงานไฟฟ้า, หุ่นยนต์, และอื่น ๆ อีกมากม.

ใหม่!!: ไฟฟ้าและวิศวกรรมอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

วิศวกรรมไฟฟ้า

วิศวกรรมไฟฟ้า (Electrical Engineering) เป็นสาขาที่ศึกษาทฤษฏีและการประยุกต์ใช้ ไฟฟ้า, คลื่นแม่เหล็กไฟฟ้า ผู้ที่ประกอบวิชาชีพในสาขานี้เรียกว่า วิศวกรไฟฟ้า สาขาวิชาวิศวกรรมไฟฟ้าเป็นสาขาที่กว้างประกอบไปด้วยหลายสาขาย่อ.

ใหม่!!: ไฟฟ้าและวิศวกรรมไฟฟ้า · ดูเพิ่มเติม »

วงจรรวม

วงจรรวม วงจรรวม หรือ วงจรเบ็ดเสร็จ (integrated circuit; IC) หมายถึง วงจรที่นำเอาไดโอด, ทรานซิสเตอร์, ตัวต้านทาน, ตัวเก็บประจุ และองค์ประกอบวงจรต่าง ๆ มาประกอบรวมกันบนแผ่นวงจรขนาดเล็ก ในปัจจุบันแผ่นวงจรนี้จะทำด้วยแผ่นซิลิคอน บางทีอาจเรียก ชิป (Chip) และสร้างองค์ประกอบวงจรต่าง ๆ ฝังอยู่บนแผ่นผลึกนี้ ส่วนใหญ่เป็นชนิดที่เรียกว่า Monolithic การสร้างองค์ประกอบวงจรบนผิวผลึกนี้ จะใช้กรรมวิธีทางด้านการถ่ายภาพอย่างละเอียด ผสมกับขบวนการทางเคมีทำให้ลายวงจรมีความละเอียดสูงมาก สามารถบรรจุองค์ประกอบวงจรได้จำนวนมาก ภายในไอซี จะมีส่วนของลอจิกมากมาย ในบรรดาวงจรเบ็ดเสร็จที่ซับซ้อนสูง เช่น ไมโครโปรเซสเซอร์ ซึ่งใช้ทำงานควบคุม คอมพิวเตอร์ จนถึงโทรศัพท์มือถือ แม้กระทั่งเตาอบไมโครเวฟแบบดิจิทัล สำหรับชิปหน่วยความจำ (RAM) เป็นอีกประเภทหนึ่งของวงจรเบ็ดเสร็จ ที่มีความสำคัญมากในยุคปัจจุบัน.

ใหม่!!: ไฟฟ้าและวงจรรวม · ดูเพิ่มเติม »

ว่าว

ว่าวยักษ์ในญี่ปุ่น ว่าว เป็นของเล่นชนิดหนึ่งที่มนุษย์ประดิษฐ์ขึ้นเพื่อให้ลอยอยู่ในอากาศได้ด้วยแรงลมและมีสายป่านคอยบังคับให้ลอยอยู่ในทิศทางที่ต้องการ โดยเริ่มจากประเทศจีนโดยใช้ไม้ไผ่และผ้าไหมเป็นอุปกรณ์ ต่อมาได้ประดิษฐ์ว่าวในหลายรูปแบบตามวัฒนธรรมของหลายประเท.

ใหม่!!: ไฟฟ้าและว่าว · ดูเพิ่มเติม »

ศักย์ไฟฟ้า

ักย์ไฟฟ้า (electric potential) (ยังถูกเรียกว่า ศักย์สนามไฟฟ้าหรือศักย์ไฟฟ้าสถิต) เป็นปริมาณของพลังงานศักย์ไฟฟ้าที่ประจุไฟฟ้าที่จุดหนึ่งเดียวนั้นจะพึงมีถ้ามันถูกมองหาตำแหน่งที่จุดใดจุดหนึ่งในที่ว่าง และมีค่าเท่ากับงานที่ถูกกระทำโดยสนามไฟฟ้าหนึ่งในการเคลื่อนย้ายหนึ่งหน่วยของประจุบวกจากที่ห่างไกลไม่สิ้นสุด (infinity) มาที่จุดนั้น ในทฤษฎีแม่เหล็กไฟฟ้าแบบคลาสสิก ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์แสดงโดย, หรือ มีค่าเท่ากับพลังงานศักย์ไฟฟ้า(มีหน่วยเป็นจูล)ของอนุภาคที่มีประจุใด ๆ ที่ตำแหน่งใด ๆ หารด้วยประจุ(มีหน่วยเป็นคูลอมบ์)ของอนุภาคนั้น เมื่อประจุของอนุภาคได้ถูกหารออกไป ส่วนที่เหลือจึงเป็น "คุณสมบัติ" ของตัวสนามไฟฟ้าเอง ค่านี้สามารถคำนวณได้ในสนามไฟฟ้าที่คงที่(เวลาไม่เปลี่ยน)หรือในสนามไฟฟ้าแบบไดนามิก(เปลี่ยนไปตามเวลา)ในเวลาที่กำหนด และมีหน่วยเป็นจูลต่อคูลอมบ์, หรือ volts ศักย์ไฟฟ้าที่อินฟินิตี้สมมติว่ามีค่าเป็นศูนย์ ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์ เพราะศักย์ไฟฟ้าเป็นพลังงานต่อหนึ่งหน่วยประจุเนื่องจากพลังงานศักย์ไฟฟ้ามีหน่วยเป็นจูล (J) ประจุมีหน่วยเป็นคูลอมบ์ (C) ศักย์ไฟฟ้าจึงมีหน่วยเป็น จูลต่อคูบอมบ์ ซึ่งเรียกว่า โวลต์ (V)            ในกรณีสนามโน้มถ่วงของโลก พลังงานศักย์โน้มถ่วงของวัตถุที่ตำแหน่งต่างๆ ขึ้นกับความสูงของวัตถุเมื่อเทียบกับระดับอ้างอิง ซึ่งจะอยู่ที่ระดับดำก็ได้แล้วแต่จะกำหนด และให้ระดับอ้างอิงนี้มีพลังงานศักย์โน้มถ่วงเป็นศูนย์ ในการหาพลังงานศักย์ไฟฟ้าของประจุที่ตำแหน่งต่างๆ ก็ต้องกำหนดระดับอ้างอิงเช่นกัน นอกจากนี้ศักย์ไฟฟ้าแบบสเกลล่าร์ทั่วไปยังถูกใช้ในระบบ electrodynamics เมื่อสนามแม่เหล็กไฟฟ้าที่เปลี่ยนแปลงไปตามเวลาปรากฎอยู่ แต่ศักย์ไฟฟ้าทั่วไปนี้ไม่สามารถคำนวนออกมาง่าย ๆ ศักย์ไฟฟ้าและศักย์เวกเตอร์แม่เหล็กรวมเข้าด้วยกันเป็นสี่เวกเตอร์ เพื่อที่ว่าทั้งสองชนิดของศักย์จะถูกนำมาผสมกันภายใต้ Lorentz transformations.

ใหม่!!: ไฟฟ้าและศักย์ไฟฟ้า · ดูเพิ่มเติม »

สภาพพาสซีฟ

ซีฟ (passivity) เป็นคุณสมบัติของระบบวิศวกรรมที่ถูกนำมาใช้ในสาขาวิชาวิศวกรรมอย่างหลากหลาย แต่มักพบมากที่สุดในระบบอิเล็กทรอนิกส์และการควบคุมแบบแอนะล็อก ชิ้นส่วนที่เป็นพาสซีฟจะขึ้นอยู่กับสนามไฟฟ้า และอาจจะเป็นอย่างใดอย่างหนึ่งคือ 1.

ใหม่!!: ไฟฟ้าและสภาพพาสซีฟ · ดูเพิ่มเติม »

สวิตช์

วิตช์ (switch) อาจหมายถึง.

ใหม่!!: ไฟฟ้าและสวิตช์ · ดูเพิ่มเติม »

สสาร

ว.

ใหม่!!: ไฟฟ้าและสสาร · ดูเพิ่มเติม »

สายล่อฟ้า

ม้ที่ติดตั้งสายล่อฟ้าและสายดินฟ้าผ่าสร้างความตื่นตระหนกแก่มนุษย์ในช่วงแรกๆอย่างมากและผู้คนในปัจจุบันยังคงกลัวฟ้าผ่าอยู่ ซึ่งประกายฟ้าที่เกิดขึ้นสามารถทำลายสิ่งที่มันผ่าได้มากมาย อีกทั้งมันยังสามารถผ่าคนได้ ซึ่งส่วนใหญ่ คนที่ถูกผ่านั้นเสียชีวิตอุปกรณ์ที่เรียกว่า "Machina meteorologica" ประดิษฐ์โดยพรอคอป ดิวิช ทำงานคล้ายกับสายล่อฟ้า สายล่อฟ้า เป็นอุปกรณ์ที่คิดประดิษฐ์ขึ้นโดย เบนจามิน แฟรงคลินไม่เข้าใจฟ้าผ่าจึงสร้างเครื่องมือ ที่เรียกว่า “สายล่อฟ้า” เป็นอุปกรณ์ที่ใช้ในการถ่ายเทประจุไฟฟ้าจากก้อนเมฆ โดยตรงปลายแหลมของสายล่อฟ้าจะมีสนามไฟฟ้าที่ค่อนข้างแรงกว่าที่อื่น สนามไฟฟ้านี้จะเหนี่ยวนำโมเลกุลของอากาศให้เข้ามาใกล้ ๆ แล้วรับประจุไฟฟ้าส่วนเกินไป ทำให้ลดความต่างศักย์ที่เกิดขึ้นระหว่างก้อนเมฆและหลังคาลง โดยการนำผ่านสายเหนี่ยวนำลงสู่พื้นดิน.

ใหม่!!: ไฟฟ้าและสายล่อฟ้า · ดูเพิ่มเติม »

สารกึ่งตัวนำ

รกึ่งตัวนำ (semiconductor) คือ วัสดุที่มีคุณสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวน เป็นวัสดุที่ใช้ทำอุปกรณ์อิเล็คทรอนิกส์ มักมีตัวประกอบของ germanium, selenium, silicon วัสดุเนื้อแข็งผลึกพวกหนึ่งที่มีสมบัติเป็นตัวนำ หรือสื่อไฟฟ้าก้ำกึ่งระหว่างโลหะกับอโลหะหรือฉนวน ความเป็นตัวนำไฟฟ้าขึ้นอยู่กับอุณหภูมิ และสิ่งไม่บริสุทธิ์ที่มีเจือปนอยู่ในวัสดุพวกนี้ ซึ่งอาจเป็นธาตุหรือสารประกอบก็มี เช่น ธาตุเจอร์เมเนียม ซิลิคอน ซีลีเนียม และตะกั่วเทลลูไรด์ เป็นต้น วัสดุกึ่งตัวนำพวกนี้มีความต้านทานไฟฟ้าลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งเป็นลักษณะตรงข้ามกับโลหะทั้งปวง ที่อุณหภูมิ ศูนย์ เคลวิน วัสดุพวกนี้จะไม่ยอมให้ไฟฟ้าไหลผ่านเลย เพราะเนื้อวัสดุเป็นผลึกโควาเลนต์ ซึ่งอิเล็กตรอนทั้งหลายจะถูกตรึงอยู่ในพันธะโควาเลนต์หมด (พันธะที่หยึดเหนี่ยวระหว่างอะตอม) แต่ในอุณหภูมิธรรมดา อิเล็กตรอนบางส่วนมีพลังงาน เนื่องจากความร้อนมากพอที่จะหลุดไปจากพันธะ ทำให้เกิดที่ว่างขึ้น อิเล็กตรอนที่หลุดออกมาเป็นสาเหตุให้สารกึ่งตัวนำ นำไฟฟ้าได้เมื่อมีมีสนามไฟฟ้ามาต่อเข้ากับสารนี้ สารกึ่งตัวนำไม่บริสุทธิ์ เป็นสารที่เกิดขึ้นจากการเติมสารเจือปนลงไปในสารกึ่งตัวนำแท้ เช่น ซิลิกอน หรือเยอรมันเนียม เพื่อให้ได้สารกึ่งตัวนำที่มีสภาพการนำไฟฟ้าที่ดีขึ้น สารกึ่งตัวนำไม่บริสุทธิ์นี้แบ่งออกเป็น 2 ประเภทคือ สารกึ่งตัวนำประเภทเอ็น (N-Type) และสารกึ่งตัวนำประเภทพี (P-Type).

ใหม่!!: ไฟฟ้าและสารกึ่งตัวนำ · ดูเพิ่มเติม »

สนามแม่เหล็ก

กระแสไฟฟ้าที่ไหลผ่านเส้นลวดทำให้เกิดสนามแม่เหล็ก (M) รอบๆ บริเวณเส้นลวด ทิศทางของสนามแม่เล็กที่เกิดขึ้นนี้เป็นไปตามกฎมือขวา กฎมือขวา Hans Christian Ørsted, ''Der Geist in der Natur'', 1854 สนามแม่เหล็ก นั้นอาจเกิดขึ้นได้จากการเคลื่อนที่ของประจุไฟฟ้า หรือในทางกลศาสตร์ควอนตัมนั้น การสปิน(การหมุนรอบตัวเอง) ของอนุภาคต่างๆ ก็ทำให้เกิดสนามแม่เหล็กเช่นกัน ซึ่งสนามแม่เหล็กที่เกิดจากการ สปิน เป็นที่มาของสนามแม่เหล็กของแม่เหล็กถาวรต่างๆ สนามแม่เหล็กคือปริมาณที่บ่งบอกแรงกระทำบนประจุที่กำลังเคลื่อนที่ สนามแม่เหล็กเป็นสนามเวกเตอร์และทิศของสนามแม่เหล็ก ณ ตำแหน่งใดๆ คือทิศที่เข็มของเข็มทิศวางตัวอย่างสมดุล เรามักจะเขียนแทนสนามแม่เหล็กด้วยสัญลักษณ์ \mathbf\ เดิมทีแล้ว สัญลักษณ์ \mathbf \ นั้นถูกเรียกว่าความหนาแน่นฟลักซ์แม่เหล็กหรือความเหนี่ยวนำแม่เหล็ก ในขณะที่ \mathbf.

ใหม่!!: ไฟฟ้าและสนามแม่เหล็ก · ดูเพิ่มเติม »

สนามไฟฟ้า

นามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนานแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง.

ใหม่!!: ไฟฟ้าและสนามไฟฟ้า · ดูเพิ่มเติม »

หม้อแปลงไฟฟ้า

รงสร้างหลักของแม่เหล็กไฟฟ้า หม้อแปลง หรือหม้อแปลงไฟฟ้า (transformer) เป็นอุปกรณ์ไฟฟ้า ที่ใช้ในการส่งผ่านพลังงานจากวงจรไฟฟ้าหนึ่งไปยังอีกวงจรโดยอาศัยหลักการของแม่เหล็กไฟฟ้า โดยปกติจะใช้เชื่อมโยงระหว่างระบบไฟฟ้าแรงสูง และไฟฟ้าแรงต่ำ หม้อแปลงเป็นอุปกรณ์หลักในระบบส่งกำลังไฟฟ้.

ใหม่!!: ไฟฟ้าและหม้อแปลงไฟฟ้า · ดูเพิ่มเติม »

หลอดสุญญากาศ

อดหลอดสุญญากาศ ไตรโอดหลอดสุญญากาศ ไตรโอดชนิด808หลอดสุญญากาศ เครื่องเสียงหลอดสุญญากาศ mixtubeหลอดสุญญากาศ หลอดสุญญากาศ (vacuum tube) หรือ หลอดอิเล็กตรอน (electron tube: ในอเมริกา) หรือ วาล์วเทอร์มิออนิค (thermionic valve: ในอังกฤษ) ในทางอิเล็กทรอนิกส หมายถึงอุปกรณ์ที่ควบคุมกระแสไฟฟ้าผ่านขั้วอิเล็กโทรดภายในบริเวณที่มีอากาศหรือก๊าซเบาบาง ปรากฏการณ์ ทางฟิสิกส์ที่ใช้อธิบายการนำไฟฟ้าก็คือ ปรากฏการณ์เทอร์มิออนิค อิมิตชัน (thermionic emission) ซึ่งอธิบายว่าเมื่อโลหะถูกทำให้ร้อนจนถึงระดับหนึ่งด้วยการป้อนกระแสไฟฟ้าจะทำให้อิเล็กตรอนหลุดออกมาที่ผิวของโลหะ เมื่อทำการป้อนศักย์ไฟฟ้าเพื่อดึงดูดอิเล็กตรอนที่หลุดออกมาอยู่ที่ผิวด้วยขั้วโลหะอีกขั้วหนึ่งที่อยู่ข้างๆ จะทำให้เกิดการไหลของกระแสได้ เราเรียกหลอดสุญญากาศที่มีขั้วโลหะเพียงสองขั้วนี้ว่า หลอดไดโอด (Diode) โดยขั้วที่ให้อิเล็กตรอนเรียกว่า คาโธด (Cathode) และขั้วที่รับอิเล็กตรอนเรียกว่า อาโนด (Anode) โดยปกติจะมีรูปร่างเป็นแผ่นโลหะธรรมดา บางทีจะเรียกว่า เพลท (Plate) การไหลของกระแสไฟฟ้าของหลอดไดโอดเป็นแบบไม่เป็นเชิงเส้น (Non-linear current) กล่าวคือ เมื่อป้อนศักย์ไฟฟ้าบวกให้กับขั้วอาโนดและศักย์ไฟฟ้าลบให้กับขั้วคาโธดจะทำให้เกิดกระแสไฟฟ้าไหลดังที่ได้อธิบายผ่านมา แต่เมื่อป้อนศักย์ไฟฟ้ากลับทางคือ ป้อนศักย์ไฟฟ้าบวกให้กับคาโธดและป้อนศักย์ไฟฟ้าลบให้กับอาโนดจะทำให้กระแสไฟฟ้าไม่สามารถไหลได้ ซึ่งเป็นผลมาจากอิเล็กตรอนถูกผลักด้วยผลของสนามไฟฟ้านั้นเอง ซึ่งคุณสมบัติข้อนีจึงทำให้สามารถนำหลอดไดโอดไปใช้เป็นอุปกรณ์เรียงกระแส (rectifier) ได้ ต่อมาได้มีการพัฒนาหลอดไดโอดโดยใส่ขั้วโลหะตาข่ายระหว่างขั้วอาโนดและขั้วคาโธด เรียกว่า กริด (Grid) ซึ่งจะมีรูปร่างเป็นตาข่าย เป็นลวดเส้นเล็กๆ พันอยู่รอบๆหลอดสุญญากาศ บางชนิดอาจจะไม่มีขั้วชนิดนี้ หรือจะมีเพียงขั้วเดียว หรืออาจจะมี 2-3 ขั้วขึ้นไป จะทำหน้าที่เป็นส่วนควบคุมปริมาณกระแสให้ไหลมากน้อยได้ตามศักย์ไฟฟ้าที่ป้อนให้กับขั้วกริด อุปกรณ์ที่มีขั้วโลหะ 3 ขั้วนี้เรียกว่า หลอดไตรโอด (Triode) ทำสามารถใช้ทำเป็นเครื่องส่งวิทยุได้.

ใหม่!!: ไฟฟ้าและหลอดสุญญากาศ · ดูเพิ่มเติม »

อะลูมิเนียม

มื่อวัดในทั้งปริมาณและมูลค่า การใช้อะลูมิเนียมมีมากกว่าโลหะอื่น ๆ ยกเว้นเหล็ก และมีความสำคัญในเศรษฐกิจโลกทุกด้าน อะลูมิเนียมบริสุทธิ์มีแรงต้านการดึงต่ำ แต่สามารถนำไปผสมกับธาตุต่าง ๆ ได้ง่าย เช่น ทองแดง สังกะสี แมกนีเซียม แมงกานีส และซิลิกอน (เช่น duralumin) ในปัจจุบันวัสดุเกือบทั้งหมดที่เรียกว่าอะลูมิเนียมเป็นโลหะผสมของอะลูมิเนียม อะลูมิเนียมบริสุทธิ์พบเฉพาะเมื่อต้องการความทนต่อการกัดกร่อนมากกว่าความแข็งแรงและความแข็ง เมื่อรวมกับกระบวนการทางความร้อนและกลการ (thermo-mechanical processing) โลหะผสมของอะลูมิเนียมมีคุณสมบัติทางกลศาสตร์ที่ดีขึ้น โลหะผสมอะลูมิเนียมเป็นส่วนสำคัญของเครื่องบินและจรวดเนื่องจากมีอัตราความแข็งแรงต่อน้ำหนักสูง อะลูมิเนียมสามารถสะท้อนแสงที่มองเห็นได้ดีเยี่ยม (~99%) และสามารถสะท้อนแสงอินฟราเรดได้ดี (~95%) อะลูมิเนียมชั้นบาง ๆ สามารถสร้างบนพื้นผิวเรียบด้วยวิธีการควบแน่นของไอสารเคมี (chemical vapor deposition) หรือวิธีการทางเคมี เพื่อสร้างผิวเคลือบออปติคัล (optical coating) และกระจกเงา ผิวเคลือบเหล่านี้จะเกิดชั้นอะลูมิเนียมออกไซด์ที่บางยิ่งกว่า ที่ไม่สึกกร่อนเหมือนผิวเคลือบเงิน กระจกเงาเกือบทั้งหมดสร้างโดยใช้อะลูมิเนียมชั้นบางบนผิวหลังของแผ่นกระจกลอย (float glass).

