เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

เซลล์ไฟฟ้าเคมี

ดัชนี เซลล์ไฟฟ้าเคมี

ซลล์ไฟฟ้าเคมี (electrochemical cell) เป็นอุปกรณ์ที่สามารถผลิตพลังงานไฟฟ้าจากปฏิกิริยาเคมีหรือช่วยอำนวยความสะดวกในการทำให้เกิดปฏิกิริยาเคมีผ่านการการใช้พลังงานไฟฟ้า ตัวอย่างหนึ่งที่ใช้ร่วมกันของเซลล์ไฟฟ้าเคมีเป็นเซลล์มาตรฐาน 1.5 โวลต์ที่ผลิตขึ้นมาสำหรับการใช้งานของผู้บริโภค อุปกรณ์ชนิดนี้รู้จักกันว่าเป็นเซลล์กัลวานีเดี่ยว แบตเตอรี่จะประกอบด้วยเซลล์สองตัวหรือมากกว่าเชื่อมต่อกันแบบอนุกรมหรือแบบขนาน.

สารบัญ

  1. 7 ความสัมพันธ์: สถานะออกซิเดชันอิเล็กโทรดอิเล็กโทรไลต์ปฏิกิริยารีดอกซ์แบตเตอรี่เซลล์กัลวานีเซลล์เชื้อเพลิง

  2. เครื่องมือ

สถานะออกซิเดชัน

นะออกซิเดชัน (oxidation state)เป็นสมบัติที่สำคัญของอะตอมเมื่อเกิดเป็นสารประกอบ เนื่องจากสมบัติทางเคมีและกายภาพหลายอย่างสามารถอธิบายโดยใช้สถานะออกซิเดชัน ตลอดระยะเวลาผ่านมามีการนิยามคำว่า สถานะออกซิเดชันที่หลากหลายและยังมีข้อสับสนเกี่ยวกับคำว่า สถานะออกซิเดชัน (Oxpongsak stare) และ เลขออกซิเดชัน (Oxpongsak Number) ที่พบในหนังสือแบบเรียนต่างๆทั่วโลก ในปลายปี 2015 จึงมีผู้เสนอให้นิยามคำๆนี้ให้ชัดเจนและเป็นทางการพร้อมทั้งให้บอกวิธีการในการหาให้ชัดเจนด้ว.

ดู เซลล์ไฟฟ้าเคมีและสถานะออกซิเดชัน

อิเล็กโทรด

อิเล็กโทรด/ลวดเชื่อมต่าง ๆ ที่ใช้ในการเชื่อมอาร์ค อิเล็กโทรด หรือ ขั้วเชื่อม หรือ ลวดเชื่อม หรือ ขั้วไฟฟ้า (Electrode) เป็นตัวนำไฟฟ้าเพื่อใช้แนบกับส่วนที่ไม่ใช่โลหะของวงจรไฟฟ้า (เช่น สารกึ่งตัวนำ อิเล็กโทรไลต์ สุญญากาศ หรืออากาศ) อิเล็กโทรดเป็นคำที่บัญญัติขึ้นโดยนักวิทยาศาสตร์ชาวอังกฤษ วิลเลียม ฮิวเอ็ลล์ ตามคำของไมเคิล ฟาราเดย์ ซึ่งมาจากคำภาษากรีกว่า elektron ซึ่งจริง ๆ แปลว่า อำพัน แต่นำมาอนุพัทธ์ใช้หมายถึงไฟฟ้า บวกกับคำว่า hodos ซึ่งแปลว่าทาง.