ใหม่!!: ไฟฟ้าและอะลูมิเนียม · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: ไฟฟ้าและอะตอม · ดูเพิ่มเติม »

อัตราเร็วของแสง

ปรากฏการณ์เชเรนคอฟ ในเครื่องปฏิกรณ์นิวเคลียร์ เป็นผลมาจาก อิเล็กตรอนเคลื่อนที่เร็วกว่าแสงที่เดินทางในน้ำ อัตราเร็วของแสง (speed of light) ในสุญญากาศ มีนิยามว่าเท่ากับ 299,792,458 เมตรต่อวินาที (หรือ 1,080,000,000 กิโลเมตรต่อชั่วโมง หรือประมาณ 186,000.000 ไมล์ต่อวินาที หรือ 671,000,000 ไมล์ต่อชั่วโมง) ค่านี้เขียนแทนด้วยตัว c ซึ่งมาจากภาษาละตินคำว่า celeritas (แปลว่า อัตราเร็ว) และเรียกว่าเป็นค่าคงที่ของไอน์สไตน์ แสงเป็นสิ่งที่แปลกประหลาดนั่นคือไม่ว่าผู้สังเกตจะเคลื่อนที่หรือหยุดนิ่ง ไม่ว่าจะอยู่ในสถานที่ใด ด้วยเงื่อนไขใด อัตราเร็วของแสงที่ผู้สังเกตคนนั้นวัดได้ จะเท่าเดิมเสมอ ซึ่งขัดกับความรู้สึกของคนทั่วไป แต่เป็นไปตาม ทฤษฎีสัมพัทธภาพ ของ อัลเบิร์ต ไอน์สไตน์ สังเกตว่าอัตราเร็วของแสงในสุญญากาศ เป็น นิยาม ไม่ใช่ การวัด ในหน่วยเอสไอกำหนดให้ เมตร มีนิยามว่าเป็นระยะทางที่แสงเดินทางในสุญญากาศในเวลา 1/299,792,458 วินาที แสงที่เดินทางผ่านตัวกลางโปร่งแสง (คือไม่เป็นสุญญากาศ) จะมีอัตราเร็วต่ำกว่า c อัตราส่วนของ c ต่ออัตราเร็วของแสงที่เดินทางผ่านในตัวกลาง เรียกว่า ดรรชนีหักเหของตัวกลางนั้น โดยเมื่อผ่านแก้ว จะมีดรรชนีหักเห 1.5-1.9 ผ่านน้ำจะมีดรรชีนีหักเห 1.3330 ผ่านเบนซินจะมีดรรชนีหักเห 1.5012 ผ่านคาร์บอนไดซัลไฟต์จะมีดรรชนีหักเห 1.6276 ผ่านเพชรจะมีดรรชนีหักเห 2.417 ผ่านน้ำแข็งจะมีดรรชนีหักเห 1.309.

ใหม่!!: ไฟฟ้าและอัตราเร็วของแสง · ดูเพิ่มเติม »

อันตรกิริยาพื้นฐาน

อันตรกิริยาพื้นฐาน (fundamental interaction; บางครั้งก็เรียกว่า แรงพื้นฐาน) ในทางฟิสิกส์ คือวิธีการที่อนุภาคชนิดเรียบง่ายที่สุดในเอกภพกระทำต่อกันและกัน อันตรกิริยานั้นจะถือว่าเป็นอันตรกิริยาพื้นฐานเมื่อมันไม่สามารถอธิบายในรูปแบบอันตรกิริยาอื่นใดได้อีก มีอันตรกิริยาพื้นฐานอยู่ 4 ชนิดที่เรารู้จัก ได้แก่ แรงแม่เหล็กไฟฟ้า อันตรกิริยาอย่างเข้ม อันตรกิริยาอย่างอ่อน (บางครั้งก็เรียกว่า แรงนิวเคลียร์ชนิดเข้ม กับ แรงนิวเคลียร์ชนิดอ่อน) และแรงโน้มถ่วง แรงสามชนิดแรกนั้นสามารถอธิบายได้ในรูปแบบของกระบวนการคำนวณต่างๆ ด้วยทฤษฎีที่เรียกชื่อว่า perturbation theory โดยการพิจารณาการแลกเปลี่ยนโบซอนระหว่างอนุภาค ตารางต่อไปนี้แสดงข้อมูลเบื้องต้นเกี่ยวกับอันตรกิริยาแบบต่างๆ ค่าของแรงสัมพัทธ์และระยะที่มีผลที่แสดงในตารางนี้ จะมีความหมายก็ต่อเมื่ออยู่ในกรอบการพิจารณาทางทฤษฎีเท่านั้น พึงทราบด้วยว่าข้อมูลในตารางนี้อ้างอิงจากแนวคิดหลักซึ่งยังเป็นหัวข้อวิจัยที่กำลังดำเนินการอยู่ ในฟิสิกส์แผนใหม่ อันตรกิริยาระหว่างอนุภาคมักจะอธิบายได้ในรูปของการแลกเปลี่ยนหรือการคายและดูดกลืนแบบต่อเนื่องของอะไรบางอย่างที่เรียกอนุภาคสนาม (field particles) หรือ อนุภาคแลกเปลี่ยน (exchange particles) ในกรณีอันตรกิริยาไฟฟ้าอนุภาคสนามก็คือ โฟตอน (photon) ในภาษาของฟิสิกส์แผนใหม่เรากล่าวว่าแรงแม่เหล็กไฟฟ้ามีโฟตอนเป็นสื่อ (mediated) หรือพาหะ (carrier) และโฟตอนก็เป็นอนุภาคสนามของสนามแม่เหล็กไฟฟ้า เช่นกัน แรงนิวเคลียร์ก็มีสื่อเรียก      กลูออน (gluons) (ที่มีชื่อเช่นนี้ เพราะมัน “ยึดติด” นิวคลีออนไว้ด้วยกันเหมือนกาว) แรงอ่อนมีอนุภาคสนามเป็นสื่อ ชื่อ W และ Z โบซอน (bosons) และแรงโน้มถ่วงมีอนุภาคสนามเป็นพาหะเรียก      แกรวิตอน (gravitons) อันตรกิริยาเหล่านี้ พิสัยและความเข้มสัมพัทธ์ของมัน.

ใหม่!!: ไฟฟ้าและอันตรกิริยาพื้นฐาน · ดูเพิ่มเติม »

อันตรกิริยาอย่างเข้ม

นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.

ใหม่!!: ไฟฟ้าและอันตรกิริยาอย่างเข้ม · ดูเพิ่มเติม »

อาเลสซานโดร โวลตา

Alessandro Volta อาเลสซานโดร จูเซปเป อันโตนิโอ อนาสตาซิโอ โวลตา (Alessandro Giuseppe Antonio Anastasio Volta; 18 กุมภาพันธ์ ค.ศ. 1745 — 5 มีนาคม ค.ศ. 1827) เป็นนักฟิสิกส์ชาวลอมบาร์ดี ซึ่งเป็นที่รู้จักว่าคิดค้นแบตเตอรี (เซลล์ไฟฟ้าเคมี) ขึ้นในคริสต์ทศวรรษ 1800 อาเลสซานโดร เป็นผู้บุกเบิกการผลิตไฟฟ้าและพลังงานซึ่งเป็นเครดิตในฐานะ ผู้ประดิษฐ์แบตเตอรี่ไฟฟ้าและผู้ค้นพบก๊าซมีเทน เขาได้คิดค้นกองเชื้อเพลิงในปี..

ใหม่!!: ไฟฟ้าและอาเลสซานโดร โวลตา · ดูเพิ่มเติม »

อำพัน

อำพันตกแต่งเป็นเหรียญประดับรูปไข่ขนาด 2x1.3 นิ้ว อำพัน เป็นซากดึกดำบรรพ์ของยางไม้ เป็นสิ่งมีค่าด้วยสีสันและความสวยงามของมัน อำพันที่มีคุณภาพดีเยี่ยมจะถูกนำมาผลิตเป็นเครื่องประดับและอัญมณี แม้ว่าอำพันจะไม่จัดเป็นแร่แต่ก็ถูกจัดให้เป็นพลอย โดยทั่วไปแล้วจะเข้าใจผิดกันว่าอำพันเกิดจากน้ำเลี้ยงของต้นไม้ แต่แท้ที่จริงแล้ว น้ำเลี้ยงเป็นของเหลวที่ไหลเวียนอยู่ในระบบท่อลำเลียงของพืช ขณะที่ยางไม้เป็นอินทรียวัตถุเนื้ออสัณฐานกึ่งแข็งที่ถูกขับออกมาผ่านเซลล์เอพิทีเลียมของพืช เพราะว่าอำพันเคยเป็นยางไม้ที่เหนียวนิ่มเราจึงพบว่าอาจมีแมลงหรือแม้แต่สัตว์มีกระดูกสันหลังขนาดเล็กอยู่ในเนื้อของมันได้ ยางไม้ที่มีสภาพเป็นกึ่งซากดึกดำบรรพ์รู้จักกันในนามของโคปอล สีของอำพันมีได้หลากหลายสีสัน ปรกติแล้วจะมีสีน้ำตาล เหลือง หรือส้ม เนื้อของอำพันเองอาจมีสีได้ตั้งแต่ขาวไปจนถึงเป็นสีเหลืองมะนาวอ่อนๆ หรืออาจเป็นสีน้ำตาลจนถึงเกือบสีดำ สีที่พบน้อยได้แก่สีแดงที่บางทีก็เรียกว่าอำพันเชอรี่ อำพันสีเขียวและสีฟ้าหายากที่มีการขุดค้นหากันมาก อำพันที่มีค่าสูงมากๆจะมีเนื้อโปร่งใส ในทางตรงกันข้ามอำพันที่พบกันมากทั่วไปจะมีสีขุ่นหรือมีเนื้อทึบแสง อำพันเนื้อทึบแสงมักมีฟองอากาศเล็กๆเป็นจำนวนมากที่รู้จักกันในนามของอำพันบาสตาร์ดหมายถึงอำพันปลอม ซึ่งแท้ที่จริงแล้วก็เป็นอำพันของแท้ๆนั่นเอง.

ใหม่!!: ไฟฟ้าและอำพัน · ดูเพิ่มเติม »

อิเล็กทรอนิกส์

อิเล็กทรอนิกส์ (Electronics) เป็นเทคโนโลยีที่เกี่ยวข้องกับวงจรไฟฟ้าที่ประกอบด้วยอุปกรณ์ไฟฟ้าที่เป็น active component เช่นหลอดสูญญากาศ, ทรานซิสเตอร์, ไดโอด และ Integrated Circuit และ ชิ้นส่วน พาสซีฟ (passive component) เช่น ตัวนำไฟฟ้า, ตัวต้านทานไฟฟ้า, ตัวเก็บประจุ และคอยล์ พฤติกรรมไม่เชิงเส้นของ active component และความสามารถในการควบคุมการไหลของอิเล็กตรอนทำให้สามารถขยายสัญญาณอ่อนๆให้แรงขึ้นเพื่อการสื่อสารทางภาพและเสียงเช่นโทรเลข, โทรศัพท์, วิทยุ, โทรทัศน์ เป็นต้น อิเล็กทรอนิกส์ถูกใช้กันอย่างแพร่หลายในการสื่อสารข้อมูลโทรคมนาคม ความสามารถของอุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิทช์ปิดเปิดวงจรถูกนำไปใช้ในวงจร ลอจิกเกต ซึ่งเป็นส่วนสำคัญหลักในระบบคอมพิวเตอร์ นอกจากนั้น วงจรอิเล็กทรอนิกส์ยังถูกนำไปใช้ผลิตเครื่องใช้ไฟฟ้าในครัวเรือน ในการส่งพลังงานไฟฟ้าเป็นระยะทางไกลๆ การผลิตพลังงานทดแทน และอุตสาหกรรมต่างๆอีกมาก อิเล็กทรอนิกส์แตกต่างจากวิทยาศาสตร์ไฟฟ้าและเทคโนโลยีเครื่องกลไฟฟ้า โดยจะเกี่ยวข้องกับการสร้าง, การกระจาย, การสวิทช์, การจัดเก็บและการแปลงพลังงานไฟฟ้าไปและมาจากพลังงานรูปแบบอื่น ๆ โดยใช้สายไฟ, มอเตอร์, เครื่องกำเนิดไฟฟ้า, แบตเตอรี่, สวิตช์, รีเลย์, หม้อแปลงไฟฟ้า ตัวต้านทานและส่วนประกอบที่เป็นพาสซีพอื่นๆ ความแตกต่างนี้เริ่มราวปี 1906 เป็นผลจากการประดิษฐ์ไตรโอดโดยลี เดอ ฟอเรสท์ ซึ่งใช้ขยายสัญญาณวิทยุที่อ่อนๆได้ ทำให้เกิดการออกแบบและพัฒนาระบบการรับส่งสัญญาณเสียงและหลอดสูญญากาศ จึงเรียกสาขานี้ว่า "เทคโนโลยีวิทยุ" จนถึงปี 1950 ปัจจุบัน อุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ ใช้ชิ้นส่วนสารกึ่งตัวนำเพื่อควบคุมการทำงานของอิเล็กตรอน การศึกษาเกี่ยวกับอุปกรณ์สารกึ่งตัวนำและเทคโนโลยีโซลิดสเตต ในขณะที่การออกแบบและการสร้างวงจรอิเล็กทรอนิกส์ในการแก้ปัญหาในทางปฏิบัติอยู่ภายใต้สาขาวิศวกรรมอิเล็กทรอนิกส์ บทความนี้มุ่งเน้นด้านวิศวกรรมของ.

ใหม่!!: ไฟฟ้าและอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: ไฟฟ้าและอิเล็กตรอน · ดูเพิ่มเติม »

อิเล็กโทรด

อิเล็กโทรด/ลวดเชื่อมต่าง ๆ ที่ใช้ในการเชื่อมอาร์ค อิเล็กโทรด หรือ ขั้วเชื่อม หรือ ลวดเชื่อม หรือ ขั้วไฟฟ้า (Electrode) เป็นตัวนำไฟฟ้าเพื่อใช้แนบกับส่วนที่ไม่ใช่โลหะของวงจรไฟฟ้า (เช่น สารกึ่งตัวนำ อิเล็กโทรไลต์ สุญญากาศ หรืออากาศ) อิเล็กโทรดเป็นคำที่บัญญัติขึ้นโดยนักวิทยาศาสตร์ชาวอังกฤษ วิลเลียม ฮิวเอ็ลล์ ตามคำของไมเคิล ฟาราเดย์ ซึ่งมาจากคำภาษากรีกว่า elektron ซึ่งจริง ๆ แปลว่า อำพัน แต่นำมาอนุพัทธ์ใช้หมายถึงไฟฟ้า บวกกับคำว่า hodos ซึ่งแปลว่าทาง.

ใหม่!!: ไฟฟ้าและอิเล็กโทรด · ดูเพิ่มเติม »

อียิปต์โบราณ

มมฟิสและสุสานโบราณ อียิปต์โบราณ หรือ ไอยคุปต์ เป็นหนึ่งในอารยธรรมที่เก่าแก่ที่สุดในโลก ตั้งอยู่ทางตอนตะวันออกเฉียงเหนือของทวีปแอฟริกา มีพื้นที่ตั้งแต่ตอนกลางจนถึงปากแม่น้ำไนล์ ปัจจุบันเป็นที่ตั้งของประเทศอียิปต์ อารยธรรมอียิปต์โบราณเริ่มขึ้นประมาณ 3150 ปีก่อนคริตศักราช โดยการรวมอำนาจทางการเมืองของอียิปต์ตอนเหนือและตอนใต้ ภายใต้ฟาโรห์องค์แรกแห่งอียิปต์ และมีการพัฒนาอารยธรรมเรื่อยมากว่า 5,000 ปี ประวัติของอียิปต์โบราณปรากฏขึ้นในช่วงระยะเวลาหนึ่ง หรือที่รู้จักกันว่า "ราชอาณาจักร" มีการแบ่งยุคสมัยของอียิปต์โบราณเป็นราชอาณาจักร ส่วนมากแบ่งตามราชวงศ์ที่ขึ้นมาปกครอง จนกระทั่งราชอาณาจักรสุดท้าย หรือที่รู้จักกันในชื่อว่า "ราชอาณาจักรกลาง" อารยธรรมอียิปต์อยู่ในช่วงที่มีการพัฒนาที่ยมาก และส่วนมากลดลง ซึ่งเป็นเวลาเดียวกันที่อียิปต์ชนพ่ายต่อการทำสงครามจากชาติอื่น ดังเช่นชาวอัสซีเรียและเปอร์เซีย จนกระทั่งเมื่อ 332 ปีก่อนคริสตศักราช ก็เป็นการสิ้นสุดอารยธรรมอียิปต์โบราณลง เมื่อพระเจ้าอเล็กซานเดอร์มหาราชสามารถยึดครองอียิปต์ และจัดอียิปต์เป็นเพียงจังหวัดหนึ่งในจักรวรรดิมาซิโดเนีย อารยธรรมอียิปต์พัฒนาการมาจากสภาพของลุ่มแม่น้ำไนล์ การควบคุมระบบชลประทาน, การควบคุมการผลิตพืชผลทางการเกษตร พร้อมกับพัฒนาอารยธรรมทางสังคม และวัฒนธรรม พื้นที่ของอียิปต์นั้นล้อมรอบด้วยทะเลทรายเสมือนปราการป้องกันการรุกรานจากศัตรูภายนอก นอกจากนี้ยังมีการทำเหมืองแร่ และอียิปต์ยังเป็นชนชาติแรกๆที่มีการพัฒนาการด้วยการเขียน ประดิษฐ์ตัวอักษรขึ้นใช้,การบริหารอียิปต์เน้นไปทางสิ่งปลูกสร้าง และการเกษตรกรรม พร้อมกันนั้นก็มีการพัฒนาการทางทหารของอียิปต์ที่เสริมสร้างความแข็งแกร่งแก่ราชอาณาจักร โดยประชาชนจะให้ความเคารพกษัตริย์หรือฟาโรห์เสมือนหนึ่งเทพเจ้า ฟาโรห์มีอำนาจและโหดร้ายมาก ทำให้การบริหารราชการบ้านเมืองและการควบคุมอำนาจนั้นทำได้อย่างมีประสิทธิภาพ ชาวอียิปต์โบราณไม่ได้เป็นเพียงแต่นักเกษตรกรรม และนักสร้างสรรค์อารยธรรมเท่านั้น แต่ยังเป็นนักคิด, นักปรัชญา ได้มาซึ่งความรู้ในศาสตร์ต่างๆมากมายตลอดการพัฒนาอารยธรรมกว่า 4,000 ปี ทั้งในด้านคณิตศาสตร์, เทคนิคการสร้างพีระมิด, วัด, โอเบลิสก์, ตัวอักษร และเทคนิคโลยีด้านกระจก นอกจากนี้ยังมีการพัฒนาประสิทธิภาพทางด้านการแพทย์, ระบบชลประทานและการเกษตรกรรม อียิปต์ทิ้งมรดกสุดท้ายแก่อนุชนรุ่นหลังไว้คือศิลปะ และสถาปัตยกรรม ซึ่งถูกคัดลอกนำไปใช้ทั่วโลก อนุสรณ์สถานที่ต่างๆในอียิปต์ต่างดึงดูดนักท่องเที่ยว นักประพันธ์กว่าหลายศตวรรษที่ผ่านมา ปัจจุบันมีการค้นพบวัตถุใหม่ๆในอียิปต์มากมายซึ่งกำลังตรวจสอบถึงประวัติความเป็นมา เพื่อเป็นหลักฐานให้แก่อารยธรรมอียิปต์ และเป็นหลักฐานแก่อารยธรรมของโลกต่อไป.

ใหม่!!: ไฟฟ้าและอียิปต์โบราณ · ดูเพิ่มเติม »

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ใหม่!!: ไฟฟ้าและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

อ็องเดร-มารี อ็องแปร์

นของอ็องแปร์กับบุตรชาย อ็องเดร-มารี อ็องแปร์ (André-Marie Ampère; 22 มกราคม ค.ศ. 1775 — 10 มิถุนายน ค.ศ. 1836) เป็นนักฟิสิกส์และนักคณิตศาสตร์ชาวฝรั่งเศส ผู้ซึ่งเป็นหนึ่งในผู้ค้นพบทฤษฎีแม่เหล็กไฟฟ้า หน่วย SI ของการวัดกระแสไฟฟ้า โดยชื่อของหน่วยแอมแปร์ ได้ตั้งตามชื่อของ.

ใหม่!!: ไฟฟ้าและอ็องเดร-มารี อ็องแปร์ · ดูเพิ่มเติม »

อเล็กซานเดอร์ เกรแฮม เบลล์

อเล็กซานเดอร์ แกรห์มเบลล์ อเล็กซานเดอร์ แกรห์ม เบลล์ (Alexander Graham Bell - 3 มีนาคม ค.ศ. 1847 - 2 สิงหาคม ค.ศ. 1922) เป็นนักวิทยาศาสตร์ นักประดิษฐ์ เป็นชาวชาวอเมริกัน นอกจากนี้ เบลล์ยังเป็นผู้มีความสำคัญอย่างมากในงานวิจัยทางด้านอากาศยาน และ ไฮโดรฟอยล.

ใหม่!!: ไฟฟ้าและอเล็กซานเดอร์ เกรแฮม เบลล์ · ดูเพิ่มเติม »

ฮันส์ คริสเทียน เออร์สเตด

ฮันส์ คริสเทียน เออร์สเตด Hans Christian Ørsted, ''Der Geist in der Natur'', 1854 ฮันส์ คริสเทียน เออร์สเตด (Hans Christian Ørsted, 14 สิงหาคม พ.ศ. 2320 - 9 มีนาคม พ.ศ. 2394) เป็นนักฟิสิกส์และนักเคมีชาวเดสัมพันธ์ระหว่างไฟฟ้าและความเป็นแม่เหล็ก หรือที่เรียกว่า ทฤษฎีแม่เหล็กไฟฟ้า ฮานส์ คริสเตียน เออร์สเตด) เกิดเมื่อวันที่ 14 สิงหาคม พ.ศ. 2320 เขาเป็นศาสตราจารย์ภาควิชาฟิสิกส์ ประจำมหาวิทยาโคเปนเฮเกน ประเทศเดนมาร์ก เออร์สเตดค้นพบความสัมพันธ์ระหว่างไฟฟ้าและสนามแม่เหล็กด้วยความบังเอิญ ในเดือนเมษายน ปี พ.ศ. 2363 ขณะบรรยายวิชาฟิสิกส์ในหัวข้อ คุณสมบัติของกระแสไฟฟ้า (Electricity, Galvanism and Magnetism) โดยมีอุปกรณ์ในการทำการทดลองประกอบการบรรยาย คือ แบตเตอรี่ สายไฟ และเข็มทิศ เออร์สเตดได้ทำการทดลองเกี่ยวกับปรากฏการณ์ที่เข็มทิศจะเบนเมื่อมีฝนตกหนัก และฟ้าแลบ เพื่อลองดูว่าจะเกิดอะไรขึ้นกับเข็มทิศ ถ้าผ่านกระแสไฟเข้าไปในลวดตัวนำ เขานำลวดตัวนำตั้งฉากกับเข็มทิศและพบว่าไม่มีอะไรเกิดขึ้น แต่หลังจากการบรรยายสิ้นสุด เออร์สเตดลองวางลวดตัวนำขนานกับเข็มทิศ และผ่านกระแสไฟฟ้าไปในลวดตัวนำ กลับพบว่าเข็มทิศกระดิก และเริ่มเบน การ ค้นพบนี้ทำให้เออร์สเตดเป็นบุคคลแรกที่ค้นพบความสัมพันธ์ระหว่างกระแสไฟฟ้า และแม่เหล็ก หรือนำไปสู่ทฤษฎีความสัมพันธ์ระหว่างแม่เหล็กกับไฟฟ้า (Electro Magnetism Theory) ต่อมาในวันที่ 11 กันยายน ปีเดียวกันนั้นเอง การค้นพบของเออร์สเตดได้ถูกไปนำเสนอที่ราชสมาคมฝรั่งเศส โดย โดมินิก ฟร็องซัวส์ ฌอง อราโก (Dominiqiue Francois Jean Arago) เขาระบุว่าการค้นพบนี้สำคัญไม่น้อยไปกว่าการค้นพบไฟฟ้า นอกจากนี้ยังมีนักวิทยาศาสตร์ชาวฝรั่งเศสและชาวอังกฤษอีกหลายคนที่พยายาม แข่งขันเพื่ออธิบายปรากฏการณ์ที่เออร์สเตดค้นพบ โดยเฉพาะนักทดลองชาวฝรั่งเศสที่ชื่อ ฌอง แบพติสท์ บิโอต์ (Jean Baptiste Biot) และ เฟลิกซ์ ซาวาร์ (Felix Savart) เป็นนักฟิสิกส์คนแรกๆ ที่สามารถอธิบายปรากฏการณ์นี้อย่างละเอียดได้ นับได้ว่าการค้นพบของ ฮานส์ คริสเตียน เออร์สเตด ได้จุดประกายที่ทำให้นักวิทยาศาสตร์หลายคนพยายามค้นพบเรื่องแม่เหล็กไฟฟ้า รวมถึง อังเดร มารี แอมแป (Andre Marie Ampere) ผู้ค้นพบทฤษฎีแม หมวดหมู่:นักฟิสิกส์ชาวเดนมาร์ก หมวดหมู่:นักเคมีชาวเดนมาร์ก หมวดหมู่:บุคคลจากภาคใต้ของเดนมาร์ก.

ใหม่!!: ไฟฟ้าและฮันส์ คริสเทียน เออร์สเตด · ดูเพิ่มเติม »

ผู้ป่วย

แพทย์กำลังวัดความดันเลือดให้กับผู้ป่วย ผู้ป่วย, ผู้รับการรักษา, คนไข้ หมายถึงผู้ที่เข้ารับบริการสุขภาพรูปแบบใด ๆ จากแพทย์ ทันตแพทย์ พยาบาลเวชปฏิบัติ สัตวแพทย์ หรือบุคลากรสาธารณสุขอื่น ๆ ซึ่งส่วนใหญ่จะมีอาการป่วยจากโรคหรือการบาดเจ็บ และจำเป็นต้องได้รับการรักษา แต่บางครั้งอาจไม่ต้องก็ได้ หมวดหมู่:อภิธานศัพท์แพทย์ หมวดหมู่:การพยาบาล หมวดหมู่:มนุษย์.

ใหม่!!: ไฟฟ้าและผู้ป่วย · ดูเพิ่มเติม »

จอร์จ ไซมอน โอห์ม

อร์จ ไซมอน โอห์ม (อังกฤษ: George Simon Ohm) เกิดเมื่อวันที่ 16 มีนาคม..

ใหม่!!: ไฟฟ้าและจอร์จ ไซมอน โอห์ม · ดูเพิ่มเติม »

จอร์จ เวสติงเฮาส์

อร์จ เวสติงเฮาส์ จูเนียร์ (George Westinghouse, Jr) วิศวกร นักประดิษฐ์ และนักธุรกิจชาวอเมริกัน เป็นผู้ออกแบบระบบห้ามล้ออัดอากาศสำหรับรถไฟ ที่ใช้งานอยู่ในรถไฟยุคปัจจุบันมาตั้งแต่ปี..

ใหม่!!: ไฟฟ้าและจอร์จ เวสติงเฮาส์ · ดูเพิ่มเติม »

ทรานซิสเตอร์

ทรานซิสเตอร์ (transistor) เป็นอุปกรณ์สารกึงตัวนำที่สามารถควบคุมการไหลของอิเล็กตรอนได้ ใช้ทำหน้าที่ ขยายสัญญาณไฟฟ้า, เปิด/ปิดสัญญาณไฟฟ้า, ควบคุมแรงดันไฟฟ้าให้คงที่, หรือกล้ำสัญญาณไฟฟ้า (modulate) เป็นต้น การทำงานของทรานซิสเตอร์เปรียบได้กับวาล์วควบคุมที่ทำงานด้วยสัญญาณไฟฟ้าที่ขาเข้า เพื่อปรับขนาดกระแสไฟฟ้าขาออกที่จ่ายมาจากแหล่งจ่ายไฟ ทรานซิสเตอร์ประกอบด้วยวัสดุเซมิคอนดักเตอร์ที่มีอย่างน้อยสามขั้วไฟฟ้าเพื่อเชื่อมต่อกับวงจร ภายนอก แรงดันหรือกระแสไฟฟ้าที่ป้อนให้กับขั้วทรานซิสเตอร์หนึ่งคู่ จะมีผลให้เกิดการเปลี่ยนแปลงในกระแสที่ไหลผ่านในขั้วทรานซิสเตอร์อีกคู่หนึ่ง เนื่องจากพลังงานที่ถูกควบคุม (เอาต์พุต)จะสูงกว่าพลังงานที่ใช้ในการควบคุม (อินพุท) ทรานซิสเตอร์จึงสามารถขยายสัญญาณได้ ปัจจุบัน บางทรานซิสเตอร์ถูกประกอบขึ้นมาต่างหากแต่ยังมีอีกมากที่พบฝังอยู่ใน แผงวงจรรวม ทรานซิสเตอร์เป็นการสร้างบล็อกพื้นฐานของอุปกรณ์อิเล็กทรอนิกส์ที่ทันสมัย ​​และเป็นที่แพร่หลายในระบบอิเล็กทรอนิกส์สมัยใหม.

ใหม่!!: ไฟฟ้าและทรานซิสเตอร์ · ดูเพิ่มเติม »

ทฤษฎีแม่เหล็กไฟฟ้า

ทฤษฎีแม่เหล็กไฟฟ้า (Electromagnetism) เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่เกี่ยวข้องกับการศึกษา แรงแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์ทางกายภาพชนิดหนึ่งที่เกิดขึ้นระหว่างอนุภาคใดๆที่มีประจุไฟฟ้า แรงแม่เหล็กไฟฟ้ามักจะแสดงสนามแม่เหล็กไฟฟ้าเช่นสนามไฟฟ้า, สนามแม่เหล็ก, และแสง แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่ปฏิสัมพันธ์พื้นฐานในธรรมชาติ อีกสามแรงพื้นฐานได้แก่ อันตรกิริยาอย่างเข้ม, อันตรกิริยาอย่างอ่อน และแรงโน้มถ่วง ฟ้าผ่าเป็นการระบายออกของไฟฟ้าสถิตแบบหนึ่งที่ไฟฟ้าสถิตจะเดินทางระหว่างสองภูมิภาคท​​ี่มีประจุไฟฟ้า แม่เหล็กไฟฟ้ามาจากภาษาอังกฤษ electromagnet คำนี้ป็นรูปแบบผสมของคำภาษากรีกสองคำได้แก่ ἤλεκτρον หมายถึง อิเล็กตรอน และ μαγνῆτιςλίθος (Magnetis Lithos) ซึ่งหมายถึง "หินแม่เหล็ก" ซึ่งเป็นแร่เหล็กชนิดหนึ่ง วิทยาศาสตร์ของปรากฏการณ์แม่เหล็กไฟฟ้าถูกกำหนดไว้ในความหมายของแรงแม่เหล็กไฟฟ้า บางครั้งถูกเรียกว่าแรงลอเรนซ์ (Lorentz force) ซึ่งประกอบด้วยทั้งไฟฟ้าและแม่เหล็กในฐานะที่เป็นสององค์ประกอบของปรากฏการณ์ แรงแม่เหล็กไฟฟ้ามีบทบาทสำคัญในการกำหนดคุณสมบัติภายในของวัตถุส่วนใหญ่ที่พบในชีวิตประจำวัน สสารทั่วไปจะได้รูปแบบของมันจากผลของแรงระหว่างโมเลกุลของโมเลกุลแต่ละตัวในสสาร อิเล็กตรอนจะถูกยึดเหนี่ยวตามกลไกคลื่นแม่เหล็กไฟฟ้าเข้ากับวงโคจรรอบนิวเคลียสเพื่อก่อตัวขึ้นเป็นอะตอมซึ่งเป็นองค์ประกอบหลักของโมเลกุล กระบวนการนี้จะควบคุมกระบวนการที่เกี่ยวข้องทั้งหลายในทางเคมีซึ่งเกิดขึ้นจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนในวงโคจรของอะตอมหนึ่งกับอิเล็กตรอนอื่นในวงโคจรของอะตอมที่อยู่ใกล้เคียงซึ่งจะถูกกำหนดโดยการปฏิสัมพันธ์ระหว่างแรงแม่เหล็กไฟฟ้ากับโมเมนตัมของอิเล็กตรอนเหล่านั้น มีคำอธิบายของสนามแม่เหล็กไฟฟ้าทางคณิตศาสตร์จำนวนมาก ในไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) สนามไฟฟ้าจะอธิบายถึงศักย์ไฟฟ้าและกระแสไฟฟ้า ในกฎของฟาราเดย์ สนามแม่เหล็กจะมาพร้อมกับการเหนี่ยวนำแม่เหล็กไฟฟ้าและแม่เหล็ก, และสมการของแมกซ์เวลจะอธิบายว่า สนามไฟฟ้าและสนามแม่เหล็กถูกสร้างขึ้นได้อย่างไร มีการเปลี่ยนแปลงซึ่งกันและกันอย่างไร และมีการเปลี่ยนแปลงโดยประจุและกระแสได้อย่างไร การแสดงเจตนาเป็นนัยในทางทฤษฎีของแรงแม่เหล็กไฟฟ้า โดยเฉพาะในการจัดตั้งของความเร็วของแสงที่ขึ้นอยู่กับคุณสมบัติของ "ตัวกลาง" ของการกระจายคลื่น (ความสามารถในการซึมผ่าน (permeability) และแรงต้านสนามไฟฟ้า (permittivity)) นำไปสู่​​การพัฒนาทฤษฎีสัมพัทธภาพพิเศษโดย อัลเบิร์ต ไอน์สไตน์ในปี 1905 แม้ว่าแรงแม่เหล็กไฟฟ้าถือเป็นหนึ่งในสี่แรงพื้นฐาน แต่ที่ระดับพลังงานสูงอันตรกิริยาอย่างอ่อนและแรงแม่เหล็กไฟฟ้าถูกรวมเป็นสิ่งเดียวกัน ในประวัติศาสตร์ของจักรวาล ในช่วงยุคควาร์ก แรงไฟฟ้าอ่อน (electroweak) จะหมายถึงแรง(แม่เหล็ก)ไฟฟ้า + (อันตรกิริยาอย่าง)อ่อน.

ใหม่!!: ไฟฟ้าและทฤษฎีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

ทอมัส เอดิสัน

''A Day with Thomas Edison'' (1922) ทอมัส แอลวา เอดิสัน (Thomas Alva Edison) เป็นนักประดิษฐ์และนักธุรกิจชาวอเมริกัน ผู้ซึ่งประดิษฐ์อุปกรณ์ที่สำคัญต่าง ๆ มากมาย ได้ฉายา "พ่อมดแห่งเมนโลพาร์ก" เป็นหนึ่งในผู้ริเริ่มนำหลักการของ การผลิตจำนวนมาก และ กระบวนการประดิษฐ์ มาประยุกต์รวมกัน ทอมัส เอดิสัน มักจะถูกเข้าใจผิดว่าเป็นผู้คิดค้นหลอดไฟ แต่ในความเป็นจริงเขาเป็นบุคคลแรกที่จดสิทธิบัตรในการประดิษฐ์หลอดไฟจากนักวิทยาศาสตร์กว่า 20 คนที่คิดค้นหลอดไฟ และสามารถนำมาทำเป็นธุรกิจได้ เอดิสันยังคงเป็นหนึ่งในผู้ก่อตั้งบริษัทเจเนอรัลอิเล็กทริก (General Electric) บริษัทเครื่องใช้ไฟฟ้าขนาดใหญ่ของโลก และก่อตั้งอีกหลายบริษัทในด้านไฟฟ้า หนึ่งในบริษัทของเอดิสันยังเป็นผู้คิดค้นเก้าอี้ไฟฟ้าสำหรับประหารชีวิตนักโทษอีกด้วย เอดิสันยังคงเป็นบุคคลสำคัญในสงครามกระแสไฟฟ้า (War of Currents) โดยเอดิสันพยายามผลักดันระบบไฟฟ้ากระแสตรงของบริษัท แข่งกับระบบไฟฟ้ากระแสสลับของจอร์จ เวสติงเฮาส์ (George Westinghouse) โดยพนักงานในบริษัทของเขาได้โฆษณาชวนเชื่อความอันตรายของไฟฟ้ากระแสสลับโดยการฆ่าหมาแมวเป็นจำนวนหลายตัว.

ใหม่!!: ไฟฟ้าและทอมัส เอดิสัน · ดูเพิ่มเติม »

ทะเลเมดิเตอร์เรเนียน

วเทียมของทะเลเมดิเตอร์เรเนียน ทะเลเมดิเตอร์เรเนียน (Mediterranean Sea) เป็นทะเลระหว่างทวีป คั่นกลางทวีปยุโรปที่อยู่ทางเหนือ ทวีปแอฟริกาที่อยู่ทางใต้ และทวีปเอเชียที่อยู่ทางตะวันออก ครอบคลุมพื้นที่ประมาณ 2.5 ล้านตารางกิโลเมตร คำในภาษาอังกฤษ Mediterranean มาจากภาษาละติน mediterraneus หมายถึง 'ภายในแผ่นดิน' (medius 'กลาง' terra 'แผ่นดิน, โลก') ในภาษากรีกใช้ว่า "mesogeios".

ใหม่!!: ไฟฟ้าและทะเลเมดิเตอร์เรเนียน · ดูเพิ่มเติม »

คลื่นวิทยุ

ลื่นวิทยุ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งที่เกิดขึ้นในช่วงความถี่วิทยุบนเส้นสเปกตรัมแม่เหล็กไฟฟ้า คลื่นวิทยุไม่ต้องอาศัยตัวกลางในการเคลื่อนที่ ใช้ในการสื่อสารมี 2 ระบบคือ A.M. และ F.M. ความถี่ของคลื่น หมายถึง จำนวนรอบของการเปลี่ยนแปลงของคลื่น ในเวลา 1 วินาที คลื่นเสียงมีความถี่ช่วงที่หูของคนรับฟังได้ คือ ตั้งแต่เริ่มมีเพศสัมพัน คลื่นวิทยุแต่ละช่วงความถี่จะถูกกำหนดให้ใช้งานด้านต่างๆ ตามความเหมาะสม ส่วนประกอบของคลื่น 1.

ใหม่!!: ไฟฟ้าและคลื่นวิทยุ · ดูเพิ่มเติม »

ความสูง

วัตถุทรงสี่เหลี่ยมมุมฉาก แสดงความกว้าง (Width) ความยาว (Length) และความสูง (Height) ความสูง คือการวัดระยะทางตามแนวตั้ง ใช้อธิบายว่าวัตถุใด ๆ อยู่สูงเท่าไรจากระดับอ้างอิงเช่น ความสูงของเครื่องบินจากพื้นโลก ความสูงของภูเขา ความสูงจากระดับน้ำทะเล ความสูงสามารถเรียกว่า ส่วนสูง หรือระดับความสูง (altitude) คำว่า ความสูง สามารถตีความหมายได้สองแบบ คือ วัตถุนั้นสูงยืนจากพื้นเท่าไร หรือ วัตถุหรืออยู่เหนือจากพื้นเท่าไร ตัวอย่างเช่น เราสามารถพูดได้ว่า "นั่นเป็นตึกสูง" (สูงยืนจากพื้น) หรือ "เครื่องบินบินอยู่สูงบนฟ้า" (เหนือจากพื้น) ซึ่งทั้งสองแบบสามารถใช้เป็นความสูงค่าหนึ่งของวัตถุ เช่น "ตึกหลังนั้นสูง 50 เมตร" หรือ "ความสูงของเครื่องบินอยู่ที่ 10,000 เมตร" เป็นต้น ค่าความสูงจะวัดจากจุดหนึ่งไปยังจุดหนึ่งขนานกับแกนตั้งตามแนวดิ่ง (แกน Y).

ใหม่!!: ไฟฟ้าและความสูง · ดูเพิ่มเติม »

ความต้านทานและการนำไฟฟ้า

วามต้านทานไฟฟ้า (electrical resistance) ของ ตัวนำไฟฟ้า เป็นตัวชี้วัดของความยากลำบากในการที่จะผ่าน กระแสไฟฟ้า เข้าไปในตัวนำนั้น ปริมาณที่ตรงกันข้ามคือ การนำไฟฟ้า (electrical conductance) เป็นความสะดวกที่ยอมให้กระแสไฟฟ้าไหลผ่าน ความต้านทานไฟฟ้าเปรียบเหมือน แรงเสียดทาน ทางเครื่องกล หน่วย SI ของความต้านทานไฟฟ้าจะเป็น โอห์ม สัญญลักษณ์ Ω ในขณะที่การนำไฟฟ้าไฟฟ้ามีหน่วยเป็น ซีเมนส์ (S) วัตถุที่มีหน้าตัดสม่ำเสมอจะมีความต้านทานเป็นสัดส่วนกับ สภาพต้านทาน และ ความยาวของมัน และแปรผกผันกับพื้นที่หน้าตัดของมัน วัสดุทุกชนิดจะแสดงความต้านทานเสมอยกเว้น ตัวนำยิ่งยวด (superconductor) ซึ่งมีความต้านทานของศูนย์ ความต้านทาน (R) ของวัตถุจะถูกกำหนดให้เป็นอัตราส่วนของ แรงดันไฟฟ้า ตกคล่อมตัวมัน (V) ต่อกระแสที่ไหลผ่านตัวมัน (I) ในขณะที่การนำไฟฟ้า (G) เป็นตรงกันข้าม ตามสมการต่อไปนี้: สำหรับวัสดุและเงื่อนไขที่หลากหลาย V และ I จะเป็นสัดส่วนโดยตรงซึ่งกันและกัน ดังนั้น R และ G จึงเป็นค่า คงที่ (แม้ว่าพวกมันยังขึ้นอยู่กับปัจจัยอื่น ๆ ก็ตาม เช่นอุณหภูมิหรือความเครียด) สัดส่วนนี้จะเรียกว่า กฎของโอห์ม และวัสดุที่เป็นไปตามกฏนี้จะเรียกว่า วัสดุ โอห์ม (ohmic material) ในกรณีอื่น ๆ เช่น ไดโอด หรือ แบตเตอรี่ V และ I จะ ไม่ได้ เป็นสัดส่วนโดยตรงกัน อัตราส่วน V/I บางครั้งก็ยังคงเป็นประโยชน์และถูกเรียกว่า "ความต้านทานสถิตย์" ในสถานการณ์อื่น ๆ อนุพันธ์ \frac \,\! อาจจะมีประโยชน์มากที่สุด ค่านี้จะเรียกว่า "ความต้านทานดิฟเฟอเรนเชียล" (differential resistance).

ใหม่!!: ไฟฟ้าและความต้านทานและการนำไฟฟ้า · ดูเพิ่มเติม »

ความโน้มถ่วง

หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.

ใหม่!!: ไฟฟ้าและความโน้มถ่วง · ดูเพิ่มเติม »

คูลอมบ์

ูลอมบ์ (coulomb ย่อ: C)ในวงการวิทยาศาสตร์ (และสำนักวิทยาศาสตร์ ราชบัณฑิตยสภา) นิยมใช้ คูลอมบ์ แบบภาษาอังกฤษ ไม่นิยมอ่าน กูลง แบบภาษาฝรั่งเศส โปรดดู และเอกสารวิชาการอื่นประกอบ เป็นหน่วยวัดประจุไฟฟ้าในระบบหน่วยระหว่างประเทศ ตั้งชื่อตา่มชาร์ล-โอกุสแต็ง เดอ กูลงหลักการเขียนคำทับศัพท์ภาษาฝรั่งเศสของราชบัณฑิตยสภา โดยสำนักศิลปศาสตร์ ฉบั..2554 และ 2535 ถอดรูปตรงกัน นักฟิสิกส์ชาวฝรั่งเศส สำนักงานชั่งตวงวัดระหว่างประเทศให้คำนิยามไว้ว่า หนึ่งคูลอมบ์ คือปริมาณประจุไฟฟ้าที่เกิดจากกระแสไฟฟ้าหนึ่งแอมแปร์คูณด้วยเวลาหนึ่งวินาที นอกจากนี้ หนึ่งคูลอมบ์ยังหมายถึงประจุไฟฟ้าที่สะสมในตัวเก็บประจุซึ่งมีความจุ 1 ฟารัด และวางต่อคร่อมความต่างศักย์ 1 โวลต์ ปริมาณประจุไฟฟ้า 1 C มีค่าเท่ากับจำนวนโปรตอน ตัว หรือ mol ส่วน −1 C มีค่าเท่ากับจำนวนอิเล็กตรอน ตัว.