ดู เซลล์ไฟฟ้าเคมีและอิเล็กโทรด

อิเล็กโทรไลต์

อิเล็กโทรไลต์คือสารที่สามารถแตกตัวเป็นไอออนอิสระเมื่อละลายน้ำหรือหลอมเหลว ทำให้สามารถนำไฟฟ้าได้เนื่องจากโดยทั่วไป สารละลายนั้นจะประกอบไปด้วยไออนจึงมักเรียกกันว่า สารละลายไอออนิก ในบางครั้งอาจเรียกสั้นๆ ว่า ไลต์ โดยปกติแล้วอิเล็กโทรไลต์จะอยู่ในรูปของกรด เบส หรือเกลือ นอกจากนี้ แก๊สบางชนิดอาจทำตัวเป็นอิเล็กโทรไลต์ได้ภายใต้อุณหภูมิสูงและความดันต่ำ การจำแนกอิเล็กโทรไลต์ออกเป็นอิเล็กโทรไลต์เข้มข้นหรือเจือจางสามารถจำแนกได้จากความเข้มข้นของไอออน ถ้าความเข้มข้นมาก จะเรียกว่า อิเล็กโทรไลต์เข้มข้น แต่ถ้ามีความเข้มข้นของไอออนน้อยจะเรียกว่า อิเล็กโทรไลต์เจือจาง ถ้าสัดส่วนการแตกตัวเป็นไอออนของสารใดมีมาก จะเรียกว่าอิเล็กโทรไลต์แก่ แต่ถ้าสัดส่วนนั้นน้อย(ส่วนใหญ่ไม่แตกตัวเป็นไอออน) จะเรียกว่าอิเล็กโทรไลต์อ่อน.

ดู เซลล์ไฟฟ้าเคมีและอิเล็กโทรไลต์

ปฏิกิริยารีดอกซ์

ปฏิกิริยารีดอกซ์ ปฏิกิริยารีดอกซ์แบ่งได้เป็น 2 ส่วนคือปฏิกิริยารีดักชั่น (reduction) และปฏิกิริยาออกซิเดชั่น (oxidation) ปฏิกิริยารีดอกซ์เป็นปฏิกิริยาเกี่ยวกับการรับส่งอิเล็กตรอน แบ่งได้เป็น 2 ครึ่งปฏิกิริยาคือ ปฏิกิริยาออกซิเดชั่น เป็นปฏิกิริยาที่เสียอิเล็กตรอน และปฏิกิริยารีดักชั่น เป็นปฏิกิริยาที่รับอิเล็กตรอน.