ใหม่!!: ไฟฟ้าและคูลอมบ์ · ดูเพิ่มเติม »

งาน (ฟิสิกส์)

งาน หรือ งานเชิงกล ในทางฟิสิกส์ คือปริมาณของพลังงานซึ่งถูกส่งมาจากแรงที่กระทำต่อวัตถุให้เคลื่อนที่ไปได้ระยะทางขนาดหนึ่ง งานเป็นปริมาณสเกลาร์เช่นเดียวกับพลังงาน มีหน่วยเอสไอเป็นจูล คำศัพท์ งาน (work) ที่ใช้อธิบายพลังงานเช่นนี้บัญญัติโดย Gaspard-Gustave Coriolis นักคณิตศาสตร์ชาวฝรั่งเศส ทฤษฎีบทงาน-พลังงาน กล่าวว่า ถ้ามีแรงภายนอกมากระทำต่อวัตถุคงรูป ซึ่งทำให้พลังงานจลน์ของวัตถุเปลี่ยนจาก Ek1 เป็น Ek2 ดังนั้นงานเชิงกล W หาได้จากสูตรดังนี้ เมื่อ m คือมวลของวัตถุ และ v คือความเร็วของวัตถุ ถ้าแรง F ที่กระทำต่อวัตถุ ส่งผลให้วัตถุนั้นเคลื่อนที่ไปเป็นระยะทาง d และทิศทางของแรงขนานกับการกระจัด งานที่เกิดขึ้นต่อวัตถุนั้นก็สามารถคำนวณได้จากขนาดของแรง F คูณด้วย d Resnick, Robert and Halliday, David (1966), Physics, Section 7-2 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No.

ใหม่!!: ไฟฟ้าและงาน (ฟิสิกส์) · ดูเพิ่มเติม »

ตัวต้านทาน

ตัวต้านทานแบบมีขาออกทางปลายแบบหนึ่ง ตัวต้านทาน หรือ รีซิสเตอร์ (resistor) เป็นอุปกรณ์ไฟฟ้าชนิดหนึ่งที่มีคุณสมบัติในการต้านการไหลผ่านของกระแสไฟฟ้า ทำด้วยลวดต้านทานหรือถ่านคาร์บอน เป็นต้น นั่นคือ ถ้าอุปกรณ์นั้นมีความต้านทานมาก กระแสไฟฟ้าที่ไหลผ่านจะน้อยลง เป็นอุปกรณ์ไฟฟ้าชนิดพาสซีฟสองขั้ว ที่สร้างความต่างศักย์ไฟฟ้าคร่อมขั้วทั้งสอง (V) โดยมีสัดส่วนมากน้อยตามปริมาณกระแสไฟฟ้าที่ไหลผ่าน (I) อัตราส่วนระหว่างความต่างศักย์ และปริมาณกระแสไฟฟ้า ก็คือ ค่าความต้านทานทางไฟฟ้า หรือค่าความต้านทานของตัวนำมีหน่วยเป็นโอห์ม (สัญลักษณ์: Ω) เขียนเป็นสมการตามกฏของโอห์ม ดังนี้ ค่าความต้านทานนี้ถูกกำหนดว่าเป็นค่าคงที่สำหรับตัวต้านทานธรรมดาทั่วไปที่ทำงานภายในค่ากำลังงานที่กำหนดของตัวมันเอง ตัวต้านทานทำหน้าที่ลดการไหลของกระแสและในเวลาเดียวกันก็ทำหน้าที่ลดระดับแรงดันไฟฟ้าภายในวงจรทั่วไป Resistors อาจเป็นแบบค่าความต้านทานคงที่ หรือค่าความต้านทานแปรได้ เช่นที่พบใน ตัวต้านทานแปรตามอุณหภูมิ(thermistor), ตัวต้านทานแปรตามแรงดัน(varistor), ตัวหรี่ไฟ(trimmer), ตัวต้านทานแปรตามแสง(photoresistor) และตัวต้านทานปรับด้วยมือ(potentiometer) ตัวต้านทานเป็นชิ้นส่วนธรรมดาของเครือข่ายไฟฟ้าและวงจรอิเล็กทรอนิกส์ และเป็นที่แพร่หลาย ในอุปกรณ์อิเล็กทรอนิกส์ ตัวต้านทานในทางปฏิบัติจะประกอบด้วยสารประกอบและฟิล์มต่างๆ เช่นเดียวกับ สายไฟต้านทาน (สายไฟที่ทำจากโลหะผสมความต้านทานสูง เช่น นิกเกิล-โครเมี่ยม) Resistors ยังถูกนำไปใช้ในวงจรรวม โดยเฉพาะอย่างยิ่งในอุปกรณ์แอนะล็อก และยังสามารถรวมเข้ากับวงจรไฮบริดและวงจรพิมพ์ ฟังก์ชันทางไฟฟ้าของตัวต้านทานจะถูกกำหนดโดยค่าความต้านทานของมัน ตัวต้านทานเชิงพาณิชย์ทั่วไปถูกผลิตในลำดับที่มากกว่าเก้าขั้นของขนาด เมื่อทำการระบุว่าตัวต้านทานจะถูกใช้ในการออกแบบทางอิเล็กทรอนิกส์ ความแม่นยำที่จำเป็นของความต้านทานอาจต้องให้ความสนใจในการสร้างความอดทนของตัวต้านทานตามการใช้งานเฉพาะของมัน นอกจากนี้ค่าสัมประสิทธิ์อุณหภูมิของความต้านทานยังอาจจะมีความกังวลในการใช้งานบางอย่างที่ต้องการความแม่นยำ ตัวต้านทานในทางปฏิบัติยังถูกระบุถึงว่ามีระดับพลังงานสูงสุดซึ่งจะต้องเกินกว่าการกระจายความร้อนของตัวต้านทานที่คาดว่าจะเกิดขึ้นในวงจรเฉพาะ สิ่งนี้เป็นความกังวลหลักในการใช้งานกับอิเล็กทรอนิกส์กำลัง ตัวต้านทานที่มีอัตรากำลังที่สูงกว่าก็จะมีขนาดที่ใหญ่กว่าและอาจต้องใช้ heat sink ในวงจรไฟฟ้าแรงดันสูง บางครั้งก็ต้องให้ความสนใจกับอัตราแรงดันการทำงานสูงสุดของตัวต้านทาน ถ้าไม่ได้พิจารณาถึงแรงดันไฟฟ้าในการทำงานขั้นต่ำสุดสำหรับตัวต้านทาน ความล้มเหลวอาจก่อให้เกิดการเผาใหม้ของตัวต้านทาน เมื่อกระแสไหลผ่านตัวมัน ตัวต้านทานในทางปฏิบัติมีค่าการเหนี่ยวนำต่ออนุกรมและค่าการเก็บประจุขนาดเล็กขนานอยู่กับมัน ข้อกำหนดเหล่านี้จะมีความสำคัญในการใช้งานความถี่สูง ในตัวขยายสัญญาณเสียงรบกวนต่ำหรือพรีแอมป์ ลักษณะการรบกวนของตัวต้านทานอาจเป็นประเด็น การเหนี่ยวนำที่ไม่ต้องการ, เสียงรบกวนมากเกินไปและค่าสัมประสิทธิ์อุณหภูมิ เหล่านี้จะขึ้นอยู่กับเทคโนโลยีที่ใช้ ในการผลิตตัวต้านทาน ปกติพวกมันจะไม่ได้ถูกระบุไว้เป็นรายต้วของตัวต้านทานที่ถูกผลิตโดยใช้เทคโนโลยีอย่างใดอย่างหนึ่ง.

ใหม่!!: ไฟฟ้าและตัวต้านทาน · ดูเพิ่มเติม »

ตัวนำไฟฟ้า

ตัวนำไฟฟ้า ในวิชาฟิสิกส์และวิศวกรรมไฟฟ้า เป็นวัตถุหรือประเภทของวัสดุที่ให้ประจุไฟฟ้าไหลผ่านได้หนึ่งหรือหลายทิศทาง ตัวอย่างเช่น สายหุ้มฉนวนเป็นตัวนำไฟฟ้า เพราะสามารถนำไฟฟ้าได้ตามแนวยาว แต่ไม่ข้ามความกว้าง ในวัสดุโลหะนำไฟฟ้า เช่น ทองแดงหรืออะลูมิเนียม อนุภาคประจุเคลื่อนที่ได้ คือ อิเล็กตรอน ประจุบวกยังอาจเคลื่อนที่ได้เช่นกัน เช่น อิเล็กโทรไลต์แคทไอออนของแบตเตอรี หรือโปรตอนเคลื่อนที่ในตัวนำโปรตอนของเซลล์เชื้อเพลิง ส่วนฉนวนเป็นวัสดุไม่นำไฟฟ้าโดยมีประจุเคลื่อนที่น้อย และสนับสนุนกระแสไฟฟ้าที่มีขนาดเล็กน้อย หมวดหมู่:วิศวกรรมพลังงาน หมวดหมู่:หลักการสำคัญของฟิสิกส์ หมวดหมู่:ไฟฟ้า.

ใหม่!!: ไฟฟ้าและตัวนำไฟฟ้า · ดูเพิ่มเติม »

ตัวเก็บประจุ

ตัวเก็บประจุ หรือ คาปาซิเตอร์ (capacitor หรือ condenser) เป็นอุปกรณ์อิเล็กทรอนิกส์อย่างหนึ่ง ทำหน้าที่เก็บพลังงานในรูปสนามไฟฟ้า ที่สร้างขึ้นระหว่างคู่ฉนวน โดยมีค่าประจุไฟฟ้าเท่ากัน แต่มีชนิดของประจุตรงข้ามกัน บ้างเรียกตัวเก็บประจุนี้ว่า คอนเดนเซอร์ (condenser) แต่ส่วนใหญ่เรียกสั้น ๆ ว่า แคป (Cap) เป็นอุปกรณ์พื้นฐานสำคัญในงานอิเล็กทรอนิกส์ และพบได้แทบทุกวงจร มีคุณสมบัติตรงข้ามกับตัวเหนี่ยวนำ จึงมักใช้หักร้างกันหรือทำงานร่วมกันในวงจรต่าง ๆ เป็นหนึ่งในสามชิ้นส่วนวงจรเชิงเส้นแบบพาสซีฟที่ประกอบขึ้นเป็นวงจรไฟฟ้า ในระบบจ่ายไฟฟ้าใช้ตัวเก็บประจุเป็นชุดหลายตัวเพิ่มค่าตัวประกอบกำลัง (Power factor) ให้กับระบบไฟฟ้าที่เรียกว่า แคปแบงค์ (Cap Bank) ตัวเก็บประจุบางชนิดในอนาคตมีความเป็นไปได้สูงที่จะถูกนำมาใช้แทนแบตเตอรี่ เช่น ตัวเก็บประจุยิ่งยวด (Supercapacitor).

ใหม่!!: ไฟฟ้าและตัวเก็บประจุ · ดูเพิ่มเติม »

ตัวเหนี่ยวนำ

ตัวเหนี่ยวนำทั่วไป สัญลักษณ์แทนตัวเหนี่ยวนำ ตัวเหนี่ยวนำ (Inductor) บางครั้งถูกเรียกว่าคอยล์หรือรีแอคเตอร์(coil หรือ reactor)เป็นชิ้นส่วนในวงจรไฟฟ้าแบบพาสซีฟสองขั้วไฟฟ้า(ขา) มีคุณสมบัติในการป้องกันการเปลี่ยนแปลงของกระแสไฟฟ้าที่ไหลผ่านตัวมัน มันประกอบด้วยตัวนำ เช่นลวดทองแดงม้วนกันเป็นวงกลม เมื่อกระแสไหลผ่านตัวมัน พลังงานจะถูกเก็บไว้ชั่วคราวในรูปสนามแม่เหล็กในคอยล์นั้น เมื่อกระแสนั้นเปลี่ยนแปลง, สนามแม่เหล็กที่แปรตามเวลาจะทำให้เกิดแรงดันไฟฟ้าในตัวนำนั้น ตามกฎการเหนี่ยวนำแม่เหล็กไฟฟ้าของฟาราเดย์ ซึ่งจะต้านกับการเปลี่ยนแปลงของกระแสที่สร้างมัน ทิศทางของสนามไฟฟ้าเกิดขึ้นตามกฏมือขวา ทิศทางของสนามเกิดในทิศทางของหัวแม่มือ, เมื่อกระแสไหลไปในทิศทางของนิ้วมือทั้งสี่ ตัวเหนี่ยวนำถูกกำหนดโดยการเหนี่ยวนำของมัน หรืออัตราส่วนของแรงดันไฟฟ้ากับอัตราการเปลี่ยนแปลงของกระแสไฟฟ้า ซึ่งมีหน่วยเป็น Henries (H) ตัวเหนี่ยวนำมีค่าปกติตั้งแต่ 1 μH (10- 6H)จนถึง 1 H ตัวเหนี่ยวนำจำนวนมากมีแกนเป็นแม่เหล็กที่ทำจากเหล็ก หรือเฟอร์ไรต์ภายในคอยล์ เหมือนกับตัวเก็บประจุและตัวต้านทาน ตัวเหนี่ยวนำเป็นหนึ่งในสามชิ้นส่วนวงจรเชิงเส้นแบบพาสซีฟที่ประกอบขึ้นเป็นวงจรไฟฟ้า ตัวเหนี่ยวนำถูกใช้กันอย่างแพร่หลายในอุปกรณ์อิเล็กทรอนิกส์กระแสสลับ (AC) โดยเฉพาะอย่างยิ่งในอุปกรณ์วิทยุ มันถูกใช้ป้องกันการไหลของกระแส AC ขณะที่ยอมให้กระแส DC ผ่านไปได้ ตัวเหนี่ยวนำที่ถูกออกแบบมาเพื่อการนี้จะเรียกว่าโช๊ค(choke) มันยังถูกใช้ในตัวกรองอิเล็กทรอนิกส์เพื่อแยกสัญญาณที่มีความถี่ที่แตกต่างกันและใช้ร่วมกับตัวเก็บประจุเพื่อทำเป็นวงจรปรับหาความถี่(tuner) ที่ใช้ในการปรับหาคลื่นสถานีของเครื่องรับวิทยุและโทรทัศน.

ใหม่!!: ไฟฟ้าและตัวเหนี่ยวนำ · ดูเพิ่มเติม »

ฉนวน

ฉนวน อาจหมายถึง.

ใหม่!!: ไฟฟ้าและฉนวน · ดูเพิ่มเติม »

ปฏิกิริยานิวเคลียร์

4) 2 ตัว โปรตอนถูกแสดงด้วยลูกกลมสีแดง และนิวตรอนถูกแสดงด้วยลูกกลมสีน้ำเงิน ปฏิกิริยานิวเคลียร์ (Nuclear reaction) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ หมายถึงกระบวนการที่นิวเคลียส 2 ตัวของอะตอมเดียวกัน หรือนิวเคลียสของอะตอมหนึ่งและอนุภาคย่อย ของอีกอะตอมหนึ่งจากภายนอกอะตอมนั้น ชนกัน ทำให้เกิดนิวเคลียสใหม่หนึ่งตัวหรือมากกว่าหนึ่งตัวที่มีจำนวนอนุภาคย่อยแตกต่างจากนิวเคลียสที่เริ่มต้นกระบวนการ ดังนั้นปฏิกิริยานิวเคลียร์จะต้องทำให้เกิดการเปลี่ยนแปลงของอย่างน้อยหนึ่งนิวไคลด์ ไปเป็นอย่างอื่น หากนิวเคลียสหนึ่งมีปฏิกิริยากับอีกนิวเคลียสหนึ่งหรืออนุภาคอื่นและพวกมันก็แยกออกจากกันโดยไม่มีการเปลี่ยนแปลงลักษณะของนิวไคลด์ใด ๆ กระบวนการนี้เป็นแต่เพียงประเภทหนึ่งของการกระเจิงของนิวเคลียสเท่านั้น ไม่ใช่ปฏิกิริยานิวเคลียร์ ในหลักการ ปฏิกิริยาสามารถเกิดขึ้นจากการชนกันของอนุภาคมากกว่าสองอนุภาค แต่เป็นไปได้น้อยมากที่นิวเคลียสมากกว่าสองตัวจะมาชนกันในเวลาเดียวกันและสถานที่เดียวกัน เหตุการณ์ดังกล่าวจึงเป็นของหายากเป็นพิเศษ (ดูกระบวนการสามอัลฟา ซึ่งเป็นตัวอย่างหนึ่งที่ใกล้เคียงกับการเกิดปฏิกิริยานิวเคลียร์สามเส้า) "ปฏิกิริยานิวเคลียร์" เป็นคำที่หมายความถึงการเปลี่ยนแปลงที่"ถูกเหนี่ยวนำให้เกิด"ในนิวไคลด์ ดังนั้นมันจึงไม่สามารถนำไปใช้กับการสลายกัมมันตรังสีชนิดใด ๆ ได้ (เพราะโดยคำจำกัดความแล้ว การสลายกัมมันตรังสีเป็นกระบวนการที่เกิดขึ้นเอง) ปฏิกิริยานิวเคลียร์ในธรรมชาติจะเกิดขึ้นจากการปฏิสัมพันธ์ระหว่างรังสีคอสมิกและสสาร และปฏิกิริยานิวเคลียร์สามารถถูกประดิษฐ์ขึ้นเพื่อให้ได้พลังงานนิวเคลียร์ในอัตราที่ปรับได้ตามความต้องการ บางทีปฏิกิริยานิวเคลียร์ที่โดดเด่นมากที่สุดจะเป็นปฏิกิริยาลูกโซ่นิวเคลียร์ในวัสดุที่แตกตัวได้ (fissionable material) เพื่อเหนี่ยวนำให้เกิดปฏิกิริยานิวเคลียร์ฟิชชั่นและปฏิกิริยานิวเคลียร์ฟิวชันต่างๆขององค์ประกอบเบาที่ผลิตพลังงานให้กับดวงอาทิตย์และดวงดาวทั้งหลาย ทั้งสองประเภทในการเกิดปฏิกิริยานี้ถูกใช้ในการผลิตอาวุธนิวเคลียร.

ใหม่!!: ไฟฟ้าและปฏิกิริยานิวเคลียร์ · ดูเพิ่มเติม »

ปฏิยานุภาค

ประกอบของประจุไฟฟ้าเช่นเดียวกับขนาดของอนุภาคทั่วไป (ซ้าย) และปฏิยานุภาค (ขวา) จากบนลงล่าง; อิเล็กตรอน/โพซิตรอน, โปรตอน/แอนติโปรตอน, นิวตรอน/แอนตินิวตรอน ปฏิยานุภาค (antiparticle) เป็นอนุภาคที่มีความสอดคล้องมากที่สุดกับอนุภาคปกติธรรมดา มีความสัมพันธ์กันคือมีมวลเท่ากันและมีประจุไฟฟ้าที่ตรงกันข้าม ยกตัวอย่างเช่น ปฏิยานุภาคของอิเล็กตรอนเป็นอิเล็กตรอนที่มีประจุบวก, หรือเรียกว่าโพซิตรอนที่ถูกสร้างขึ้นในการสลายตัวของสารกัมมันตรังสีบางชนิดตามธรรมชาติ กฎของธรรมชาติระหว่างอนุภาคและปฏิยานุภาคแทบจะสอดคล้องได้ส่วนกัน ตัวอย่างเช่นแอนติโปรตอนและโพสิตรอนสามารถสร้างอะตอมแอนติไฮโดรเจน (antihydrogen atom) ได้ ซึ่งมีคุณสมบัติเดียวกันที่เกือบจะเหมือนกับอะตอมไฮโดรเจน สิ่งนี้นำไปสู่​​คำถามที่ว่าทำไมการก่อตัวของสสารหลังบิ๊กแบงส่งผลให้ในจักรวาลประกอบด้วยสสารเกือบทั้งหมด แทนที่จะเป็นส่วนผสมอย่างละครึ่งหนึ่งของสสารและปฏิสสาร การค้นพบการละเมิดซีพี (CP violation) ช่วยทำให้ปัญหานี้กระจ่างขึ้นโดยการแสดงให้เห็นว่าสัดส่วนนี้ ความคิดสร้างสรรค์ที่สมบูรณ์แบบเป็นเพียงการประมาณเท่านั้น คู่อนุภาค-ปฏิยานุภาคสามารถประลัยซึ่งกันและกันเกิดเป็นโฟตอนขึ้นและเนื่องจากประจุของอนุภาคและปฏิยานุภาคมีค่าตรงกันข้าม, ประจุรวมทั้งหมดจะอนุรักษ์ ตัวอย่างเช่น โพสิตรอนที่ถูกผลิตขึ้นในการสลายตัวกัมมันตรังสีตามธรรมชาติจะถูกประลัยอย่างรวดเร็วด้วยอิเล็กตรอน, การผลิตคู่ของรังสีแกมมา, กระบวนการใช้ประโยชน์ในโพซิตรอนอีมิสชันโทโมกราฟี ปฏิยานุภาคถูกผลิตขึ้นตามธรรมชาติในการสลายให้อนุภาคบีตา และในอันตรกิริยาของรังสีคอสมิกในชั้นบรรยากาศของโลก เพราะว่าประจุจะต้องถูกอนุรักษ์ มันเป็นไปไม่ได้ที่จะสร้างปฏิยานุภาคโดยไม่ต้องทำลายทั้งอนุภาคที่มีประจุที่เหมือนกันไปด้วย (เช่น ในการสลายให้อนุภาคบีต้า) หรือในการสร้างอนุภาคที่มีประจุที่ตรงกันข้ามก็ตาม ในระยะหลัง ๆ จะเห็นในหลาย ๆ กระบวนการในการที่ทั้งอนุภาคและปฏิยานุภาคจะถูกสร้างขึ้นมาพร้อม ๆ กัน เช่น ในเครื่องเร่งอน.

ใหม่!!: ไฟฟ้าและปฏิยานุภาค · ดูเพิ่มเติม »

ปฏิสสาร

ปฏิสสาร: ภาพถ่ายจากห้องถ่ายภาพเมฆของโพสิตรอนที่สังเกตได้เป็นครั้งแรก ในวิชาฟิสิกส์อนุภาค ปฏิสสาร (Antimatter) คือ ส่วนประกอบของแนวคิดเกี่ยวกับปฏิยานุภาคของสสาร โดยที่ปฏิสสารประกอบด้วยปฏิยานุภาคในทำนองเดียวกับที่อนุภาคประกอบขึ้นเป็นสสารปรกติ ตัวอย่างเช่น แอนติอิเล็กตรอน (ปฏิยานุภาคของอิเล็กตรอน หรือ e+) 1 ตัว และแอนติโปรตอน (โปรตอนที่มีขั้วเป็นลบ) 1 ตัว สามารถรวมตัวกันเกิดเป็นอะตอมแอนติไฮโดรเจนได้ ในทำนองเดียวกันกับที่อิเล็กตรอน 1 ตัวกับโปรตอน 1 ตัวสามารถรวมกันเป็นอะตอมไฮโดรเจนที่เป็น "สสารปกติ" หากนำสสารและปฏิสสารมารวมกัน จะเกิดการทำลายล้างกันในทำนองเดียวกับการรวมอนุภาคและปฏิยานุภาค ซึ่งจะได้โฟตอนพลังงานสูง (หรือรังสีแกมมา) หรือคู่อนุภาค-ปฏิยานุภาคอื่น เมื่อปฏิยานุภาคเจอกับอนุภาคจะเกิดการประลัย ผลลัพธ์ที่ได้จากการพบกันของสสารและปฏิสสารคือการถูกปลดปล่อยของพลังงานซึ่งเป็นสัดส่วนกับมวลตามที่ปรากฏในสมการความสมมูลระหว่างมวล-พลังงาน, E.