ดู เซลล์ไฟฟ้าเคมีและปฏิกิริยารีดอกซ์

แบตเตอรี่

แบตเตอรี่ (Battery) เป็นอุปกรณ์ที่ประกอบด้วย เซลล์ไฟฟ้าเคมี หนึ่งเซลล์หรือมากกว่า ที่มีการเชื่อมต่อภายนอกเพื่อให้กำลังงานกับอุปกรณ์ไฟฟ้า แบตเตอรี่มี ขั้วบวก (cathode) และ ขั้วลบ (anode) ขั้วที่มีเครื่องหมายบวกจะมีพลังงานศักย์ไฟฟ้าสูงกว่าขั้วที่มีเครื่องหมายลบ ขั้วที่มีเครื่องหมายลบคือแหล่งที่มาของอิเล็กตรอนที่เมื่อเชื่อมต่อกับวงจรภายนอกแล้วอิเล็กตรอนเหล่านี้จะไหลและส่งมอบพลังงานให้กับอุปกรณ์ภายนอก เมื่อแบตเตอรี่เชื่อมต่อกับวงจรภายนอก สาร อิเล็กโทรไลต์ มีความสามารถที่จะเคลื่อนที่โดยทำตัวเป็นไอออน ยอมให้ปฏิกิริยาทางเคมีทำงานแล้วเสร็จในขั้วไฟฟ้าที่อยู่ห่างกัน เป็นการส่งมอบพลังงานให้กับวงจรภายนอก การเคลื่อนไหวของไอออนเหล่านั้นที่อยู่ในแบตเตอรี่ที่ทำให้เกิดกระแสไหลออกจากแบตเตอรี่เพื่อปฏิบัติงาน ในอดีตคำว่า "แบตเตอรี่" หมายถึงเฉพาะอุปกรณ์ที่ประกอบด้วยเซลล์หลายเซลล์ แต่การใช้งานได้มีการพัฒนาให้รวมถึงอุปกรณ์ที่ประกอบด้วยเซลล์เพียงเซลล์เดียว แบตเตอรี่ปฐมภูมิจะถูกใช้เพียงครั้งเดียวหรือ "ใช้แล้วทิ้ง"; วัสดุที่ใช้ทำขั้วไฟฟ้าจะมีการเปลี่ยนแปลงอย่างถาวรในช่วงปล่อยประจุออก (discharge) ตัวอย่างที่พบบ่อยก็คือ แบตเตอรี่อัลคาไลน์ ที่ใช้สำหรับ ไฟฉาย และอีกหลายอุปกรณ์พกพา แบตเตอรี่ทุติยภูมิ (แบตเตอรี่ประจุใหม่ได้) สามารถดิสชาร์จและชาร์จใหม่ได้หลายครั้ง ในการนี้องค์ประกอบเดิมของขั้วไฟฟ้าสามารถเรียกคืนสภาพเดิมได้โดยกระแสย้อนกลับ ตัวอย่างเช่น แบตเตอรี่ตะกั่วกรด ที่ใช้ในยานพาหนะและแบตเตอรี่ ลิเธียมไอออน ที่ใช้สำหรับอุปกรณ์อิเล็กทรอนิกส์แบบเคลื่อนย้ายได้ แบตเตอรี่มาในหลายรูปทรงและหลายขนาด จากเซลล์ขนาดเล็กที่ให้พลังงานกับ เครื่องช่วยฟัง และนาฬิกาข้อมือ จนถึงแบตเตอรี่แบงค์ที่มีขนาดเท่าห้องที่ให้พลังงานเตรียมพร้อมสำหรับ ชุมสายโทรศัพท์ และ ศูนย์ข้อมูล คอมพิวเตอร์ ตามการคาดการณ์ในปี 2005 อุตสาหกรรมแบตเตอรี่ทั่วโลกสร้างมูลค่า 48 พันล้านดอลาร์สหรัฐในการขายในแต่ละปี ด้วยการเจริญเติบโตประจำปี 6% แบตเตอรี่มีค่า พลังงานเฉพาะ (พลังงานต่อหน่วยมวล) ต่ำกว่ามากเมื่อเทียบกับ เชื้อเพลิง ทั้งหลาย เช่นน้ำมัน แต่ก็สามารถชดเชยได้บ้างโดยประสิทธิภาพที่สูงของมอเตอร์ไฟฟ้าในการผลิตงานด้านกลไกเมื่อเทียบกับเครื่องยนต์สันดาป.

ดู เซลล์ไฟฟ้าเคมีและแบตเตอรี่

เซลล์กัลวานี

right เซลล์กัลวานี หรือ เซลล์วอลตา (Galvanic cell หรือ Voltaic cell) เป็นเซลล์ไฟฟ้าเคมีที่ตั้งชื่อตาม ลุยจิ กัลวานี หรือ อาเลสซานโดร โวลตาตามลำดับ เซลล์นี้จะให้พลังงานไฟฟ้าจากปฏิกิริยารีดอกซ์ที่เกิดขึ้นเองภายในเซลล์ โดยทั่วไปมันจะประกอบด้วยโลหะที่ต่างกันสองชนิดเชื่อมต่อกันด้วยสะพานเกลือ หรือสองครึ่งเซลล์ที่คั่นด้วยเยื่อที่มีรูพรุน นายโวลตาเป็นผู้ประดิษฐ์เซลล์วางซ้อนโวลตาซึ่งเป็นแบตเตอรีไฟฟ้าตัวแรก ในการใช้งานทั่วไป คำว่า "แบตเตอรี" จะใช้กับเซลล์กัลวานีเดี่ยว แต่แบตเตอรีหนึ่งตัวมักประกอบด้วยเซลล์ขนาดเล็กหลายตัว.