ใหม่!!: ไฟฟ้าและปฏิสสาร · ดูเพิ่มเติม »

ประจุไฟฟ้า

นามไฟฟ้า ของประจุไฟฟ้าบวกและลบหนึ่งจุด ประจุไฟฟ้า เป็น คุณสมบัติทางฟิสิกส์ ของ สสาร ที่เป็นสาเหตุให้มันต้องประสบกับ แรง หนึ่งเมื่อมันถูกวางอยู่ใน สนามแม่เหล็กไฟฟ้า ประจุไฟฟ้าแบ่งออกเป็นสองประเภท: บวก และ ลบ ประจุเหมือนกันจะผลักกัน ประจุต่างกันจะดึงดูดกัน วัตถุจะมีประจุลบถ้ามันมี อิเล็กตรอน เกิน, มิฉะนั้นจะมีประจุบวกหรือไม่มีประจุ มีหน่วย SI เป็น คูลอมบ์ (C) ในสาขาวิศวกรรมไฟฟ้า, มันเป็นธรรมดาที่จะใช้ แอมแปร์-ชั่วโมง (Ah) และใน สาขาเคมี มันเป็นธรรมดาที่จะใช้ ประจุมูลฐาน (e) เป็นหน่วย สัญลักษณ์ Q มักจะหมายถึงประจุ ความรู้ช่วงต้นว่าสสารมีปฏิสัมพันธ์กันอย่างไรในขณะนี้ถูกเรียกว่า ไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) และยังคงถูกต้องสำหรับปัญหาที่ไม่จำเป็นต้องมีการพิจารณาถึง ผลกระทบควอนตัม ประจุไฟฟ้า เป็น คุณสมบัติแบบอนุรักษ์ พื้นฐานของ อนุภาคย่อยของอะตอม บางตัวที่กำหนด ปฏิสัมพันธ์ทางแม่เหล็กไฟฟ้า ของพวกมัน สสารที่มีประจุไฟฟ้าจะได้รับอิทธิพลจาก สนามแม่เหล็กไฟฟ้า และก็ผลิตสนามแม่เหล็กไฟฟ้าขึ้นเองได้ ปฏิสัมพันธ์ระหว่างประจุไฟฟ้าที่เคลื่อนที่ได้กับสนามแม่เหล็กไฟฟ้าจะเป็นแหล่งที่มาของ แรงแม่เหล็กไฟฟ้า ซึ่งเป็นหนึ่งในสี่ แรงพื้นฐาน (อ่านเพิ่มเติมที่: สนามแม่เหล็ก) การทดลองเรื่องหยดน้ำมัน ในศตวรรษที่ยี่สิบได้แสดงให้เห็นว่า ประจุจะถูก quantized; นั่นคือ ประจุของวัตถุใด ๆ จะมีค่าเป็นผลคูณที่เป็นจำนวนเต็มของหน่วยเล็ก ๆ แต่ละตัวที่เรียกว่า ประจุมูลฐาน หรือค่า e (เช่น 0e, 1e, 2e แต่ไม่ใช่ 1/2e หรือ 1/3e) e มีค่าประมาณเท่ากับ (ยกเว้นสำหรับอนุภาคที่เรียกว่า ควาร์ก ซึ่งมีประจุที่มีผลคูณที่เป็นจำนวนเต็มของ e/3) โปรตอน มีประจุเท่ากับ +e และ อิเล็กตรอน มีประจุเท่ากับ -e การศึกษาเกี่ยวกับอนุภาคที่มีประจุและการปฏิสัมพันธ์ของพวกมันจะถูกไกล่เกลี่ยโดย โฟตอน ได้อย่างไรจะเรียกว่า ไฟฟ้าพลศาสตร์ควอนตัม.

ใหม่!!: ไฟฟ้าและประจุไฟฟ้า · ดูเพิ่มเติม »

ปลากระเบนไฟฟ้า

ปลากระเบนไฟฟ้า (Electric rays, Numbfishes, Coffin rays, Sleeper rays, Crampfishes) เป็นปลากระเบนที่มีรูปร่างกลม จัดอยู่ในอันดับ Torpediniformes และมีอวัยวะคู่หนึ่งที่สามารถปล่อยกระแสไฟฟ้าได้ ซึ่งประกอบไปด้วยเซลล์รูปหกเหลี่ยมเรียงซ้อนกันเป็นกลุ่ม ตั้งอยู่ทางด้านข้างของตาถัดไปถึงครีบอก ภายในมีสารเป็นเมือกคล้ายวุ้น ทำหน้าที่ในการผลิตกระแสไฟฟ้า โดยความแรงมีตั้งแต่ระดับต่ำเพียง 8 โวลต์ไปจนถึง 220 โวลต์ ขึ้นอยู่กับชนิด กระแสไฟฟ้านี้ใช้เพื่อทำให้เหยื่อสลบหรือฆ่าเหยื่อ ปลากระเบนไฟฟ้าทั้งหมดมีรูปร่างแบนกลม ตามีขนาดเล็กมาก (มีอยู่ 4 ชนิดที่ตาบอด) ส่วนหางพัฒนาอย่างสมบูรณ์แข็งแรง และไม่มีเงี่ยงหางแหลมคมเหมือนปลากระเบนในอันดับอื่น มีลำตัวหนาและอ่อนนุ่ม มีครีบหลัง 2 ตอน หรือไม่มีเลย ปลากระเบนไฟฟ้ามีทั้งหมด 4 วงศ์ (ดูในตาราง) ประกอบด้วย 69 ชนิด 11 สกุล โดยทั้งหมดพบในทะเล พบในบริเวณอบอุ่นในเขตร้อนของมหาสมุทรแอตแลนติก, แปซิฟิกและมหาสมุทรอินเดีย ปลากระเบนไฟฟ้ามักหมกตัวอยู่ใต้พื้นทราย สามารถทำอันตรายต่อมนุษย์ได้หากเหยียบไปถูกเข้า ซึ่งอาจทำให้เกิดเกิดอาการชาและจมน้ำเสียชีวิตได้ อวัยวะสร้างกระแสไฟฟ้าคู่ ปลากระเบนไฟฟ้าในภาษาไทยมีชื่อเรียกอีกอย่างหนึ่งว่า "ปลาเสียว" โดยชนิดที่พบได้ในน่านน้ำไทย เช่น ปลากระเบนไฟฟ้าหลังเรียบ (Temera hardwickii), ปลากระเบนไฟฟ้าสีน้ำตาล (Narcine brunnea), N. indica และ Narke dipterygia ส่วนชนิดที่พบได้ในต่างประเทศและเป็นที่รู้จักดีได้แก่ ปลากระเบนไฟฟ้าแปซิฟิก (Torpedo californica), ปลากระเบนไฟฟ้าตาบอด (Typhlonarke aysoni) เป็นต้น.

ใหม่!!: ไฟฟ้าและปลากระเบนไฟฟ้า · ดูเพิ่มเติม »

ปลาดุกไฟฟ้า

ปลาดุกไฟฟ้า (Electric catfish) เป็นสกุลปลาหนังน้ำจืดในวงศ์ปลาดุกไฟฟ้า (Malapteruridae) ใช้ชื่อสกุลว่า Malapterurus (/มา-แลป-เทอ-รู-รัส/) โดยมาจากภาษากรีกคำว่า μαλακός (malakos) หมายถึง "อ่อนนุ่ม", πτερων (pteron) หมายถึง "ครีบ" และ ουρά (oura) หมายถึง "หาง" โดยมีความหมายถึง ครีบไขมันที่แลดูโดดเด่น เนื่องจากปลาในสกุลนี้ไม่มีครีบหลัง โดยรวมมีรูปร่างกลมยาวอวบอ้วนทรงกระบอกคล้ายไส้กรอก ตามีขนาดเล็ก ริมปากหนาและรูจมูกกลมและมีความห่างจากกันพอสมควร ช่องเหงือกแคบและบีบตัว มีหนวดสามคู่ ไม่มีครีบหลัง มีครีบไขมันขนาดใหญ่อยู่ค่อนไปทางส่วนท้ายของลำตัวติดกับครีบหาง ครีบทุกครีบปลายครีบมนกลม ถุงลมแบ่งเป็นสองห้องยาว มีลำตัวทั่วไปสีน้ำตาลหรือเทา และมีลายจุดหรือกระสีคล้ำกระจายอยู่บนหลังและด้านข้างลำตัว ใต้ท้องเป็นสีขาวไม่มีลาย คอดหางมีลายแถบสีคล้ำสลับขาว และครีบหางมีลายสีขาวคล้ายรูปพระจันทร์ครึ่งเสี้ยวอยู่กลางครีบ เป็นปลาที่พบกระจายพันธุ์ในแหล่งน้ำจืดขนาดใหญ่ เช่น แม่น้ำไนล์, แม่น้ำคองโก, แม่น้ำแซมเบซี, แม่น้ำไนเจอร์ และแม่น้ำหลายสาย ในทวีปแอฟริกา รวมถึงทะเลสาบต่าง ๆ เช่น ทะเลสาบแทนกันยีกา หรือทะเลสาบชาด มีอวัยวะที่ปล่อยกระแสไฟฟ้าจากกล้ามเนื้อด้านข้างลำตัว ซึ่งสามารถปล่อยได้มากถึง 350 โวลต์ ในขนาดลำตัว 50 เซนติเมตร (19 นิ้ว) โดยชนิดที่มีขนาดใหญ่ที่สุด ยาวได้ถึง 122 เซนติเมตร (48 นิ้ว) และน้ำหนัก 20 กิโลกรัม (44 ปอนด์) อาศัยอยู่ในน้ำขุ่นและมีวัสดุต่าง ๆ เช่น ตอไม้หรือโพรงหินสำหรับหลบซ่อนตัว โดยใช้ไฟฟ้าในการป้องกันตัวและช็อตเหยื่อสำหรับเป็นอาหาร เป็นปลาที่เคลื่อนไหวได้เชื่องช้า เมื่อช็อตเหยื่อจนสลบแล้วจึงค่อยกลืนกิน มีการจับคู่ผสมพันธุ์ด้วยการขุดโพรงยาวถึง 3 เมตร (10 ฟุต) ที่ริมตลิ่งในระดับความลึกประมาณ 1-3 เมตร (3.3-9.8 ฟุต) เป็นปลาที่มนุษย์ใช้รับประทานเป็นอาหารมาตั้งแต่อดีต ตั้งแต่ยุคอียิปต์โบราณ และนิยมเลี้ยงเป็นปลาสวยงาม.

ใหม่!!: ไฟฟ้าและปลาดุกไฟฟ้า · ดูเพิ่มเติม »

ปลาไฟฟ้า

ปลาไฟฟ้า หมายถึงปลาจำพวกหนึ่งที่สามารถผลิตกระแสไฟฟ้าได้เองในตัว เพื่อใช้ในการล่าเหยื่อและป้องกันตัว โดยมีอวัยวะบางอย่างที่ช่วยในการสร้าง ซึ่งกระแสไฟฟ้าที่ปล่อยออกมานั้นจะมีความแรงแตกต่างกันไปตามชนิดวงศ์ (Family) และสายพันธุ์ (Species) และขนาดของลำตัว ปลาที่สามารถผลิตกระแสไฟฟ้าได้มากที่สุดคือ ปลาไหลไฟฟ้า (Electrophorus electricus) เป็นปลาน้ำจืด พบในอเมริกาใต้ เป็นปลาขนาดใหญ่ เมื่อเต็มที่ยาวได้ถึง 2 เมตร สามารถผลิตกระแสไฟฟ้าได้สูงถึง 600 โวลต์ รุนแรงพอที่จะทำให้หัวใจมนุษย์วายตายได้ ชนิดอื่น ๆ ที่พบในน้ำจืด ก็ได้แก่ ปลาดุกไฟฟ้า (Malapterurus electricus) พบในแอฟริกา สามารถปล่อยกระแสไฟฟ้าได้ถึง 350 โวลต์ และปลาอบา อบา (Gymnarchus niloticus) ขนาดโตเต็มที่ได้ 2 เมตร เช่นกัน และปลาในวงศ์ Gymnotidae พบในอเมริกาใต้ สามารถปล่อยกระแสไฟฟ้าอย่างอ่อนเพื่อการล่าเหยื่อ โดยมากปลาไฟฟ้าที่พบน้ำจืดจะนิยมเลี้ยงเป็นปลาสวยงาม ส่วนที่พบในทะเลก็ได้แก่ กระเบนไฟฟ้า อันเป็นปลากระเบนในวงศ์ Narcinidae และ Torpedinidae หมวดหมู่:ปลาแบ่งตามชื่อสามัญ หมวดหมู่:ปลาน้ำจืด หมวดหมู่:ปลาน้ำเค็ม หมวดหมู่:ปลาตู้ หมวดหมู่:ปลาไฟฟ้า.

ใหม่!!: ไฟฟ้าและปลาไฟฟ้า · ดูเพิ่มเติม »

ปวดศีรษะ

อาการปวดศีรษะคืออาการปวดซึ่งเกิดกับบริเวณใดๆ ของศีรษะและคอ ซึ่งอาจเป็นอาการของหลายๆ ภาวะที่เกิดกับศีรษะและคอ ทั้งนี้เนื่องจากเนื้อเยื่อสมองนั้นไม่สามารถรับรู้ความเจ็บปวดได้เนื่องจากไม่มีตัวรับรู้ความรู้สึกเจ็บปวด ดังนั้นอาการปวดศีรษะส่วนใหญ่เกิดจากความผิดปกติของอวัยวะอื่นๆ รอบๆ สมองที่สามารถรับรู้ความรู้สึกเจ็บปวดได้ โดยอวัยวะเหล่านี้อาจแบ่งออกได้เป็นสองกลุ่ม คือ ส่วนที่อยู่ในกะโหลกศีรษะ (หลอดเลือด เยื่อหุ้มสมอง และเส้นประสาทสมอง) และนอกกะโหลกศีรษะ (เยื่อหุ้มกระดูกของกะโหลกศีรษะ กล้ามเนื้อ เส้นประสาท หลอดเลือด เนื้อเยื่อใต้ผิวหนัง ตา หู โพรงอากาศ และเยื่อบุ) ระบบการจำแนกประเภทอาการปวดศีรษะมีใช้อยู่หลายระบบ ระบบหนึ่งซึ่งเป็นที่รู้จักแพร่หลายคือระบบของ International Headache Society (สมาคมอาการปวดศีรษะนานาชาติ) วิธีการรักษาอาการปวดศีรษะขึ้นอยู่กับโรคที่เป็นสาเหตุ แต่ส่วนใหญ่มักมีการใช้ยาแก้ปวดร่วมในการรักษาด้วยเสมอ.

ใหม่!!: ไฟฟ้าและปวดศีรษะ · ดูเพิ่มเติม »

ปั๊มความร้อน

ปั๊มความร้อน (Heat pump) เป็นเครื่องนำความร้อน โดยอาศัยหลักการถ่ายเทความร้อนจากแหล่งที่มีความร้อนสูงกว่า เพื่อมาผลิตน้ำหรืออากาศร้อน ปั๊มความร้อนเป็นเครื่องนำความร้อนที่มีประสิทธิภาพสูงกว่า เมื่อเทียบกับเครื่องทำความร้อนแบบอื่นเนื่องจากอาศัยหลักการถ่ายเท ทำให้ใช้พลังงานน้อยกว่าเครื่องทำความร้อนทั่วไป ถึง 4 เท.

ใหม่!!: ไฟฟ้าและปั๊มความร้อน · ดูเพิ่มเติม »

นิวยอร์ก (แก้ความกำกวม)

นิวยอร์ก อาจหมายถึง.

ใหม่!!: ไฟฟ้าและนิวยอร์ก (แก้ความกำกวม) · ดูเพิ่มเติม »

นิโคลา เทสลา

นิโคลา เทสลา (Никола Тесла, Nikola Tesla) เกิดเมื่อ 10 กรกฎาคม พ.ศ. 2399 - ถึงแก่กรรม 7 มกราคม พ.ศ. 2486 (86 ปี) เป็น นักประดิษฐ์, นักฟิสิกส์, วิศวกรเครื่องกล, วิศวกรไฟฟ้า และ นักทำนายอนาคต เขาเกิดที่ Smiljan ในอดีตออสเตรีย - ฮังการี ซึ่งปัจจุบันคือสาธารณรัฐโครเอเชีย ภายหลังเขาได้รับสัญชาติเป็นพลเมืองอเมริกัน เทสลามีปัญหาทางประสาทในวัยเด็ก ที่เขาต้องทุกข์ทรมาน จาก โรคย้ำคิดย้ำทำ เขาได้งานแรกในบูดาเปสต์โดยทำงานที่บริษัทโทรศัพท์ เทสล่าได้ประดิษฐ์ลำโพงสำหรับโทรศัพท์ระหว่างที่ทำงานอยู่ที่นี่ ก่อนที่จะเดินทางเร่ร่อนไปอเมริกาในปี 2427 เพื่อที่จะไปทำงานกับ โทมัส เอดิสัน แต่ในไม่นาน เขาก็เริ่มก่อตั้ง ห้องปฏิบัติการ/บริษัท พัฒนาอุปกรณ์ไฟฟ้า ของตัวเองโดยมีผู้สนับสนุนด้านการเงินให้ สิทธิบัตรมอเตอร์ไฟฟ้ากระแสสลับแบบเหนี่ยวนำ และ หม้อแปลงไฟฟ้า ได้รับการจดทะเบียนโดย จอร์จ เวสติงเฮ้าส์ ซึ่งเป็นผู้ว่าจ้างให้เทสลาเป็นที่ปรึกษาและพัฒนาระบบไฟฟ้ากระแสสลับด้วย ผลงานของเทสลาที่ทำให้เขาเป็นที่สนใจในสมัยนั้นอาทิเช่น การทดลองเกี่ยวกับ คลื่นความถี่สูงและแรงดันไฟฟ้าแรงสูง ใน นิวยอร์ก และ โคโลราโด สปริงซ์, สิทธิบัตรของอุปกรณ์และทฤษฎีที่ใช้ในการสร้างวิทยุสื่อสาร, การทดลอง X-ray ของเขา, เขายังเป็นผู้คิดค้นตัวกำเนิดสัญญาณ (oscillator) หลากหลายรูปแบบอีกด้วย และ โครงการ Wardenclyffe Tower ซึ่งเป็นความพยายามในการส่งสัญญาณไร้สายข้ามทวีปแต่โชคร้ายที่โครงการนี้ไม่ประสบความสำเร็จ แม้เทสลาจะเป็นผู้คิดค้นสัญญาณวิทยุ การค้นพบหลักการสนามแม่เหล็กไฟฟ้า แต่ผลงานที่ทำให้เขาเป็นที่รู้จักกันดีคือ การค้นคว้าพัฒนาไฟฟ้ากระแสสลับ ซึ่งในขณะนั้นมีการแข่งขันกับไฟฟ้ากระแสตรงที่ถูกพัฒนาขึ้นมา โทมัส เอดิสัน แต่ในที่สุดไฟฟ้ากระแสสลับก็ได้รับความนิยมมากกว่า เพราะเกิดการสูญเสียน้อยกว่าในการส่งกระแสไฟฟ้าในระยะทางไกล เทสลาประสบความสำเร็จเป็นที่รู้จักและทำให้ผู้คนเห็นถึงความสามารถของจากโชว์สิ่งประดิษฐ์ที่ดูน่าอัศจรรย์ทั้งหลาย ถึงแม้ว่าเขาจะได้เงินจากสิทธิบัตรต่าง ๆ แต่เขาก็ได้ทำการทดลองอย่างมากมายด้วยเช่นกัน ทำให้ในช่วงบั้นปลายชีวิตของเขาต้องเป็นหนี้ และ มีปัญหาด้านการเงิน ต้องอาศัยอยู่อย่างโดษเดี่ยวในห้องพักหมายเลข 3327 ที่โรงแรม New Yorker ด้วยลักษณะและธรรมชาติในการทำงานของเทสลาทำให้เขาถูกขนานนามว่าเป็น "นักวิทยาศาสตร์เพี้ยน" เทสลาถูกพบว่าเสียชีวิตในห้องพักหมายเลข 3327 ที่โรงแรม New Yorker เมื่อวันที่ 7 มกราคม 2486 หลังจากการตายของเขางานของเทสล่าก็ได้เงียบหายไป แต่ในปี 2533 เขาก็เริ่มกลับมาเป็นที่รู้จักอีกครั้ง ในปี 2548 เขาถูกเสนอชื่อให้เป็นตัวแทน 1 ใน 100 คนในรายการโทรทัศน์ "The Greatest American" โดยการสำรวจนิยมโดย AOL กับ ช่อง Discovery การทำงานและสิ่งประดิษฐ์ที่มีชื่อเสียงของเขายังเป็นจุดกำเนิดของทฤษฎีสมคบคิดจำนวนมาก และ ยังได้นำไปใช้สนับสนุนวิทยาศาสตร์เทียม, ทฤษฎียูเอฟโอ และ ไสยศาสตร์ยุคใหม่ อีกด้วย ในปี 2503 หน่วยสำหรับวัดความ ความหนาแน่นของเส้นแรงแม่เหล็ก หรือ การเหนี่ยวนำด้วยพลังแม่เหล็ก (ที่รู้จักกันทั่วไปว่าเป็นสนามแม่เหล็ก B \), ถูกตั้งชื่อว่า เทสลา เพื่อเป็นเกียรติแก่เขา นอกจากนี้ เทสลายังถือเป็นวิศวกรที่สร้างนวัตกรรมล้ำยุคที่ยิ่งใหญ่ที่สุดคนหนึ่งในปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 สิทธิบัตรของเทสลาและผลงานเชิงทฤษฎีของเขากลายเป็นพื้นฐานของระบบไฟฟ้ากระแสสลับ ได้แก่ ระบบจ่ายกำลังหลายเฟส และมอเตอร์ไฟฟ้ากระแสสลับ ซึ่งเขามีส่วนผลักดันเป็นอย่างมากในช่วงปฏิวัติอุตสาหกรรมครั้งที่สอง.

ใหม่!!: ไฟฟ้าและนิโคลา เทสลา · ดูเพิ่มเติม »

แบตเตอรี่

แบตเตอรี่ (Battery) เป็นอุปกรณ์ที่ประกอบด้วย เซลล์ไฟฟ้าเคมี หนึ่งเซลล์หรือมากกว่า ที่มีการเชื่อมต่อภายนอกเพื่อให้กำลังงานกับอุปกรณ์ไฟฟ้า แบตเตอรี่มี ขั้วบวก (cathode) และ ขั้วลบ (anode) ขั้วที่มีเครื่องหมายบวกจะมีพลังงานศักย์ไฟฟ้าสูงกว่าขั้วที่มีเครื่องหมายลบ ขั้วที่มีเครื่องหมายลบคือแหล่งที่มาของอิเล็กตรอนที่เมื่อเชื่อมต่อกับวงจรภายนอกแล้วอิเล็กตรอนเหล่านี้จะไหลและส่งมอบพลังงานให้กับอุปกรณ์ภายนอก เมื่อแบตเตอรี่เชื่อมต่อกับวงจรภายนอก สาร อิเล็กโทรไลต์ มีความสามารถที่จะเคลื่อนที่โดยทำตัวเป็นไอออน ยอมให้ปฏิกิริยาทางเคมีทำงานแล้วเสร็จในขั้วไฟฟ้าที่อยู่ห่างกัน เป็นการส่งมอบพลังงานให้กับวงจรภายนอก การเคลื่อนไหวของไอออนเหล่านั้นที่อยู่ในแบตเตอรี่ที่ทำให้เกิดกระแสไหลออกจากแบตเตอรี่เพื่อปฏิบัติงาน ในอดีตคำว่า "แบตเตอรี่" หมายถึงเฉพาะอุปกรณ์ที่ประกอบด้วยเซลล์หลายเซลล์ แต่การใช้งานได้มีการพัฒนาให้รวมถึงอุปกรณ์ที่ประกอบด้วยเซลล์เพียงเซลล์เดียว แบตเตอรี่ปฐมภูมิจะถูกใช้เพียงครั้งเดียวหรือ "ใช้แล้วทิ้ง"; วัสดุที่ใช้ทำขั้วไฟฟ้าจะมีการเปลี่ยนแปลงอย่างถาวรในช่วงปล่อยประจุออก (discharge) ตัวอย่างที่พบบ่อยก็คือ แบตเตอรี่อัลคาไลน์ ที่ใช้สำหรับ ไฟฉาย และอีกหลายอุปกรณ์พกพา แบตเตอรี่ทุติยภูมิ (แบตเตอรี่ประจุใหม่ได้) สามารถดิสชาร์จและชาร์จใหม่ได้หลายครั้ง ในการนี้องค์ประกอบเดิมของขั้วไฟฟ้าสามารถเรียกคืนสภาพเดิมได้โดยกระแสย้อนกลับ ตัวอย่างเช่น แบตเตอรี่ตะกั่วกรด ที่ใช้ในยานพาหนะและแบตเตอรี่ ลิเธียมไอออน ที่ใช้สำหรับอุปกรณ์อิเล็กทรอนิกส์แบบเคลื่อนย้ายได้ แบตเตอรี่มาในหลายรูปทรงและหลายขนาด จากเซลล์ขนาดเล็กที่ให้พลังงานกับ เครื่องช่วยฟัง และนาฬิกาข้อมือ จนถึงแบตเตอรี่แบงค์ที่มีขนาดเท่าห้องที่ให้พลังงานเตรียมพร้อมสำหรับ ชุมสายโทรศัพท์ และ ศูนย์ข้อมูล คอมพิวเตอร์ ตามการคาดการณ์ในปี 2005 อุตสาหกรรมแบตเตอรี่ทั่วโลกสร้างมูลค่า 48 พันล้านดอลาร์สหรัฐในการขายในแต่ละปี ด้วยการเจริญเติบโตประจำปี 6% แบตเตอรี่มีค่า พลังงานเฉพาะ (พลังงานต่อหน่วยมวล) ต่ำกว่ามากเมื่อเทียบกับ เชื้อเพลิง ทั้งหลาย เช่นน้ำมัน แต่ก็สามารถชดเชยได้บ้างโดยประสิทธิภาพที่สูงของมอเตอร์ไฟฟ้าในการผลิตงานด้านกลไกเมื่อเทียบกับเครื่องยนต์สันดาป.

ใหม่!!: ไฟฟ้าและแบตเตอรี่ · ดูเพิ่มเติม »

แมว

แมว เป็นสัตว์เลี้ยงลูกด้วยนม อยู่ในตระกูล Felidae ต้นตระกูลมาจากเสือไซบีเรีย (Felis tigris altaica) ซึ่งมีช่วงลำตัวตั้งแต่จมูกถึงปลายหางยาวประมาณ 4 เมตร แมวที่เลี้ยงตามบ้าน จะมีรูปร่างขนาดเล็ก ขนาดลำตัวยาว ช่วงขาสั้นและจัดอยู่ในกลุ่มของประเภทสัตว์กินเนื้อ มีเขี้ยวและเล็บแหลมคมสามารถหดซ่อนเล็บได้เช่นเดียวกับเสือ สืบสายเลือดมาจากแมวป่าที่มีขนาดใหญ่กว่า ซึ่งลักษณะบางอย่างของแมวยังคงพบเห็นได้ในแมวบ้านปัจจุบัน แมวเริ่มเข้ามาเกี่ยวข้องกับวิถีชีวิตของมนุษย์ตั้งแต่เมื่อประมาณ 9,500 ปีก่อน ซึ่งจากหลักฐานทางประวัติศาสตร์ที่เก่าแก่ที่สุดของแมวคือการทำมัมมี่แมวที่พบในสมัยอียิปต์โบราณ หรือในพิพิธภัณฑ์อังกฤษในลอนดอน มีการแสดงสมบัติที่นำออกมาจากพีระมิดโบราณแห่งอียิปต์ ซึ่งรวมถึงมัมมี่แมวหลายตัว ซึ่งเมื่อนำเอาผ้าพันมัมมี่ออกก็พบว่า แมวในสมัยโบราณทุกตัวมีลักษณะใกล้เคียงกัน คือเป็นแมวที่มีรูปร่างเล็ก ขนสั้นมีแต้มสีน้ำตาล มีความคล้ายคลึงกับพันธุ์ในปัจจุบัน ที่เรียกว่าแมวอะบิสซิเนี.

ใหม่!!: ไฟฟ้าและแมว · ดูเพิ่มเติม »

แม่น้ำไนล์

แผนที่แสดงเส้นทางการไหลของแม่น้ำไนล์ แม่น้ำไนล์ ในบริเวณอียิปต์ แม่น้ำไนล์ และ กรุงไคโรด้านหลัง แม่น้ำไนล์ (النيل อันนีล; Nile) เป็นแม่น้ำใน ทวีปแอฟริกา เป็นแม่น้ำที่ยาวที่สุดในโลก โดยถูกค้นพบแหล่งต้นน้ำใหม่ที่ทำให้มีความยาวกว่าเดิมเมื่อไม่นานมานี้ โดยแม่น้ำไนล์มีความยาวทั้งสิ้น 6,695 กิโลเมตร^~^.

ใหม่!!: ไฟฟ้าและแม่น้ำไนล์ · ดูเพิ่มเติม »

แม่เหล็ก

แม่เหล็กรูปเกือกม้า ทำให้แม่เหล็กมีแรงดูดมากขึ้น รูปแสดงเส้นแรงแม่เหล็กจากขั้วเหนือไปขั้วใต้ บริเวณที่แรงนี้ส่งไปถึง เรียกว่าสนามแม่เหล็ก แม่เหล็ก เป็นแร่หรือโลหะที่มีสมบัติดูดเหล็กได้ ในประวัติศาสตร์ พบว่า สาร"Magnesian stone") ("หินแมกแนเซียน") เป็นวัตถุที่ดูดเหล็กได้ แม่เหล็ก (มาจากภาษากรีก λίθος) แม่เหล็กสามารถทำให้เกิดสนาม'''แม่เหล็ก'''ได้ นั่นคือมันสามารถส่งแรงดูดหรือแรงผลัก ออกไปรอบ ๆ ตัวมันได้ แม้ว่าสนามแม่เหล็กจะเป็นสิ่งที่ไม่สามารถมองเห็นได้แต่มันเป็นเกี่ยวข้องกับคุณสมบัติสำคัญของแม่เหล็กโดยตรง ได้แก่ คุณสมบัติการดูดและการผลักกันระหว่างแท่งแม่เหล็ก เราสามารถสร้างแม่เหล็กขึ้นมาได้ วิธีแรกคือ นำเหล็กมาถูกับแม่เหล็ก วิธีที่สองคือ ป้อนกระแสไฟฟ้าเข้าไปในขดลวดที่พันรอบเหล็ก แรงเหนี่ยวนำในขดลวดทำให้เหล็กนั้นกลายเป็นแม่เหล็กชั่วคราว และทำให้เกิด สนามแม่เหล็กรอบ ๆ เหล็กนั้น เราเรียกแม่เหล็กแบบนี้ว่า แม่เหล็กไฟฟ้า ปัจจุบัน มีสารอื่นที่ทำให้เป็นแม่เหล็กได้ เช่น นิเกิล โคบอล แมงกานีส รูปแสดงการเรียงตัวของผงตะไบเหล็กในสนามแม่เหล็ก.

ใหม่!!: ไฟฟ้าและแม่เหล็ก · ดูเพิ่มเติม »

แม่เหล็กไฟฟ้าชีวภาพ

แม่เหล็กไฟฟ้าชีวภาพ (bioelectromagnetism) หรือ ไฟฟ้าชีวภาพ (bioelectricity) หมายถึงพลังงานไฟฟ้า พลังงานแม่เหล็ก หรือสนามแม่เหล็กไฟฟ้าที่เกิดขึ้นจากเซลล์ เนื้อเยื่อ หรือสิ่งมีชีวิตต่างๆ ตัวอย่างนี้รวมไปถึง ศักย์ไฟฟ้าเยื่อหุ้มเซลล์ (membrane potential) และกระแสไฟฟ้าที่ไหลอยู่ในเส้นประสาทและกล้ามเนื้อ ซึ่งก่อให้เกิดศักยะงาน (action potential) คำนี้ไม่ควรสับสนกับ bioelectromagnetics ซึ่งเป็นการศึกษาผลกระทบของสิ่งมีชีวิตจากพลังงานแม่เหล็กไฟฟ้าภายนอก.

ใหม่!!: ไฟฟ้าและแม่เหล็กไฟฟ้าชีวภาพ · ดูเพิ่มเติม »

แรง

ในทางฟิสิกส์ แรง คือ อันตรกิริยาใด ๆ เมื่อไม่มีการขัดขวางแล้วจะเปลี่ยนแปลงการเคลื่อนที่ของวัตถุไป แรงที่สามารถทำให้วัตถุซึ่งมีมวลเปลี่ยนแปลงความเร็ว (ซึ่งรวมทั้งการเคลื่อนที่จากภาวะหยุดนิ่ง) กล่าวคือ ความเร่ง ซึ่งเป็นผลมาจากการใช้พลังงาน แรงยังอาจหมายถึงการผลักหรือการดึง แรงเป็นปริมาณที่มีทั้งขนาดหรือทิศทาง วัดได้ในหน่วยของนิวตัน โดยใช้สัญลักษณ์ทั่วไปเป็น F ตามกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน กล่าวว่าแรงลัพธ์ที่กระทำต่อวัตถุมีค่าเท่ากับอัตราของโมเมนตัมที่เปลี่ยนแปลงไปตามเวลา ถ้ามวลของวัตถุเป็นค่าคงตัว จากกฎข้อนี้จึงอนุมานได้ว่าความเร่งเป็นสัดส่วนโดยตรงกับแรงลัพธ์ที่กระทำต่อวัตถุในทิศทางของแรงลัพธ์และเป็นสัดส่วนผกผันกับมวลของวัตถุ แนวคิดเกี่ยวกับแรง ได้แก่ แรงขับซึ่งเพิ่มความเร็วของวัตถุให้มากขึ้น แรงฉุดซึ่งลดความเร็วของวัตถุ และทอร์กซึ่งทำให้เกิดการเปลี่ยนแปลงความเร็วในการหมุนของวัตถุ ในวัตถุที่มีส่วนขยาย แรงที่ทำกระทำคือแรงที่กระทำต่อส่วนของวัตถุที่อยู่ติดกัน การกระจายตัวของแรงดังกล่าวเป็นความเครียดเชิงกล ซึ่งไม่ทำให้เกิดความเร่งของวัตถุมื่อแรงสมดุลกัน แรงที่กระจายตัวกระทำบนส่วนเล็ก ๆ ของวัตถุอาจเรียกได้ว่าเป็นความดัน ซึ่งเป็นความเคลียดอย่างหนึ่งและถ้าไม่สมดุลอาจทำให้วัตถุมีความเร่งได้ ความเครียดมักจะทำให้วัตถุเกิดการเสียรูปของวัตถุที่เป็นของแข็งหรือการไหลของของไหล.

ใหม่!!: ไฟฟ้าและแรง · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

ใหม่!!: ไฟฟ้าและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

แสง

ปริซึมสามเหลี่ยมกระจายลำแสงขาว ลำที่ความยาวคลื่นมากกว่า (สีแดง) กับลำที่ความยาวคลื่นน้อยกว่า (สีม่วง) แยกจากกัน แสง (light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่าและมีคลื่นแคบกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นกว้างกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์ ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่) ^~^.

ใหม่!!: ไฟฟ้าและแสง · ดูเพิ่มเติม »

แอมแปร์

แอมแปร์ หรือที่เรียกสั้น ๆ ว่า แอมป์ (สัญลักษณ์: A) เป็นหน่วยวัดกระแสไฟฟ้า หรือปริมาณของประจุไฟฟ้าต่อวินาที แอมแปร์เป็นหน่วยฐานเอสไอ ตั้งชื่อตามอ็องเดร-มารี อ็องแปร์ นักวิทยาศาสตร์ชาวฝรั่งเศส หนึ่งในผู้ค้นพบแม่เหล็กไฟฟ้.

ใหม่!!: ไฟฟ้าและแอมแปร์ · ดูเพิ่มเติม »

ใยแก้วนำแสง

ใยแก้วนำแสงใยแก้วนำแสง หรือ ออปติกไฟเบอร์ หรือ ไฟเบอร์ออปติก เป็นแก้วหรือพลาสติกคุณภาพสูง ที่สามารถยืดหยุ่นโค้งงอได้ โดยมีเส้นผ่านศูนย์กลางเพียง 8-10 ไมครอน (10 ไมครอน.

ใหม่!!: ไฟฟ้าและใยแก้วนำแสง · ดูเพิ่มเติม »

โรคเกาต์

รคเกาต์ (หรือที่รู้จักกันในนาม โพดากรา เมื่อเกิดกับนิ้วหัวแม่เท้า) เป็นภาวะความเจ็บป่วยที่มักสังเกตได้จากอาการไขข้ออักเสบกำเริบเฉียบพลันซ้ำ ๆ—มีอาการแดง ตึง แสบร้อน บวมที่ข้อต่อ ข้อต่อกระดูกฝ่าเท้า-นิ้วเท้าที่โคนนิ้วหัวแม่เท้ามักได้รับผลกระทบบ่อยที่สุด (ประมาณ 50% ของผู้ป่วย) นอกจากนี้ ยังอาจพบได้ในรูปแบบของก้อนโทไฟ นิ่วในไต หรือ โรคไตจากกรดยูริก โรคนี้เกิดจากการมีระดับกรดยูริกในเลือดสูง กรดยูริกตกผลึกแล้วมาจับที่ข้อต่อ เส้นเอ็น และ เนื้อเยื่อโดยรอบ การวินิจฉัยทางคลินิกทำได้โดยการตรวจผลึกที่มีลักษณะเฉพาะในน้ำไขข้อ รักษาได้โดยยาแก้อักเสบชนิดไม่ใช่สเตอรอยด์ (NSAIDs) สเตอรอยด์ หรือ โคลชิซีน ซึ่งทำให้ผู้ป่วยมีอาการดีขึ้นได้ หลังจากอาการข้ออักเสบกำเริบเฉียบพลันผ่านไปแล้ว ระดับของกรดยูริกในเลือดมักจะลดลงได้โดยการปรับเปลี่ยนวิถีชีวิต และในผู้ที่มีอาการกำเริบบ่อยอาจใช้อัลโลพูรินอลหรือโพรเบเนซิดเพื่อให้การป้องกันในระยะยาว จำนวนผู้ป่วยโรคเกาต์เพิ่มสูงขึ้นในช่วงหลายสิบปีนี้ โดยมีผลกระทบกับ 1-2% ของชาวตะวันตกในช่วงใดช่วงหนึ่งของชีวิต จำนวนที่เพิ่มขึ้นนี้เชื่อว่าเป็นผลมาจากปัจจัยเสี่ยงที่พบมากขึ้นในประชากร ยกตัวอย่างเช่น กลุ่มอาการเมตาบอลิก อายุขัยที่ยืนยาวขึ้น และ พฤติกรรมการกินอาหารที่เปลี่ยนแปลงไป แต่เดิมนั้นโรคเกาต์เคยได้ชื่อว่าเป็น "โรคของราชา" หรือ "โรคของคนรวย".

ใหม่!!: ไฟฟ้าและโรคเกาต์ · ดูเพิ่มเติม »

โรเบิร์ต บอยล์

รเบิร์ต บอยล์ (Robert Boyle; FRS; 25 มกราคม ค.ศ. 1627 – 31 ธันวาคม ค.ศ. 1691) นักวิทยาศาสตร์ชั้นนำของอังกฤษในฐานะผู้คิดค้นกฎของบอยล์ และนักประดิษฐ์ในช่วงคริสต์ศตวรรษที่ 17 ผลงานที่โดดเด่นของบอยล์คือ เป็นผู้คิดค้นกฎของบอยล์ ซึงกฎของบอยล์ กล่าวว่า ในกรณี ที่อุณหภูมิของแก๊สไม่เปลี่ยนแปลง ผลคูณระหว่าง ความดันของแก๊ส (P) กับปริมาตรของแก๊ส (V) มีค่าคงตัว (C) เขียนสมการได้ว่า PV.

ใหม่!!: ไฟฟ้าและโรเบิร์ต บอยล์ · ดูเพิ่มเติม »

โวลต์

วลต์ (สัญลักษณ์: V) คือหน่วยอนุพันธ์ในระบบเอสไอของความต่างศักย์ไฟฟ้า ปริมาณที่กำกับด้วยหน่วยโวลต์นั้นคือผลการวัดความเข้มของแหล่งจ่ายไฟฟ้าในแง่ที่ว่าจะสร้างพลังงานได้เท่าใดที่ระดับกระแสค่าหนึ่ง ๆ โวลต์ซึ่งเป็นชื่อของหน่วยนี้ตั้งขึ้นเพื่อเป็นเกียรติให้แก่ อาเลสซันโดร วอลตา (พ.ศ. 2288 - 2370) ผู้คิดค้นแบตเตอรี่เคมีชนิดแรกที่เรียกว่าเซลล์โวลตาอิก (Voltaic Pile) โวลท์ (volt หรือ V) คือ หน่วยที่ใช้เรียกเพื่อบอกขนาดของแรงดันไฟฟ้าในบ้าน เช่น 220 V หมายถึง ขนาดของแรงดันไฟฟ้าเท่ากับ 220 โวลท์ (ประเทศไทยใช้ไฟระบบนี้) 1 โวลต์ (V).

ใหม่!!: ไฟฟ้าและโวลต์ · ดูเพิ่มเติม »

โวลเตจ

แรงดันไฟฟ้า (Voltage) หรือ ความต่างศักย์ไฟฟ้า (electric potential difference), หรือ โวลเทจ หรือ แรงตึงไฟฟ้า (electric tension), หรือ ความดันไฟฟ้า (electric pressure) (สัญลักษณ์ หรือ)) คือความแตกต่างในพลังงานศักย์ไฟฟ้าระหว่างจุดสองจุดต่อหน่วยประจุไฟฟ้า แรงดันไฟฟ้าระหว่างจุดสองจุดจะมีค่าเท่ากับงานที่ทำต่อหน่วยประจุต้านกับสนามไฟฟ้าคงที่เพื่อเคลื่อนย้ายประจุระหว่างจุดสองจุดและมีการวัดในหน่วยเป็น โวลต์ (จูลต่อคูลอมบ์) แรงดันไฟฟ้าอาจเกิดจากสนามไฟฟ้าสถิต หรือจากกระแสไฟฟ้าไหลผ่านสนามแม่เหล็ก หรือจากสนามแม่เหล็กที่แปรตามเวลาหรือทั้งสามอย่างรวมกัน โวลต์มิเตอร์สามารถใช้ในการวัดแรงดันไฟฟ้า (หรือความต่างศักย์) ระหว่างจุดสองจุดในระบบ; บ่อยครั้งที่ศักย์อ้างอิงทั่วไปเช่นกราวด์ของระบบจะถูกนำมาใช้เป็นหนึ่งในจุดที่ใช้วัด แรงดันไฟฟ้าอาจหมายถึงแหล่งที่มาของพลังงาน (แรงเคลื่อนไฟฟ้า) หรือพลังงานที่หายไป, ที่ถูกใช้หรือที่ถูกเก็บไว้ (แรงดันตกคร่อม).