ดู เซลล์ไฟฟ้าเคมีและเซลล์กัลวานี

เซลล์เชื้อเพลิง

Toyota FCHV ใช้เซลล์เชื้อเพลิง proton-conducting fuel cell) เซลล์เชื้อเพลิง (fuel cell) เป็นอุปกรณ์ที่เปลี่ยนพลังงานเคมีจากเชื้อเพลิงชนิดหนึ่งให้เป็นกระแสไฟฟ้าผ่านทางปฏิกิริยาเคมีของไอออนของไฮโดรเจนประจุบวกกับอ๊อกซิเจนหรือตัวทำอ๊อกซิเดชันอื่น เซลล์เชื้อเพลิงแตกต่างจากแบตเตอรี่ที่ว่ามันต้องการแหล่งจ่ายเชื้อเพลิงและอ๊อกซิเจนหรืออากาศอย่างต่อเนื่องเพื่อความยั่งยืนของปฏิกิริยาเคมี ในขณะที่ในแบตเตอรี่สารเคมีภายในจะทำปฏิกิริยาต่อกันเพื่อผลิตแรงเคลื่อนไฟฟ้า (emf) เซลล์เชื้อเพลิงสามารถผลิตไฟฟ้าได้อย่างต่อเนื่องนานเท่าที่เชื้อเพลิงและอ๊อกซิเจนหรืออากาศยังคงถูกใส่เข้าไป ไม่เหมือนกับแบตเตอรี่ที่จะหยุดจ่ายกระแสไฟฟ้าถ้าสารเคมีหมดอายุการใช้งาน เซลล์เชื้อเพลิงครั้งแรกถูกคิดค้นในปี 1838 เซลล์เชื้อเพลิงเชิงพาณิชย์ครั้งแรกถูกใช้มากว่าหนึ่งศตวรรษต่อมาในโครงการอวกาศของ นาซ่า ที่จะผลิตพลังงานให้กับดาวเทียมและแคปซูลอวกาศ ตั้งแต่นั้นเป็นต้นมาเซลล์เชื้อเพลิงถูกนำมาใช้ในงานที่หลากหลายอื่น ๆ เซลล์เชื้อเพลิงถูกใช้สำหรับพลังงานหลักและพลังงานสำรองเพื่อการพาณิชย์ อุตสาหกรรมและอาคารที่อยู่อาศัยและในพื้นที่ห่างไกลและไม่สามารถเข้าถึงได้ พวกมันยังถูกใช้เพื่อให้พลังงานกับยานพาหนะเซลล์เชื้อเพลิง รวมทั้งรถยก, รถยนต์, รถโดยสาร, เรือ, รถจักรยานยนต์และเรือดำน้ำ เซลล์เชื้อเพลิงมีอยู่หลายชนิด ทุกชนิดประกอบด้วยแอโนด แคโทดและอิเล็กโทรไลต์ อิเล็กโทรไลต์จะยอมให้ไอออนไฮโดรเจนประจุบวก (หรือโปรตอน) สามารถเคลื่อนที่ได้จากแอโนดไปแคโทดของเซลล์เชื้อเพลิง แอโนดและแคโทดประกอบด้วยตัวเร่งปฏิกิริยาที่ทำให้เชื้อเพลิงเกิดปฏิกิริยาออกซิเดชั่นที่สร้างไอออนไฮโดรเจนประจุบวกและอิเล็กตรอน ไอออนไฮโดรเจนจะถูกดึงผ่านอิเล็กโทรไลต์หลังจากการเกิดปฏิกิริยาและเคลื่อนที่ไปยังแคโทด ในขณะเดียวกันอิเล็กตรอนที่เหลือจากอะตอมของไฮโดรเจนจะถูกดึงจากแอโนดไปยังแคโทดผ่านวงจรภายนอก ทำให้เกิดกระแสตรง ที่แคโทดไอออนไฮโดรเจน อิเล็กตรอนและออกซิเจนทำปฏิกิริยากันก่อตัวเป็นน้ำ เนื่องจากความแตกต่างหลักระหว่างเซลล์เชื้อเพลิงในแต่ละประเภทคืออิเล็กโทรไลต์ เซลล์เชื้อเพลิงจึงถูกแยกประเภทตามชนิดของอิเล็กโทรไลต์ที่พวกมันใช้ และแยกตามระยะเวลาเริ่มต้นตั้งแต่ 1 วินาทีสำหรับเซลล์เชื้อเพลิงเยื่อหุ้มแลกเปลี่ยนโปรตอน (solid oxide fuel cell (SOFC)) เซลล์เชื้อเพลิงเดี่ยว ๆ จะผลิตกระแสไฟฟ้าที่มีแรงดันขนาดค่อนข้างเล็ก ประมาณ 0.7 โวลต์ ดังนั้นเซลล์จึงต้องวาง "ซ้อน" กัน หรือถูกวางเรียงกันเป็นแถว เพื่อที่จะสร้างแรงดันเพียงพอที่จะตอบสนองความต้องการของการใช้งาน นอกเหนือไปจากกระแสไฟฟ้า เซลล์เชื้อเพลิงยังผลิตน้ำ ความร้อนและ(ขึ้นอยู่กับแหล่งเชื้อเพลิง)ปริมาณขนาดเล็กมากของก๊าซไนโตรเจนไดออกไซด์ และก๊าซอื่นๆ ประสิทธิภาพการใช้พลังงานของเซลล์เชื้อเพลิงโดยทั่วไปจะอยู่ระหว่าง 40-60% หรือสูงขึ้นถึง 85% ในการผลิตแบบความร้อนร่วม (cogeneration) ถ้าความร้อนที่เหลือทิ้งถูกนำกลับมาใช้งานอีก ตลาดของเซลล์เชื้อเพลิงกำลังเจริญเติบโตและบริษัท Pike Research ได้ประมาณการว่าตลาดเซลล์เชื้อเพลิงอยู่กับที่จะสูงถึง 50 GW ในปี 2020 สารตั้งต้นที่ใช้โดยทั่วไปในเซลล์เชื้อเพลิงได้แก่ ก๊าซไฮโดรเจนที่ด้านแอโนด และก๊าซออกซิเจนที่ด้านแคโทด (เซลล์ไฮโดรเจน) โดยปกติแล้วเมื่อมีสารตั้งต้นไหลเข้าสู่ระบบ สารผลิตภัณฑ์ที่เกิดขึ้นก็จะไหลออกจะระบบไปด้วย ดังนั้นการทำงานของเซลล์เชื้อเพลิงจึงดำเนินต่อไปได้เรื่อยๆ ตราบเท่าที่เราสามารถควบคุมการไหลได้ เซลล์เชื้อเพลิงมักจะถูกมองว่าเป็นตัวเลือกที่ดีสำหรับการใช้พลังงานที่มีประสิทธิภาพสูงและปราศจากมลพิษ เมื่อเปรียบเทียบกับเชื้อเพลิง เช่น มีเทนและก๊าซธรรมชาติ ซึ่งทำให้เกิดคาร์บอนไดออกไซด์ ผลิตภัณฑ์อย่างเดียวที่เกิดจากการทำงานของเซลล์เชื้อเพลิงคือน้ำ อย่างไรก็ตามยังมีความกังวลอยู่ในขั้นตอนการผลิตก๊าซไฮโดรเจนซึ่งใช้พลังงานมาก การผลิตไฮโดรเจนจำเป็นต้องใช้วัตถุดิบที่มีไฮโดรเจน เช่น น้ำ หรือ เชื้อเพลิงอื่นๆ นอกจากนั้นยังต้องใช้ไฟฟ้าซึ่งก็ก็ผลิตมาจากแหล่งพลังงานแบบดั้งเดิม ได้แก่ น้ำมัน ถ่านหิน หรือแม้แต่พลังงานนิวเคลียร์ ในขณะที่พลังงานทางเลือกเช่น ลมและพลังงานแสงอาทิตย์ ก็อาจสามารถใช้ได้ แต่ราคาก็ยังสูงมากในปัจจุบัน ดังนั้นเราจึงยังไม่อาจกล่าวได้ว่าเทคโนโลยีเซลล์เชื้อเพลิงเป็นอิสระจากเชื้อเพลิงซากดึกดำบรรพ์ จนกว่าเราจะสามารถหาวิธีการผลิตไฮโดรเจนปริมาณมากด้วยพลังงานทดแทนหรือพลังงานนิวเคลียร.

ดู เซลล์ไฟฟ้าเคมีและเซลล์เชื้อเพลิง

ดูเพิ่มเติม

เครื่องมือ