ใหม่!!: ไฟฟ้าและโวลเตจ · ดูเพิ่มเติม »

โซลิดสเตต

โซลิดสเตต (solid state) เป็นคำศัพท์ในทางอิเล็กทรอนิกส์ หมายถึงวงจรที่ไม่มีหลอดสุญญากาศนั่นเอง คำนี้มีการใช้เพื่อบรรยายการเปลี่ยนจากแอมปลิไฟร์ที่ใช้หลอดสุญญากาศ มาเป็นแอมปลิไฟร์แบบที่ใช้ทรานซิสเตอร์ ความหมายตามตัวอักษรของ "โซลิดสเตต" ก็คือ สภาพของแข็ง ซึ่งหมายความว่า อิเล็กตรอนจะไหลผ่านสารกึ่งตัวนำที่เป็นของแข็ง ได้แก่ วัสดุจำพวกเยอรมาเนียม (Ge) และซิลิกอน (Si) เป็นต้น โดยจะไม่ไหลผ่านที่ว่าง เช่น ในหลอดสุญญากาศ อุปกรณ์โซลิดสเตตนั้นมีอายุยืนยาว กว่าอุปกรณ์พวกที่มีความร้อน ทั้งนี้เพราะมีความทนทานต่อการสั่นสะเอน การกระชาก และการสึกกร่อนเชิงกลมากกว่าหลายเท่าตัว เมื่อการใช้หลอดสุญญากาศในเครื่องใช้ไฟฟ้าน้อยลง (ยกเว้นการใช้หลอด CRT ซึ่งยังคงใช้งานแพร่หลายเป็นหลอดภาพของโทรทัศน์ และจอคอมพิวเตอร์) คำว่า "โซลิดสเตต" จึงนิยมใช้มากขึ้น ในความหมายว่า "ไม่มีส่วนเคลื่อนไหว" ตัวอย่างเช่น เครื่องเล่นเสียงดิจิตอล ที่บันทึกเพลงไว้ในหน่วยความจำแบบแฟลช ก็มักจะเรียกว่า โซลิดสเตต ทั้งนี้เพื่อแยกแยะความแตกต่างจากเครื่องเล่นประเภทฮาร์ดดิสก์ อุปกรณ์โซลิดสเตตแบบนี้ มีความทนทานและต้านทานต่อการสั่นสะเทือนได้ดีเช่นเดียวกัน หมวดหมู่:สารกึ่งตัวนำ หมวดหมู่:อิเล็กทรอนิกส์.

ใหม่!!: ไฟฟ้าและโซลิดสเตต · ดูเพิ่มเติม »

โซลิดสเตตไดรฟ์

'''โซลิดสเตตไดรฟ์''' ถูกแยกส่วนเปรียบเทียบกับ ฮาร์ดดิสก์ ที่ใช้จานแม่เหล็กหมุน จะเห็นได้ว่าแบบจานแม่เหล็กหมุนนั้น มีข้อจำกัดเกี่ยวกับความทนต่อแรงสั่นสะเทือน เพราะหัวอ่านข้อมูลเป็นอุปกรณ์ที่มีความละเอียดอ่อนมากซึ่งอาจจะกระทบถูกจานหมุนและได้รับความเสียหายได้หากมีแรงกระแทกจากภายนอกที่มากพอ ในขณะที่โซลิดสเตตไดรฟ์ ไม่มีข้อจำกัดอันนี้ โซลิดสเตตไดรฟ์จาก DDR SDRAM มีความจุ 128 จิกะไบต์ และมีอัตราข้อมูล 3072 เมกะไบต์ต่อวินาที ไม่ต้องการ mSATA SSD โซลิดสเตตไดรฟ์ (Solid state drive, SSD) หรือ เอสเอสดี คือ อุปกรณ์จัดเก็บข้อมูลชนิดหนึ่ง ซึ่งใช้ชิปวงจรรวมที่ประกอบรวมเป็น หน่วยความจำ เพื่อจัดเก็บข้อมูลแบบถาวรเหมือนฮาร์ดดิสก์ เทคโนโลยีของโซลิดสเตตไดรฟ์ถูกสร้างมาเพื่อทดแทนฮาร์ดดิสก์จึงทำให้มีอินเทอร์เฟส อินพุต/เอ้าพุต เหมือนกันและสามารถใช้งานแทนกันได้ และเนื่องจากโซลิดสเตตไดรฟ์ถูกสร้างด้วยวงจรอิเล็กทรอนิกส์จึงไม่มีชิ้นส่วนจักรกลใดๆที่มีการเคลื่อนที่ (หลักการของ ฮาร์ดดิสก์ และ ฟรอปปี้ดิสก์ คือใช้จานแม่เหล็กหมุน) ส่งผลให้ความเสียหายจากแรงกระแทกของโซลิดสเตตไดรฟ์นั้นน้อยกว่าฮาร์ดดิสก์ (หรือทนต่อการแรงสั่นสะเทือนได้ดี) โดยการเปรียบเทียบจากการที่โซลิดสเตตไดรฟ์ไม่ต้องหมุนจานแม่เหล็กในการอ่านข้อมูลทำให้อุปกรณ์กินไฟน้อยกว่า และใช้เวลาในการเข้าถึงข้อมูล (access time) และเวลาในการหน่วงข้อมูล (latency) น้อยกว่าเนื่องจากสามารถเข้าถึงข้อมูลในตำแหน่งต่างๆ ได้รวดเร็วและทันทีโดยไม่ต้องรอการหมุนจานแม่เหล็กให้ถึงตำแหน่งของข้อมูล คำว่าโซลิดสเตตไดรฟ์เป็นคำกว้างๆ ที่อธิบายถึงอุปกรณ์เก็บข้อมูลลักษณะเดียวกับฮาร์ดดิสก์แต่ใช้หน่วยความจำในการเก็บข้อมูลทดแทนการใช้จานแม่เหล็ก โซลิดสเตตไดรฟ์จึงมีหลายชนิดซึ่งแตกต่างกันตามชนิดหน่วยความจำที่ใช้ในการเก็บข้อมูล ปัจจุบันหน่วยความจำที่นิยมนำมาใช้ในโซลิดสเตตไดรฟ์คือ หน่วยความจำแฟลช ซึ่งพบเห็นได้ทั่วไปและเป็นที่นิยมที่สุดแต่มีข้อเสียที่จำกัดจำนวนครั้งในการเขียนข้อมูลทับ และอีกชนิดคือ เอสเอสดีจาก DDR SDRAM หรือแรมที่ใช้เป็นหน่วยความจำหลักในคอมพิวเตอร์ที่เรารู้จักดี ซึ่งเร็วกว่าหน่วยความจำแฟลชมากและเขียนทับได้ไม่จำกัด แต่เพราะว่า DDR SDRAM เป็นหน่วยความจำชั่วคราวดังนั้นการที่จะให้ทำงานเป็นหน่วยความจำถาวรก็ต้องมีแหล่งไฟฟ้าที่ถาวรเลี้ยงเพื่อไม่ให้ลืมข้อมูล ด้วยข้อจำกัดนี้ทำให้ไม่เป็นที่นิยมในการใช้ทั่วไปตามบ้านเรือนแต่นิยมในอุตสาหกรรมที่ต้องการแหล่งเก็บข้อมูลที่มีประสิทธิภาพสูง.

ใหม่!!: ไฟฟ้าและโซลิดสเตตไดรฟ์ · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: ไฟฟ้าและโปรตอน · ดูเพิ่มเติม »

ไฟฟ้ากระแสสลับ

แสดงความแตกต่างระหว่างไฟฟ้ากระแสตรงและไฟฟ้ากระแสสลับ กระแสตรงอาจเป็นบวกหรือลบก็ได้อย่างใดอย่างหนึ่ง ไม่ไปก็กลับ แต่กระแสสลับ วิ่งไปวิ่งกลับตลอดเวลา จำนวนรอบของไทยคือ 50 รอบต่อวินาที หรือ 50 Hz ไฟฟ้ากระแสสลับ (Alternating Current Electricity: AC หรือ ac) หมายถึงกระแสที่มีทิศทางไปและกลับตลอดระยะเวลา มีการสลับขั้วบวกและลบกันอยู่ตลอดเวลา ไม่เหมือนกระแสตรง (Direct Current, DC หรือ dc) ที่ไฟฟ้าจะไหลไปในทิศทางเดียวและไม่ไหลกลับ เช่น ไฟฟ้าที่ได้จากถ่านไฟฉาย แบตเตอรี่ของรถยนต์ เป็นต้น ไฟฟ้ากระแสสลับจึงเป็นไฟฟ้าที่เหมาะสำหรับบ้านเรือนหรือธุรกิจอุตสาหกรรมที่ใช้ไฟฟ้าปริมาณมากๆ รูปคลื่นเป็น sine wave ในบางกรณี รูปคลื่นอาจเป็นสามเหลี่ยมหรือสี่เหลี่ยม ภาพจำลองการส่งคลื่น AC จาก generator ซึ่งส่งพลังงานกลับทิศทางตลอดเวล.

ใหม่!!: ไฟฟ้าและไฟฟ้ากระแสสลับ · ดูเพิ่มเติม »

ไฟฟ้ากระแสตรง

ัญลักษณ์แทนไฟฟ้ากระแสตรง พบได้บนอุปกรณ์อิเล็กทรอนิกส์หลายชนิดที่ผลิตหรือต้องการไฟฟ้ากระแสตรง ไฟฟ้ากระแสตรง (direct) แสดงเป็นเส้นตรงสีแดง แกนตั้งคือปริมาณกระแส (i) หรือความต่างศักย์ (v) และแกนนอนคือเวลา (t)pulsating — ไฟฟ้ากระแสตรงชนิดเป็นจังหวะvariable — ไฟฟ้ากระแสแปรผันalternating — ไฟฟ้ากระแสสลับ ไฟฟ้ากระแสตรงชนิดต่าง ๆ(บน) ชนิดสมบูรณ์(กลางและล่าง) ชนิดเป็นจังหวะเกิดจากการเรียงกระแส ไฟฟ้ากระแสตรง (direct current, อักษรย่อ: DC) เป็นไฟฟ้ากระแสที่มีทิศทางการเคลื่อนที่ของกระแสไฟฟ้าไปในทิศทางเดียวกันเป็นวงจร ในอดีตไฟฟ้ากระแสตรงเคยถูกเรียกว่า กระแสกัลวานิก (galvanic current) อุปกรณ์ที่สามารถผลิตไฟฟ้ากระแสตรงได้ เช่น เซลล์แสงอาทิตย์ แบตเตอรี่ ทั้งชนิดประจุไฟฟ้าใหม่ได้และชนิดใช้แล้วทิ้ง และเครื่องกำเนิดไฟฟ้ากระแสตรง ไฟฟ้ากระแสตรงสามารถไหลผ่านตัวนำไฟฟ้า เช่น สายไฟ สารกึ่งตัวนำ ฉนวนไฟฟ้า หรือแม้กระทั่งเคลื่อนที่ในภาวะสุญญากาศในรูปของลำอิเล็กตรอนหรือลำไอออน เราสามารถใช้ตัวเรียงกระแส เปลี่ยนไฟฟ้ากระแสสลับให้เป็นไฟฟ้ากระแสตรงได้ โดยส่วนประกอบอิเล็กทรอนิกส์ภายในตัวเรียงกระแสจะบังคับให้กระแสไฟฟ้าไหลผ่านได้ในทิศทางเดียว นอกจากนี้ยังสามารถเปลี่ยนไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสสลับได้โดยใช้อินเวอร์เตอร์หรือชุดไดนามอเตอร์ เครื่องมือวัดทางไฟฟ้าประเภทที่หนึ่งคือ -แอมมิเตอร์ โวลต์มิเตอร์ และโอห์มมิเตอร์ เป็นเครื่องวัดทางไฟฟ้า เพื่อใช้วัดปริมาณต่างๆ ทางไฟฟ้าเครื่องวัดทางไฟฟ้าต่างๆนี้สามารถสร้างขึ้นโดยดัดแปลงมาจาก แกลแวนอมิเตอร์ (Galvanometer) ชนิดขดลวดเคลื่อนที่ ซึ่งประกอบด้วยขดลวดวางระหว่างขั้วแม่เหล็กและประเภทที่สองคือ-แกลแวนอมิเตอร์ (Galvanometer) คือ เครื่องมือวัดพื้นฐานทางไฟฟ้าที่สามารถวัดได้ทั้งกระแสไฟฟ้าและความต่างศักย์ไฟฟ้า แต่จะวัดได้ปริมาณน้อยๆ ดังนั้นจึงนิยมนำไปดัดแปลงใช้วัดกระแสไฟฟ้าความต่างศักย์ไฟฟ้าและความต้านทาน.

ใหม่!!: ไฟฟ้าและไฟฟ้ากระแสตรง · ดูเพิ่มเติม »

ไฟฟ้าสถิต

นามไฟฟ้าสถิตที่เกิดจากการกระจายตัวของประจุ (+) ส่วนเกิน ไฟฟ้าสถิต (Static electricity) คือความไม่สมดุลย์ของประจุไฟฟ้าภายในหรือบนพื้นผิวของวัสดุหนึ่ง ประจุยังคงอยู่กับที่จนกระทั่งมันสามารถจะเคลื่อนที่โดยอาศัยการไหลของอิเล็กตรอน (กระแสไฟฟ้า) หรือมีการปลดปล่อยประจุ (electrical discharge) ไฟฟ้าสถิตมีชื่อที่ขัดกับไฟฟ้ากระแสที่ไหลผ่านเส้นลวดหรือตัวนำอื่นและนำส่งพลังงาน ประจุไฟฟ้าสถิตสามารถสร้างขึ้นได้เมื่อไรก็ตามที่สองพื้นผิวสัมผัสกันและแยกจากกัน และอย่างน้อยหนึ่งในพื้นผิวนั้นมีความต้านทานสูงต่อกระแสไฟฟ้า (และดังนั้นมันจึงเป็นฉนวนไฟฟ้า) ผลกระทบทั้งหลายจากไฟฟ้าสถิตจะคุ้นเคยกับคนส่วนใหญ่เพราะผู้คนสามารถรู้สึก, ได้ยิน, และแม้แต่ได้เห็นประกายไฟเมื่อประจุส่วนเกินจะถูกทำให้เป็นกลางเมื่อถูกนำเข้ามาใกล้กับตัวนำไฟฟ้าขนาดใหญ่ (เช่นเส้นทางที่ไปลงดิน) หรือภูมิภาคที่มีประจุส่วนเกินที่มีขั้วตรงข้าม (บวกหรือลบ) ปรากฏการณ์ที่คุ้นเคยของช็อกจากไฟฟ้าสถิต หรือที่เจาะจงมากขึ้นคือการปลดปล่อยไฟฟ้าสถิต (electrostatic discharge) จะเกิดจากการเป็นกลางของประจุ ประจุไฟฟ้าเป็นปริมาณทางไฟฟ้าปริมาณหนึ่งที่กำหนดขึ้นธรรมชาติ ของสสารจะประกอบด้วยหน่วยย่อยๆ  ที่มีลักษณะและ มีสมบัติเหมือนกันที่เรียกว่า อะตอม(atom)ภายในอะตอม จะประกอบด้วยอนุภาคมูลฐาน3ชนิดได้แก่  โปรตอน (proton)  นิวตรอน (neutron) และ อิเล็กตรอน (electron)โดยที่โปรตอนมีประจุไฟฟ้าบวกกับนิวตรอนที่เป็นกลางทางไฟฟ้ารวมกันอยู่เป็นแกนกลางเรียกว่านิวเคลียส (nucleus) ส่วนอิเล็กตรอน มี ประจุ ไฟฟ้าลบ จะอยู่รอบๆนิวเคลี.

ใหม่!!: ไฟฟ้าและไฟฟ้าสถิต · ดูเพิ่มเติม »

ไมโครโพรเซสเซอร์

อินเทล 4004 ไมโครโพรเซสเซอร์ทั่วไปตัวแรกที่มีการจำหน่าย ไมโครโพรเซสเซอร์ (microprocessor) หมายถึงชิปที่ใช้เป็นหน่วยประมวลผลกลางของเครื่องไมโครคอมพิวเตอร.

ใหม่!!: ไฟฟ้าและไมโครโพรเซสเซอร์ · ดูเพิ่มเติม »

ไมเคิล ฟาราเดย์

มเคิล ฟาราเดย์ (22 กันยายน ค.ศ. 1791 – 25 สิงหาคม ค.ศ. 1867) เป็นนักเคมีและนักฟิสิกส์ ชาวอังกฤษ เป็นผู้คิดค้นไดนาโมในปี..

ใหม่!!: ไฟฟ้าและไมเคิล ฟาราเดย์ · ดูเพิ่มเติม »

ไอออน

แผนภาพประจุอิเล็กตรอนของไนเตรตไอออน ไอออน คือ อะตอม หรือกลุ่มอะตอม ที่มีประจุสุทธิทางไฟฟ้าเป็นบวก หรือเป็นไอออนที่มีประจุลบ gaaจะมีอิเล็กตรอนในชั้นอิเล็กตรอน (electron shell) มากกว่าที่มันมีโปรตอนในนิวเคลียส เราเรียกไอออนชนิดนี้ว่า แอนไอออน (anion) เพราะมันถูกดูดเข้าหาขั้วแอโนด (anode) ส่วนไอออนที่มีประจุบวก จะมีอิเล็กตรอนน้อยกว่าโปรตอน เราเรียกว่า แคทไอออน (cation) เพราะมันถูกดูดเข้าหาขั้วแคโทด (cathode) กระบวนการแปลงเป็นไอออน และสภาพของการถูกทำให้เป็นไอออน เรียกว่า การแตกตัวเป็นไอออน (ionization) ส่วนกระบวนการจับตัวระหว่างไอออนและอิเล็กตรอนเข้าด้วยกัน จนเกิดเป็นอะตอมที่ดุลประจุแล้วมีความเป็นกลางทางไฟฟ้า เรียกว่า recombination แอนไอออนแบบโพลีอะตอมิก ซึ่งมีออกซิเจนประกอบอยู่ บางครั้งก็เรียกว่า "ออกซีแอนไอออน" (oxyanion) ไอออนแบบอะตอมเดียวและหลายอะตอม จะเขียนระบุด้วยเครื่องหมายประจุรวมทางไฟฟ้า และจำนวนอิเล็กตรอนที่สูญไปหรือได้รับมา (หากมีมากกว่า 1 อะตอม) ตัวอย่างเช่น H+, SO32- กลุ่มไอออนที่ไม่แตกตัวในน้ำ หรือแม้แต่ก๊าซ ที่มีส่วนของอนุภาคที่มีประจุ จะเรียกว่า พลาสมา (plasma) ซึ่งถือเป็น สถานะที่ 4 ของสสาร เพราะคุณสมบัติของมันนั้น แตกต่างไปจากของแข็ง ของเหลว หรือก๊าซ.

ใหม่!!: ไฟฟ้าและไอออน · ดูเพิ่มเติม »

ไอน้ำ

กราฟแสดงความสัมพันธ์ของเอนโทรปีและอุณหภูมิ ของไอน้ำ ไอน้ำ มักจะหมายถึงน้ำที่ระเหย ซึ่งมีลักษณะบริสุทธิ์และไม่มีสีซึ่งมีลักษณะใกล้เคียงกับหมอก ที่ความดันปกติ น้ำจะกลายเป็นไอน้ำ ที่อุณหภูมิ 100 องศาเซลเซียส และมีปริมาตรขยายเพิ่มประมาณ 1,600 เท่าของปริมาตรน้ำ ไอน้ำสามารถมีอุณหภูมิได้สูงมาก (มากกว่า 100 องศาเซลเซียส) ซึ่งจะถูกเรียกว่า ไอน้ำซูเปอร์ฮีต (superheated steam) เมื่อน้ำในสภาวะของเหลวได้มีการสัมผัสกับวัตถุที่มีความร้อนสูง เช่นโลหะร้อน หรือลาวา น้ำสามารถกลายเป็นไอทันที หมวดหมู่:แก๊สเรือนกระจก หมวดหมู่:ธรรมชาติ หมวดหมู่:รูปแบบของน้ำ.

ใหม่!!: ไฟฟ้าและไอน้ำ · ดูเพิ่มเติม »

ไฮน์ริช เฮิรตซ์

น์ริช เฮิรตซ์ (Heinrich Hertz; 22 กุมภาพันธ์ พ.ศ. 2400 — 1 มกราคม พ.ศ. 2437) เป็นนักฟิสิกส์ชาวเยอรมัน และเป็นคนแรกที่พิสูจน์ถึงการมีอยู่ของคลื่นแม่เหล็กไฟฟ้า จากทฤษฎีของแมกซ์เวลล์ ทฤษฎีแม่เหล็กไฟฟ้าของแสง เฮิรตซ์พิสูจน์ทฤษฎีโดยการพัฒนาเครื่องมือที่ใช้ส่งและรับคลื่นวิทยุโดยใช้การทดลอง นั่นให้เหตุผลถึงปรากฏการณ์แบบไร้สายอื่น ๆ ที่รู้จัก หน่วยวิทยาศาสตร์ของความถี่ รอบต่อวินาที ถูกตั้งชื่อเป็น เฮิรตซ์ เพื่อเป็นเกียรติแก.

ใหม่!!: ไฟฟ้าและไฮน์ริช เฮิรตซ์ · ดูเพิ่มเติม »

ไดโอด

อดชนิดต่าง ๆ ไดโอด (diode) เป็นชิ้นส่วนอิเล็กทรอนิกส์ชนิดสองขั้วคือขั้ว p และขั้ว n ที่ออกแบบและควบคุมทิศทางการไหลของประจุไฟฟ้า มันจะยอมให้กระแสไฟฟ้าไหลในทิศทางเดียว และกั้นการไหลในทิศทางตรงกันข้าม เมื่อกล่าวถึงไดโอด มักจะหมายถึงไดโอดที่ทำมาจากสารกึ่งตัวนำ (Semiconductor diode) ซึ่งก็คือผลึกของสารกึ่งตัวนำที่ต่อกันได้ขั้วทางไฟฟ้าสองขั้ว ส่วนไดโอดแบบหลอดสูญญากาศ (Vacuum tube diode) ถูกใช้เฉพาะทางในเทคโนโลยีไฟฟ้าแรงสูงบางประเภท เป็นหลอดสูญญากาศที่ประกอบด้วยขั้วอิเล็ดโทรดสองขั้ว ซึ่งจะคือแผ่นตัวนำ (plate) และแคโทด (cathode) ส่วนใหญ่เราจะใช้ไดโอดในการยอมให้กระแสไปในทิศทางเดียว โดยยอมให้กระแสไฟในทางใดทางหนึ่ง ส่วนกระแสที่ไหลทิศทางตรงข้ามกันจะถูกกั้น ดังนั้นจึงอาจถือว่าไดโอดเป็นวาล์วตรวจสอบแบบอิเล็กทรอนิกส์อย่างหนึ่ง ซึ่งนับเป็นประโยชน์อย่างมากในวงจรอิเล็กทรอนิกส์ เช่น ใช้เป็นตัวเรียงกระแสไฟฟ้าในวงจรแหล่งจ่ายไฟ เป็นต้น อย่างไรก็ตามไดโอดมีความสามารถมากกว่าการเป็นอุปกรณ์ที่ใช้เปิด-ปิดกระแสง่าย ๆ ไดโอดมีคุณลักษณะทางไฟฟ้าที่ไม่เป็นเชิงเส้น ดังนั้นมันยังสามารถปรับปรุงโดยการปรับเปลี่ยนโครงสร้างของพวกมันที่เรียกว่ารอยต่อ p-n มันถูกนำไปใช้ประโยชน์ในงานที่มีวัตถุประสงค์พิเศษ นั่นทำให้ไดโอดมีรูปแบบการทำงานได้หลากหลายรูปแบบ ยกตัวอย่างเช่น ซีเนอร์ไดโอด เป็นไดโอดชนิดพิเศษที่ทำหน้าที่รักษาระดับแรงดันให้คงที่ วาริแอกไดโอดใช้ในการปรับแต่งสัญญาณในเครื่องรับวิทยุและโทรทัศน์ ไดโอดอุโมงค์หรือทันเนลไดโอดใช้ในการสร้างสัญญาณความถี่วิทยุ และไดโอดเปล่งแสงเป็นอุปกรณ์ที่สร้างแสงขึ้น ไดโอดอุโมงค์มีความน่าสนใจตรงที่มันจะมีค่าความต้านทานติดลบ ซึ่งเป็นประโยชน์มากเมื่อใช้ในวงจรบางประเภท ไดโอดตัวแรกเป็นอุปกรณ์หลอดสูญญากาศ โดยไดโอดแบบสารกึ่งตัวนำตัวแรกถูกค้นพบจากการทดสอบความสามารถในการเรียงกระแสของผลึกโดยคาร์ล เฟอร์ดินานด์ บรวน นักฟิสิกส์ชาวเยอรมัน ในปี..

ใหม่!!: ไฟฟ้าและไดโอด · ดูเพิ่มเติม »

ไดโอดเปล่งแสง

อดเปล่งแสงสีต่าง ๆ ไดโอดเปล่งแสง (light-emitting diode หรือย่อว่า LED) เป็นอุปกรณ์สารกึ่งตัวนำอย่างหนึ่ง จัดอยู่ในจำพวกไดโอด ที่สามารถเปล่งแสงในช่วงสเปกตรัมแคบ เมื่อถูกไบอัสทางไฟฟ้าในทิศทางไปข้างหน้า ปรากฏการณ์นี้อยู่ในรูปของ electroluminescence สีของแสงที่เปล่งออกมานั้นขึ้นอยู่กับองค์ประกอบทางเคมีของวัสดุกึ่งตัวนำที่ใช้ และเปล่งแสงได้ใกล้ช่วงอัลตราไวโอเลต ช่วงแสงที่มองเห็น และช่วงอินฟราเรด ผู้พัฒนาไดโอดเปล่งแสงขึ้นเป็นคนแรก คือ นิก โฮโลยัก (Nick Holonyak Jr.) (เกิด ค.ศ. 1928) แห่งบริษัทเจเนรัล อิเล็กทริก (General Electric Company) โดยได้พัฒนาไดโอดเปล่งแสงในช่วงแสงที่มองเห็น และสามารถใช้งานได้ในเชิงปฏิบัติเป็นครั้งแรก เมื่อ ค.ศ. 1962.

ใหม่!!: ไฟฟ้าและไดโอดเปล่งแสง · ดูเพิ่มเติม »

เชื้อเพลิงซากดึกดำบรรพ์

ื้อเพลิงซากดึกดำบรรพ์ หรือ เชื้อเพลิงฟอสซิล (fossil fuel; เชื้อเพลิงซากดึกดำบรรพ์เป็นศัพท์ทางธรณีวิทยา ส่วนเชื้อเพลิงฟอสซิลเป็นศัพท์ทางวิศวกรรมเครื่องกล) หรือแร่เชื้อเพลิง (อังกฤษ: mineral fuel) เป็นเชื้อเพลิงอันเกิดแต่ซากดึกดำบรรพ์ซึ่งได้แก่ไฮโดรคาร์บอนที่พบจากช่วงชั้นดิน (layer) ด้านบนสุดของเปลือกโลก เชื้อเพลิงซากดึกดำบรรพ์มีตั้งแต่แร่สารระเหยสูง (volatile material) ซึ่งมีอัตราคาร์บอนต่อไฮโดรเจนต่ำ เป็นต้นว่า แก๊สมีเทน ไปจนถึงปิโตรเลียมเหลว (liquid petroleum) และแร่ไร้สารระเหย (nonvolatile material) ซึ่งแร่ไร้สารระเหยนี้มักประกอบด้วยคาร์บอนบริสุทธิ์ เป็นต้นว่า ถ่านแอนทราไซต์ (anthracite coal) ทั้งนี้ แก๊สมีเทนอันมีในแร่สารระเหยสูงเช่นว่าสามารถพบได้ในสารจำพวกไฮโดรคาร์บอนเพียงจำพวกเดียวก็ได้ ในสารจำพวกไฮโดรคาร์บอนประสมกับน้ำมันก็ได้ และในรูปมีเทนผังหนา (methane clathrate) ก็ได้ ใน พ.ศ. 2548 องค์การข้อมูลข่าวสารด้านพลังงานแห่งสหรัฐอเมริกา (United States Energy Information Administration) ได้ประเมินว่าในบรรดาผลิตผลจากพลังงานในโลกนี้ ร้อยละแปดสิบหกมีต้นกำเนิดจากการเผาผลาญเชื้อเพลิงซากดึกดำบรรพ์ ร้อยละหกจุดสามกำเนิดแต่พลังงานไฟฟ้าจากน้ำ (hydroelectric) และร้อยละหกจากพลังงานนิวเคลียร์ ส่วนร้อยละศูนย์จุดเก้าที่เหลือจากแหล่งพลังงานอื่น ๆ เป็นต้นว่า ความร้อนจากธรณีภาค (geothermal) พลังงานแสงอาทิตย์ พลังงานลม พลังงานจากไม้ และพลังงานจากของใช้แล้ว.

ใหม่!!: ไฟฟ้าและเชื้อเพลิงซากดึกดำบรรพ์ · ดูเพิ่มเติม »

เบนจามิน แฟรงคลิน

นจามิน แฟรงคลิน (Benjamin Franklin) (– 17 เมษายน ค.ศ. 1790) เป็นหนึ่งในบิดาผู้สร้างชาติของสหรัฐอเมริกา เบนจามิน แฟรงคลิน เป็น ช่างพิมพ์ คนเรียงพิมพ์ นักเขียน นักปรัชญา นักการเมือง นักวิทยาศาสตร์ นักประดิษฐ์ นักปฏิรูป และนักการทูต คนสำคัญในยุคแสงสว่างของสหรัฐอเมริกา ในฐานะนักวิทยาศาสตร์ เขามีผลงานหลายอย่างในด้านฟิสิกส์ ผลงานที่สำคัญคือคิดค้นสายล่อฟ้า และผลงานอื่นเช่นแว่นไบโฟคอล เตาแฟรงคลิน และฮาร์โมนิกาแก้ว เขาเป็นผู้เริ่มก่อตั้งห้องสมุดแห่งแรกในสหรัฐอเมริกา และก่อตั้งสถานีดับเพลิงแห่งแรกในรัฐเพนซิลเวเนีย ผลงานในฐานะนักการเมืองเขาเป็นนักเขียนและผู้นำการเคลื่อนไหวคนสำคัญไปสู่การแยกตัวออกจากอาณานิคมและร่วมก่อตั้งชาติสหรัฐอเมริกา ในฐานะนักการทูต เขาได้เป็นทูตคนสำคัญในช่วงปฏิวัติอเมริกาเชื่อมความสัมพันธ์ระหว่างสหรัฐอเมริกาและประเทศฝรั่งเศส ซึ่งนำไปสู่การแยกตัวของประเทศจากอาณานิคมของอังกฤษในที่สุด แฟรงคลินเริ่มต้นชีวิตจากการเป็นนักเรียงพิมพ์ในฟิลาเดลเฟีย ซึ่งสร้างความมั่งคั่งจากหนังสือ Poor Richard's Almanack และหนังสือพิมพ์เพนน์ซิลเวเนียแกเซตต์ (Pennsylvania Gazette) แฟรงคลินมีความสนใจในด้านวิทยาศาสตร์และเทคโนโลยี มีชื่อเสียงในฐานะนักวิทยาศาสตร์ชื่อดังของโลกคนหนึ่ง นอกจากนี้เขาได้เป็นผู้ก่อตั้งมหาวิทยาลัยเพนซิลเวเนีย และวิทยาลัยแฟรงคลินแอนด์มาร์แชลล์ เขายังได้รับเลือกให้เป็นประธานคนแรกของสมาคมปรัชญาอเมริกา จากผลงานของแฟรงคลินทั้งในด้านวิทยาศาสตร์และการเมือง เขาได้ถูกยกย่องและกล่าวถึงในหลายด้าน เขาปรากฏในธนบัตรของสหรัฐอเมริกา (100 ดอลลาร์สหรัฐ) ชื่อของเขายังปรากฏเป็นชื่อ เมือง เคาน์ตี สถานศึกษา และผลงานอีกหลายด้านยังมีการกล่าวถึงตราบจนปัจจุบัน.

ใหม่!!: ไฟฟ้าและเบนจามิน แฟรงคลิน · ดูเพิ่มเติม »

เอนโทรปี

การละลายของน้ำแข็งในน้ำ นับเป็นตัวอย่างหนึ่งของการเพิ่มขึ้นของเอนโทรปีของน้ำแข็ง ซึ่งเดิมมีโมเลกุลเรียงอยู่กับที่ มาเป็นโมเลกุลเคลื่อนที่ไปมาภายในแก้ว เอนโทรปี (entropy) มาจากภาษากรีก εν (en) แปลว่าภายใน รวมกับ τρέπω (trepo) แปลว่า ไล่ หนี หรือ หมุน ถือเป็นหัวใจของกฎข้อที่สองของอุณหพลศาสตร์ ซึ่งเกี่ยวข้องกับกระบวนการทางกายภาพที่เกิดขึ้นเองทางธรรมชาติ การเปลี่ยนแปลงดังกล่าวมีแนวโน้มที่จะทำให้ความแตกต่างของ ไม่ว่าจะเป็น อุณหภูมิ แรงดัน ความหนาแน่น หรือค่าอื่น ๆ ในระบบค่อย ๆ น้อยลงจนกลืนเป็นเนื้อเดียวกัน ซึ่งต่างจากกฎข้อที่หนึ่งของอุณหพลศาสตร์ ซึ่งกล่าวถึงการอนุรักษ์พลังงาน เอนโทรปีเป็นจำนวนซึ่งใช้อธิบายระบบอุณหพลศาสตร์ เมื่อมองในระดับโมเลกุล กระบวนการทางกายภาพที่เกิดขึ้นเองตามธรรมชาติทำให้โมเลกุลมีการเรียงตัวที่ไม่เป็นระเบียบมากขึ้น สามารถแทนได้ด้วยค่าเอนโทรปีที่เพิ่มขึ้น ในการคำนวณ นิยมใช้สัญลักษณ์ S ซึ่งนิยามจากสมการดิฟเฟอเรนเซียล dS.

ใหม่!!: ไฟฟ้าและเอนโทรปี · ดูเพิ่มเติม »

เจมส์ จูล

มส์ เพรสคอต จูล (James Prescott Joule) นักฟิสิกส์ชาวอังกฤษ เป็นผู้ค้นพบธรรมชาติของความร้อนและความสัมพันธ์กับพลังงานกล ซึ่งก่อให้เกิดหลักการอนุรักษ์พลังงาน ซึ่งนั่นก็คืออุณหพลศาสตร์ และเขายังได้ค้นพบความสัมพันธ์ของความต้านทานไฟฟ้าและความร้อนที่ปล่อยออกมา ซึ่งนั้นคือ กฎของจูล ต่อมาชื่อของเขาได้ถูกตั้งให้เป็นชื่อหน่วยของงานและพลังงาน ในระบบหน่วยเอสไอ.

ใหม่!!: ไฟฟ้าและเจมส์ จูล · ดูเพิ่มเติม »

เธลีส

ลีส แห่ง มิเลทัส (Thales of Miletus) 640-546 ปี ก่อนคริสต์ศักราช เป็นนักปรัชญาของชาวกรีกโบราณ ได้รับการยกย่องจากอริสโตเติล ว่า เธลีสเป็นนักปรัชญาคนแรกที่บันทึกความคิดไว้เป็นหลักฐาน และได้รับเกียรติให้เป็นบิดาของวิชาปรัชญาตะวันตก เบอร์ทรันด์ รัสเซลล์กล่าวว่า "วิชาปรัชญาเริ่มต้นจากเธลิส".

ใหม่!!: ไฟฟ้าและเธลีส · ดูเพิ่มเติม »

เครือข่ายไฟฟ้า

วงจรไฟฟ้าอย่างง่ายประกอบไปด้วยแหล่งจ่ายไฟและตัวต้านทาน ในวงจรนี้จะเห็นว่า V.

ใหม่!!: ไฟฟ้าและเครือข่ายไฟฟ้า · ดูเพิ่มเติม »

เครื่องกำเนิดไฟฟ้า

รื่องกำเนิดไฟฟ้าแบบกังหันไอน้ำที่ทันสมัยของสหรัฐฯ เครื่องกำเนิดไฟฟ้า หรือ เครื่องปั่นไฟ (electric generator) คืออุปกรณ์ที่แปลงพลังงานกลเป็นพลังงานไฟฟ้า อุปกรณ์ดังกล่าวจะบังคับกระแสไฟฟ้าให้ไหลผ่านวงจรภายนอก แหล่งที่มาของพลังงานกลอาจจะเป็นลูกสูบหรือเครื่องยนต์กังหันไอน้ำ หรือแรงน้ำตกผ่านกังหันน้ำหรือล้อน้ำ หรือเครื่องยนต์สันดาปภายใน หรือกังหันลม หรือข้อเหวี่ยงมือ หรืออากาศอัด หรือแหล่งพลังงานกลอื่นๆ โดยเครื่องกำเนิดไฟฟ้านั้นจะเป็นวิธีหลักที่ใช้ในการกำเนิดไฟฟ้าเพื่อจ่ายเข้าโครงข่ายพลังงานไฟฟ้าของประเทศ เครื่องกำเนิดไฟฟ้าของ Ganz รุ่นแรกๆใน Zwevegem, West Flanders, Belgium การแปลงย้อนกลับของพลังงานไฟฟ้ากลับไปเป็นพลังงานกลจะกระทำโดยมอเตอร์ไฟฟ้า มอเตอร์และเครื่องกำเนิดไฟฟ้าที่มีความคล้ายคลึงกันมาก มอเตอร์หลายตัวสามารถขับเคลื่อนเครื่องจักรเพื่อผลิตไฟฟ้าและบ่อยครั้งที่ได้รับการยอมรับให้เป็นเครื่องกำเนิดไฟฟ้า alternator ในช่วงต้นของศตวรรษที่ 20 ในห้องโถงของสถานีผลิตไฟฟ้ากำลังน้ำ ทำในบูดาเปสท์ประเทศฮังการี.

ใหม่!!: ไฟฟ้าและเครื่องกำเนิดไฟฟ้า · ดูเพิ่มเติม »

เครื่องรับวิทยุ

รื่องรับวิทยุรุ่นเก่า เครื่องรับวิทยุ เป็นเครื่องมือสื่อสารทางเดียวชนิดหนึ่ง ทำหน้าที่รับและเลือกคลื่นวิทยุจากสายอากาศ แล้วนำไปสู่ภาคขยายต่อไป โดยมีช่วงความถี่ของคลื่นที่กว้าง แล้วแต่ประเภทของการใช้งาน โดยทั่วไป คำว่า "เครื่องวิทยุ" มักจะใช้เรียกเครื่องรับสัญญาณความถี่กระจายเสียง เพื่อส่งข่าวสาร และความบันเทิง โดยมีย่านความถี่หลักๆ คือ คลื่นสั้น คลื่นกลาง และคลื่นยาว.

ใหม่!!: ไฟฟ้าและเครื่องรับวิทยุ · ดูเพิ่มเติม »

เครื่องปรับอากาศ

รื่องปรับอาก.หรือภาษาปากว่า แอร์กี่(Air conditioner, aircon) คือเครื่องใช้ไฟฟ้าที่ใช้ปรับอุณหภูมิของอากาศในเคหสถาน เพื่อให้มนุษย์ได้อาศัยอยู่ในที่ที่ไม่ร้อนหรือไม่เย็นจนเกินไป หรือใช้รักษาภาวะอากาศให้คงที่เพื่อจุดประสงค์อื่น เคหสถานในเขตศูนย์สูตรหรือเขตร้อนชื้นมักมีการติดตั้งเครื่องปรับอากาศเพื่อลดอุณหภูมิให้เย็นลง ตรงข้ามกับในเขตอบอุ่นหรือเขตขั้วโลกใช้เพื่อเพิ่มอุณหภูมิให้สูงขึ้น (อาจเรียกว่า เครื่องทำความร้อน) เครื่องปรับอากาศมีทั้งแบบตั้งพื้น ติดผนัง และแขวนเพดาน ทำงานด้วยหลักการการถ่ายเทความร้อน กล่าวคือ เมื่อความร้อนถ่ายเทออกไปข้างนอก อากาศภายในห้องจะมีอุณหภูมิลดลง เป็นต้น และเครื่องปรับอากาศอาจมีความสามารถในการลดความชื้นหรือการฟอกอากาศให้บริสุทธิ์ด้ว.

ใหม่!!: ไฟฟ้าและเครื่องปรับอากาศ · ดูเพิ่มเติม »

เซลล์กัลวานี

right เซลล์กัลวานี หรือ เซลล์วอลตา (Galvanic cell หรือ Voltaic cell) เป็นเซลล์ไฟฟ้าเคมีที่ตั้งชื่อตาม ลุยจิ กัลวานี หรือ อาเลสซานโดร โวลตาตามลำดับ เซลล์นี้จะให้พลังงานไฟฟ้าจากปฏิกิริยารีดอกซ์ที่เกิดขึ้นเองภายในเซลล์ โดยทั่วไปมันจะประกอบด้วยโลหะที่ต่างกันสองชนิดเชื่อมต่อกันด้วยสะพานเกลือ หรือสองครึ่งเซลล์ที่คั่นด้วยเยื่อที่มีรูพรุน นายโวลตาเป็นผู้ประดิษฐ์เซลล์วางซ้อนโวลตาซึ่งเป็นแบตเตอรีไฟฟ้าตัวแรก ในการใช้งานทั่วไป คำว่า "แบตเตอรี" จะใช้กับเซลล์กัลวานีเดี่ยว แต่แบตเตอรีหนึ่งตัวมักประกอบด้วยเซลล์ขนาดเล็กหลายตัว.

ใหม่!!: ไฟฟ้าและเซลล์กัลวานี · ดูเพิ่มเติม »

เซลล์ประสาท

ซลล์ประสาท หรือ นิวรอน (neuron,, หรือ) เป็นเซลล์เร้าได้ด้วยพลัง ของเซลล์อสุจิที่ทำหน้าที่ประมวลและส่งข้อมูลผ่านสัญญาณไฟฟ้าและเคมี โดยส่งผ่านจุดประสานประสาท (synapse) ซึ่งเป็นการเชื่อมต่อโดยเฉพาะกับเซลล์อื่น ๆ นิวรอนอาจเชื่อมกันเป็นโครงข่ายประสาท (neural network) และเป็นองค์ประกอบหลักของสมองกับไขสันหลังในระบบประสาทกลาง (CNS) และของปมประสาท (ganglia) ในระบบประสาทนอกส่วนกลาง (PNS) นิวรอนที่ทำหน้าที่โดยเฉพาะ ๆ รวมทั้ง.

ใหม่!!: ไฟฟ้าและเซลล์ประสาท · ดูเพิ่มเติม »

เซลล์แสงอาทิตย์

ซลล์แสงอาทิตย์ หรือ โซลาร์เซลล์ (solar cell) หรือ เซลล์สุริยะ หรือ เซลล์โฟโตโวลตาอิก (Photovoltaic cell) เป็นอุปกรณ์ไฟฟ้าซึ่งทำหน้าที่แปลงพลังงานแสงหรือโฟตอนเป็นพลังงานไฟฟ้า โดยตรงโดยปรากฏการณ์โฟโตโวลตาอิก นั่นก็คือ คุณสมบัติของสารเช่น ค่าความต้านทาน แรงดัน และกระแส จะเปลี่ยนไปเมื่อมีแสงตกกระทบโดยไม่ต้องอาศัยแหล่งจ่ายไฟภายนอก และเมื่อต่อโหลดให้ จะทำให้เกิดกระแสไหลผ่านโหลดนั้นได้.

ใหม่!!: ไฟฟ้าและเซลล์แสงอาทิตย์ · ดูเพิ่มเติม »

เซลล์ไฟฟ้าเคมี

ซลล์ไฟฟ้าเคมี (electrochemical cell) เป็นอุปกรณ์ที่สามารถผลิตพลังงานไฟฟ้าจากปฏิกิริยาเคมีหรือช่วยอำนวยความสะดวกในการทำให้เกิดปฏิกิริยาเคมีผ่านการการใช้พลังงานไฟฟ้า ตัวอย่างหนึ่งที่ใช้ร่วมกันของเซลล์ไฟฟ้าเคมีเป็นเซลล์มาตรฐาน 1.5 โวลต์ที่ผลิตขึ้นมาสำหรับการใช้งานของผู้บริโภค อุปกรณ์ชนิดนี้รู้จักกันว่าเป็นเซลล์กัลวานีเดี่ยว แบตเตอรี่จะประกอบด้วยเซลล์สองตัวหรือมากกว่าเชื่อมต่อกันแบบอนุกรมหรือแบบขนาน.

ใหม่!!: ไฟฟ้าและเซลล์ไฟฟ้าเคมี · ดูเพิ่มเติม »

เนตเวิร์กสวิตช์

นทเวิร์คสวิตช์ (Network Switch) เป็นอุปกรณ์เครือข่ายคอมพิวเตอร์ที่เชื่อมกลุ่มเครือข่ายหรืออุปกรณ์เครือข่ายเข้าด้วยกัน โดยทั่วไปคำๆนี้หมายถึง network bridge หรือสะพานเครือข่ายหลายพอร์ตที่ประมวลและจัดเส้นทางข้อมูลที่ชั้นเชื่อมโยงข้อมูล (data link layer - เลเยอร์ 2) ของแบบจำลองโอเอสไอ.

ใหม่!!: ไฟฟ้าและเนตเวิร์กสวิตช์ · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »