โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

อะตอม

ดัชนี อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

224 ความสัมพันธ์: บิกแบงบิกแบงนิวคลีโอซินทีสิสบิสมัทฟองท้องถิ่นพลังงานยึดเหนี่ยวพลังงานศักย์พลาสมา (สถานะของสสาร)พลูโทเนียมพอลแห่งทารันโทพันธะโคเวเลนต์พันธะเคมีกฎสัดส่วนพหุคูณกฎออกเตตกฎของเลขจำนวนเต็มกลศาสตร์ควอนตัมกลูออนกล้องจุลทรรศน์กล้องจุลทรรศน์อิเล็กตรอนชนิดส่องผ่านกล้องจุลทรรศน์แบบส่องกราดในอุโมงค์กะรัตการสร้างภาพด้วยเรโซแนนซ์แม่เหล็กการสลายให้กัมมันตรังสีการสลายให้อนุภาคบีตาการสลายให้อนุภาคแอลฟาการหลอมนิวเคลียสการทดลองของสเติร์น-เกอร์แลคการแบ่งแยกนิวเคลียสการแปรนิวเคลียสการเคลื่อนที่แบบบราวน์กำแพงคูลอมบ์ภาษากรีกมวลสารระหว่างดาวมวลอะตอมมวลนิ่งมหานวดารามาร์กาเร็ต ท็อดด์ระบบสุริยะระดับพลังงานระดับพลังงานแฟร์มีรัศมีอะตอมรัศมีอะตอมของธาตุ (หน้าข้อมูล)รังสีแกมมารังสีแคโทดรางวัลโนเบลสาขาเคมีลัทธินิยมคอร์พัสคิวลาร์ลิเทียมลูซิปปัสศาสนาเชนศูนย์กลางมวลศูนย์การบินอวกาศก็อดเดิร์ด...ศูนย์สัมบูรณ์สภาวะสมดุลอุทกสถิตสมบัติทางเคมีสสารสสารมืดสารประกอบสารประกอบอินทรีย์สปิน (ฟิสิกส์)สนามแม่เหล็กสนามไฟฟ้าสเปกตรัมสเปกตรัมแม่เหล็กไฟฟ้าสเปกโทรสโกปีหมู่เกาะแห่งเสถียรภาพหลักการกีดกันของเพาลีหลักความไม่แน่นอนหลุมพลังงานหลุยส์ เดอ เบรยหน่วยมวลอะตอมออกซิเจนออกไซด์ออร์บิทัลเชิงอะตอมอะตอมไฮโดรเจนอัลเบิร์ต ไอน์สไตน์อังสตรอมอัตราเร็วของแสงอันตรกิริยาอย่างอ่อนอันตรกิริยาอย่างเข้มอันตรกิริยาของสปินกับออร์บิทอาร์กอนอิเล็กตรอนอิเล็กตรอนโวลต์อุณหภูมิอูนไบเฮกเซียมองค์การวิจัยนิวเคลียร์ยุโรปอนุภาคบีตาอนุภาคมูลฐานอ็องตวน ลาวัวซีเยฮันส์ ไกเกอร์ฮีเลียมฌ็อง แปแร็งจอห์น ดาลตันจุด (เรขาคณิต)ธาตุธาตุหลักธาตุหลังยูเรเนียมทริเทียมทรงรีทฤษฎีกรุปทฤษฎีอะตอมทฤษฎีคอพัสคิวลาร์ของแสงทวิภาคของคลื่น–อนุภาคทองคำทางช้างเผือกของแข็งของเหลวของเหลวผลควบแน่นโพส–ไอน์สไตน์ดมีตรี เมนเดเลเยฟดาวฤกษ์ดิมอคริตัสดิวเทอเรียมดูดความร้อนดีบุกคริสต์ศักราชครึ่งชีวิตคลื่นนิ่งความสมมูลมวล–พลังงานความถี่ความดันควาร์กคายความร้อนคาร์บอนไดออกไซด์ค่าคงตัวของพลังค์ตะกั่วตารางธาตุซิลิเกตซีนอนซีเซียมปฏิสสารปรอทประวัติศาสตร์อินเดียประจุไฟฟ้าปริซึมนาซานิกเกิลนิวทริโนนิวคลีออนนิวตรอนนิวไคลด์นิวไคลด์กัมมันตรังสีนิวเคลียสนิวเคลียสของอะตอมนีลส์ บอร์นีออนน้ำแบบจำลองชั้นพลังงานของนิวเคลียสแบบจำลองมาตรฐานแบบจำลองรัทเทอร์ฟอร์ดแบบจำลองอะตอมของทอมสันแบริโอเจเนซิสแบเรียมแกรไฟต์แก๊สแก๊สมีตระกูลแมสสเปกโตรเมทรีแรงนิวเคลียร์แรงแม่เหล็กไฟฟ้าแวร์เนอร์ ไฮเซินแบร์กแสงแอร์วิน ชเรอดิงเงอร์แอนติไฮโดรเจนแขนงดาวยักษ์อะซิมโทติกโบรอนโบซอนโฟตอนโพรมีเทียมโพซิตรอนโมลโมเมนตัมโมเมนตัมเชิงมุมโมเลกุลโรเบิร์ต บราวน์ (นักพฤกษศาสตร์)โรเบิร์ต บอยล์โลกโลหะโอกาเนสซอนโครงสร้างผลึกโครงแบบอิเล็กตรอนโซเดียมคลอไรด์โปรตอนไฟฟ้าสถิตไวเศษิกะไอออนไอแซก นิวตันไอโซโทปไอโซโทปของไฮโดรเจนไอโซโทปเสถียรไฮโดรเจนไนโตรเจนเบริลเลียมเฟรเดอริก ซอดดีเฟอร์มิออนเพชรเกลือเกจโบซอนเมฆโมเลกุลเมตรเลขมวลเลขอะตอมเลขอาโวกาโดรเลขนิวตรอนเลขโคออร์ดิเนชันเลปตอนเลเซอร์เส้นสเปกตรัมเส้นผ่านศูนย์กลางเหล็กเอกภพที่สังเกตได้เออร์เนสต์ มาร์สเดนเออร์เนสต์ รัทเทอร์ฟอร์ดเจ. เจ. ทอมสันเจนีวาเทคนีเชียมเคมีเครื่องตรวจจับอนุภาคเครื่องเร่งอนุภาคเปลือกอิเล็กตรอนเนบิวลาเนปทูเนียมเนเจอร์ (วารสาร)Inductively coupled plasmaR-processS-processThe Sceptical Chymist ขยายดัชนี (174 มากกว่า) »

บิกแบง

ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา บิกแบง (Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี..

ใหม่!!: อะตอมและบิกแบง · ดูเพิ่มเติม »

บิกแบงนิวคลีโอซินทีสิส

ในการศึกษาจักรวาลวิทยาเชิงกายภาพ บิกแบงนิวคลีโอซินทีสิส (Big Bang nucleosynthesis; BBN) หรือ นิวคลีโอซินทีสิสเริ่มแรก เป็นการอธิบายถึงกระบวนการกำเนิดนิวเคลียสต่างๆ นอกเหนือไปจากนิวเคลียสของ H-1 (เช่น ไอโซโทปแสงของไฮโดรเจน ซึ่งนิวเคลียสประกอบด้วยโปรตอนเดี่ยว) ระหว่างช่วงยุคต้นของการเกิดเอกภพ นิวคลีโอซินทีสิสแรกเริ่มนี้เกิดขึ้นในเวลาไม่กี่นาทีหลังจากเกิดบิกแบง เชื่อกันว่าเป็นต้นเหตุของการก่อตัวของไอโซโทปธาตุหนักของไฮโดรเจน ที่รู้จักกันในชื่อ ดิวเทอเรียม (H-2 หรือ D), ฮีเลียมไอโซโทป He-3 และ He-4, และ ลิเทียมไอโซโทป Li-6 และ Li-7 นอกจากนิวเคลียสที่เสถียรเหล่านี้ ยังมีพวกที่ไม่เสถียรอยู่ด้วย หรือพวกไอโซโทปกัมมันตรังสี (Radionuclide) เช่น ทริเทียม H-3, เบอริลเลียม Be-7 และ เบอริลเลียม Be-8 ไอโซโทปที่ไม่เสถียรเหล่านี้อาจเสื่อมสลายไปหรือรวมตัวเข้ากับนิวเคลียสอื่นๆ และกลายเป็นหนึ่งในบรรดาไอโซโทปเสถียร.

ใหม่!!: อะตอมและบิกแบงนิวคลีโอซินทีสิส · ดูเพิ่มเติม »

บิสมัท

มัท (Bismuth) เป็นธาตุที่มีเลขอะตอม 83 และสัญลักษณ์คือ Bi บิสมัทเป็นธาตุโลหะหนัก เป็นผลึกสีขาวอมชมพู มีสมบัติทางเคมีคล้ายสารหนูและพลวง ใช้ประโยชน์ทางการแพทย์ เภสัชกรรม และเครื่องสำอาง เป็นส่วนผสมของฟิวส์ มีผู้ค้นพบ เมื่อปี..

ใหม่!!: อะตอมและบิสมัท · ดูเพิ่มเติม »

ฟองท้องถิ่น

วมูร์ซิม ดวงอาทิตย์ และ ดาวแอนทาเรส) ฟองท้องถิ่น (Local Bubble) คือห้วงอวกาศที่ค่อนข้างโปร่งรูปร่างคล้ายนาฬิกาทรายอยู่ในสสารระหว่างดาว กินเนื้อที่กว้างประมาณ 300 ปีแสง และมีความหนาแน่นของไฮโดรเจนไม่มีสี 0.05 อะตอม/ซม.

ใหม่!!: อะตอมและฟองท้องถิ่น · ดูเพิ่มเติม »

พลังงานยึดเหนี่ยว

ลังงานยึดเหนี่ยว (Binding energy) คือพลังงานที่ต้องใช้เพื่อแยกระบบสมบูรณ์หนึ่งให้เป็นชิ้นส่วนออกจากกัน ระบบที่ยึดเหนี่ยวเข้าด้วยกันโดยทั่วไปมีพลังงานศักย์ที่ต่ำกว่าผลรวมของชิ้นส่วนที่ประกอบมันขึ้นมา นี่คือพลังงานที่จะรักษาให้ระบบติดอยู่ด้วยกัน มักจะหมายความว่าพลังงานจะถูกปล่อยออกไปในการสร้างสภาวะการยึดเหนี่ยว คำจำกัดความนี้จะสอดคล้องกับพลังงานยึดเหนี่ยวเชิงบวก.

ใหม่!!: อะตอมและพลังงานยึดเหนี่ยว · ดูเพิ่มเติม »

พลังงานศักย์

ในฟิสิกส์ พลังงานศักย์ (Potential energy) คือ พลังงานที่มีในวัตถุเนื่องด้วยตำแหน่งในสนามแรง หรือมีในระบบนั้นเนื่องด้วยการกำหนดค่าในส่วนนั้น ชนิดของพลังงานศักย์ที่พบได้บ่อยคือ พลังงานศักย์โน้มถ่วงของวัตถุที่ขึ้นอยู่กับมวลและตำแหน่งแนวดิ่ง พลังงานศักย์ยืดหยุ่น ของสปริงที่ยืดหยุ่น และพลังงานศักย์ไฟฟ้าของประจุในสนามไฟฟ้า หน่วยเอสไอของพลังงานนี้คือ จูล (สัญลักษณ์คือ J).

ใหม่!!: อะตอมและพลังงานศักย์ · ดูเพิ่มเติม »

พลาสมา (สถานะของสสาร)

หลอดไฟพลาสมา แสดงปรากฏการณ์ที่ซับซ้อนบางประการ รวมทั้งปรากฏการณ์ "ฟิลาเมนเตชั่น" (filamentation) พลาสมา ในทางฟิสิกส์และเคมี คือ แก๊สที่มีสภาพเป็นไอออน และมักจะถือเป็นสถานะหนึ่งของสสาร การมีสภาพเป็นไอออนดังกล่าวนี้ หมายความว่า จะมีอิเล็กตรอนอย่างน้อย 1 ตัว ถูกดึงออกจากโมเลกุล ประจุไฟฟ้าอิสระทำให้พลาสมามีสภาพการนำไฟฟ้าเกิดขึ้น สถานะที่ 4 ของสสารนี้ มีการเอ่ยถึงครั้งแรก โดยเซอร์ วิลเลียม ครูกส์ (Sir William Crookes) เมื่อ ค.ศ. 1879 และในปี ค.ศ. 1928 นั้น เออร์วิง แลงเมียร์ (Irving Langmuir) คิดคำว่าพลาสมา (plasma) ขึ้นมาแทนสถานะของสสารนี้เนื่องจากเขานึกถึงพลาสมาของเลือด พลาสมาจัดได้ว่าเป็นสถานะที่ 4 ของสสาร เนื่องจากมีลักษณะเฉพาะที่แตกต่างไปจากสถานะอื่นอย่างชัดเจน พลาสมาประกอบด้วยอนุภาคที่มีประจุทั้งประจุบวกและลบ ในสัดส่วนที่ทำให้ประจุสุทธิเป็นศูนย์ การอยู่รวมกันของอนุภาคเหล่านี้เป็นแบบประหนึ่งเป็นกลาง (quasineutral) ซึ่งหมายความว่าอิเล็กตรอนและไอออนในบริเวณนั้น โดยรวมแล้วมีจำนวนเท่า ๆ กัน และแสดงพฤติกรรมร่วม (collective behavior) พฤติกรรมร่วมนี้หมายถึง การเคลื่อนที่ของอนุภาคในพลาสมา ไม่เพียงแต่จะขึ้นอยู่กับเงื่อนไขในบริเวณนั้นๆ เท่านั้น แต่เป็นผลโดยรวมจากพลาสมาส่วนใหญ่ มากกว่าจะเป็นผลมาจากการชนกันของอนุภาคที่อยู่ใกล้เคียงกัน เนื่องจากอนุภาคในพลาสมาที่สถานะสมดุล จะมีการสั่นด้วยความถี่ที่สูงกว่าความถี่ในการชนกันของอนุภาค 2 ตัวที่อยู่ใกล้กัน ดังนั้นอาจกล่าวได้ว่าพฤติกรรมร่วมนี้เป็นพฤติกรรมที่กลุ่มพลาสมาแสดงออกมาร่วมกัน พลาสมาสามารถเกิดได้โดย การให้สนามไฟฟ้าปริมาณมากแก่ก๊าซที่เป็นกลาง เมื่อพลังงานส่งผ่านไปยังอิเล็กตรอนอิสระมากพอ จะทำให้อิเล็กตรอนอิสระชนกับอะตอม และทำให้อิเล็กตรอนหลุดออกจากอะตอม กระบวนการนี้เรียกว่ากระบวนการแตกตัวเป็นไอออน (ionization) ซึ่งจะเกิดขึ้นอย่างรวดเร็ว ทำให้จำนวนอิเล็กตรอนที่หลุดออกมานี้เพิ่มจำนวนขึ้นอย่างมากซึ่งจะทำให้ก๊าซแตกตัวและกลายเป็นพลาสมาในที่สุด พลาสมามีความแตกต่างจากสถานะของแข็ง สถานะของเหลว และสถานะก๊าซ โดยมีเงื่อนไข 3 ประการ ในเรื่องดังต่อไปนี้คือ ความยาวคลื่นเดอบาย จำนวนอนุภาค และความถี่พลาสมา ซึ่งทำให้พลาสมามีความจำเพาะเจาะจงที่แตกต่างจากสถานะอื่นออกไป หมวดหมู่:ฟิสิกส์พลาสมา หมวดหมู่:ฟิสิกส์ หมวดหมู่:เคมี หมวดหมู่:สถานะของสสาร หมวดหมู่:หลักการสำคัญของฟิสิกส์.

ใหม่!!: อะตอมและพลาสมา (สถานะของสสาร) · ดูเพิ่มเติม »

พลูโทเนียม

ลูโทเนียม (Plutonium) เป็นธาตุที่มีเลขอะตอม 94 และสัญลักษณ์ คือ Pu เป็นธาตุโลหะกัมมันตรังสี เป็นโลหะแอกทิไนด์สีขาวเงิน และจะมัวลงเมื่อสัมผัสอากาศซึ่งเกิดจากการรวมตัวกับออกซิเจน โดยปกติ พลูโทเนียมมี 6 ไอโซโทป และ 4 สถานะออกซิเดชัน สามารถเกิดปฏิกิริยาทางเคมีกับคาร์บอน ฮาโลเจน ไนโตรเจน และซิลิกอน เมื่อสัมผัสอากาศชื้นจะสร้างสารประกอบออกไซด์และไฮไดรด์มากกว่า 70 % ของปริมาตรซึ่งจะแตกออกเป็นผงแป้งที่สามารถติดไฟได้เอง พลูโทเนียมมีพิษที่เกิดจากการแผ่รังสีที่จะสะสมที่ไขกระดูก นอกจากนี้ยังมีคุณสมบัติอื่น ๆ ที่ทำให้การจัดการพลูโทเนียมเป็นเรื่องที่อันตรายมาก ไอโซโทปที่สำคัญของพลูโทเนียม คือ พลูโทเนียม-239 ซึ่งมีครึ่งชีวิต 24,100 ปี พลูโทเนียม-239 และ 241 เป็นวัสดุฟิสไซล์ ซึ่งหมายความว่านิวเคลียสของอะตอมสามารถแตกตัว โดยการชนของนิวตรอนความร้อนเคลื่อนที่ช้า ซึ่งจะปลดปล่อยพลังงาน รังสีแกมมา และนิวตรอนจำนวนมาก ด้วยเหตุนี้ จึงสามารถเกิดปฏิกิริยาลูกโซ่นิวเคลียร์ได้ นำไปสู่การประยุกต์สร้างอาวุธนิวเคลียร์และเครื่องปฏิกรณ์นิวเคลียร์ ไอโซโทปที่เสถียรที่สุด คือ พลูโทเนียม-244 ซึ่งมีครึ่งชีวิตประมาณ 80 ล้านปี นานพอที่จะสามารถพบได้ในธรรมชาติ พลูโทเนียม-238 มีครึ่งชีวิต 88 ปี และปลดปล่อยอนุภาคแอลฟาออกมา มันเป็นแหล่งความร้อนของเครื่องผลิตไฟฟ้าด้วยความร้อนจากไอโซโทปรังสี ซึ่งใช้ในการให้พลังงานในยานอวกาศ พลูโทเนียม-240 มีอัตราของการแตกตัวของนิวเคลียสของอะตอมด้วยตัวเองสูง เป็นการเพิ่มอัตรานิวตรอนพื้นฐานของตัวอย่างที่มีไอโซโทปนี้ประกอบอยู่ด้วย การมีอยู่ของ Pu-240 เป็นข้อจำกัดสมรรถภาพของพลูโทเนียมที่ใช้ในอาวุธหรือแหล่งพลังงานและเป็นตัวกำหนดเกรดของพลูโทเนียม: อาวุธ (19%) ธาตุลำดับที่ 94 สังเคราะห์ได้เป็นครั้งแรกในปี..

ใหม่!!: อะตอมและพลูโทเนียม · ดูเพิ่มเติม »

พอลแห่งทารันโท

พอลแห่งทารันโท (Paul of Taranto) เป็นนักเขียนและนักเล่นแร่แปรธาตุฟรันซิสกันแห่งคริสต์ศตวรรษที่ 13 อยู่ทางตอนใต้ของอิตาลี ผลงานที่น่าจะเป็นที่รู้จักมากที่สุดคือ Theorica et practica ซึ่งกล่าวถึงหลักการของการเล่นแร่แปรธาตุโดยพยายามอธิบายในเชิงทฤษฎีและปฏิบัติอย่างมีเหตุมีผล นอกจากนี้ยังมีหลักฐานบ่งชี้ว่า พอลน่าจะเป็นผู้เขียนตำราเล่นแร่แปรธาตุซึ่งเป็นที่รู้จักอย่างกว้างขวาง คือ Summa perfectionis ที่เชื่อกันโดยทั่วไปว่าเป็นของกีเบอร์ (หรือ กีเบอร์เทียม) หมวดหมู่:นักเล่นแร่แปรธาตุ.

ใหม่!!: อะตอมและพอลแห่งทารันโท · ดูเพิ่มเติม »

พันธะโคเวเลนต์

ในโมเลกุลของฟลูออรีน อะตอมของธาตุฟลูออรีนสองอะตอมสร้างพันธะโคเวเลนต์กัน พันธะโคเวเลนต์ (Covalent bond) คือพันธะเคมี ภายในโมเลกุลลักษณะหนึ่ง พันธะโคเวเลนต์เกิดจากอะตอมสองอะตอมใช้เวเลนซ์อิเล็กตรอนหนึ่งคู่หรือมากกว่าร่วมกัน ทำให้เกิดแรงดึงดูดที่รวมอะตอมเป็นโมเลกุลขึ้น อะตอมมักสร้างพันธะโคเวเลนต์เพื่อเติมวงโคจรอิเล็กตรอนรอบนอกสุดให้เต็ม ดังนั้น อะตอมที่สร้างพันธะโคเวเลนต์จึงมักมีเวเลนซ์อิเล็กตรอนอยู่มาก เช่น ธาตุหมู่ VI และหมู่ VII เป็นต้น พันธะโคเวเลนต์แข็งแรงกว่าพันธะไฮโดรเจนและมีความแข็งแรงพอ ๆ กับพันธะไอออนิก พันธะโคเวเลนต์มักเกิดขึ้นระหว่างอะตอมที่มีค่าอิเล็กโตรเนกาทิวิตีใกล้เคียงกัน ธาตุอโลหะมีแนวโน้มที่จะสร้างพันธะโคเวเลนต์มากกว่าธาตุโลหะซึ่งมักสร้างพันธะโลหะ เนื่องจากอิเล็กตรอนของธาตุโลหะสามารถเคลื่อนอย่างอิสระ ในทางกลับกัน อิเล็กตรอนของธาตุอโลหะไม่สามารถเคลื่อนที่ได้อย่างอิสระนัก การใช้อิเล็กตรอนร่วมกันจึงเป็นทางเลือกเดียวในการสร้างพันธะกับธาตุที่มีสมบัติคล้าย ๆ กัน อย่างไรก็ดี พันธะโคเวเลนต์ที่มีโลหะนั้นมีความสำคัญอย่างยิ่งในการเร่งปฏิกิริยา ตัวอย่างเช่น พันธะโคเวเลนต์ระหว่างสารอินทรีย์กับโลหะเป็นเครื่องมือสำคัญของกระบวนการสร้างพอลิเมอร์หลายๆ กระบวนการ เป็นต้น(cr.ดร.วัชราฃรณ์ ลาบา).

ใหม่!!: อะตอมและพันธะโคเวเลนต์ · ดูเพิ่มเติม »

พันธะเคมี

ันธะเคมี (อังกฤษ: Chemical Bond) คือ แรงยึดเหนี่ยวที่เกิดขึ้นระหว่างอะตอมหรือกลุ่มของอะตอมเพื่อเกิดเป็นกลุ่มที่เสถียรและเป็นอิสระในระดับโมเลกุล ลักษณะเฉพาะที่สำคัญของพันธะเคมีในโมเลกุลคือจะปรากฏในบริเวณระหว่างนิวเคลียสของอะตอม ทำให้มีการเปลี่ยนแปลงพลังงานจนอยู่ในช่วงที่เหมาะสม ซึ่งอาจจะเกิดเป็นพันธะโคเวเลนต์ พันธะไอออนิก หรือพันธะโลหะ ได้ อนึ่ง การศึกษาเรื่องพันธะเคมีทำให้สามารถเข้าใจและทำนายสมบัติทางกายภาพและทางเคมีของสารได้.

ใหม่!!: อะตอมและพันธะเคมี · ดูเพิ่มเติม »

กฎสัดส่วนพหุคูณ

ตัวอย่าง กฎสัดส่วนพหุคูณ จากสารประกอบออกไซด์ของไนโตรเจน กำหนดให้ไนโตรเจนมีปริมาณ 1 กรัมในทุกสารประกอบ ในทางเคมี กฎสัดส่วนพหุคูณ (law of multiple proportions) เป็นกฎพื้นฐานของปริมาณสารสัมพันธ์ บางครั้งเรียกว่ากฎของดาลตัน ตามชื่อของจอห์น ดาลตันผู้ตั้งกฎดังกล่าว กฎสัดส่วนพหุคูณกล่าวว่า ถ้าธาตุสองชนิดสามารถรวมกันได้เป็นสารประกอบมากกว่าหนึ่งอย่าง กำหนดให้มวลของธาตุชนิดแรกคงที่ อัตราส่วนระหว่างมวลของธาตุชนิดที่สองในสารประกอบแต่ละชนิดที่ว่านั้นจะเป็นเลขจำนวนเต็มน้อยๆ เช่น สารประกอบออกไซด์ของคาร์บอน สองชนิด CO และ CO2 กำหนดให้คาร์บอนมีปริมาณ 100 กรัม ในสารประกอบทั้งสอง ในคาร์บอนมอนอกไซด์ (CO) มีออกซิเจน 133 กรัม ส่วนในคาร์บอนไดออกไซด์ (CO2) มีออกซิเจน 266 กรัม อัตราส่วนระหว่างมวลออกซิเจนในสารประกอบทั้งสอง คือ 266:133 ≈ 2:1 เป็นสัดส่วนระหว่างจำนวนเต็มน้อยๆ ตามก.

ใหม่!!: อะตอมและกฎสัดส่วนพหุคูณ · ดูเพิ่มเติม »

กฎออกเตต

ันธะในคาร์บอนไดออกไซด์ (CO2): ที่ล้อมรอบด้วยอิเล็กตรอน 8, ตามกฎออกเตต CO2 จัดเป็นโมเลกุลที่เสถียร กฎออกเตตคือกฎที่อะตอมพยายามที่จะทำให้เวเลนซ์อิเล็กตรอนของตัวมันเองให้ครบแปดซึ่งเป็นสภาพที่เสถียรที่สุด ยกเว้น.

ใหม่!!: อะตอมและกฎออกเตต · ดูเพิ่มเติม »

กฎของเลขจำนวนเต็ม

กฎของเลขจำนวนเต็ม กล่าวว่า มวลของธาตุจะเท่ากับเลขจำนวนเต็มคูณกับมวลของอะตอมไฮโดรเจน กฎนี้สร้างขึ้นจากสมมุติฐานของเพราท์ในปี..

ใหม่!!: อะตอมและกฎของเลขจำนวนเต็ม · ดูเพิ่มเติม »

กลศาสตร์ควอนตัม

'''ฟังชันคลื่น''' (Wavefunction) ของอิเล็กตรอนในอะตอมของไฮโดรเจนที่ทรงพลังงานกำหนดแน่ (ที่เพิ่มลงล่าง ''n''.

ใหม่!!: อะตอมและกลศาสตร์ควอนตัม · ดูเพิ่มเติม »

กลูออน

กลูออน (Gluon) เป็นอนุภาคมูลฐานที่ทำหน้าที่เป็นอนุภาคแลกเปลี่ยน (หรือเกจโบซอน) ของอันตรกิริยาอย่างเข้มระหว่างควาร์ก คล้ายกับการแลกเปลี่ยนโฟตอนในแรงแม่เหล็กไฟฟ้าระหว่างอนุภาคที่มีประจุ 2 ตัว เนื่องจากควาร์กนั้นประกอบกับขึ้นเป็นแบริออน และมีอันตรกิริยาอย่างเข้มเกิดขึ้นระหว่างแบริออนเหล่านั้น จึงอาจกล่าวได้ว่า แรงสี (color force) เป็นแหล่งกำเนิดของอันตรกิริยาอย่างเข้ม หรืออาจกล่าวว่าอันตรกิริยาอย่างเข้มเป็นเหมือนกับแรงสี ที่ครอบคลุมอนุภาคอื่นๆ มากกว่าแบริออน ตัวอย่างเช่น เมื่อโปรตอนและนิวตรอนดึงดูดกันและกันในนิวเคลียส เป็นต้น กล่าวในเชิงเทคนิค กลูออนก็คือเกจโบซอนแบบเวกเตอร์ที่เป็นตัวกลางของอันตรกิริยาอย่างเข้มของควาร์กในควอนตัมโครโมไดนามิกส์ (QCD) ซึ่งแตกต่างกับโฟตอนที่เป็นกลางทางไฟฟ้าของควอนตัมอิเล็กโตรไดนามิกส์ (QED) ตัวกลูออนเองนั้นมีประจุสี (color charge) ดังนั้นจึงมีส่วนอยู่ในอันตรกิริยาอย่างเข้มเพื่อทำหน้าที่เป็นตัวกลาง ทำให้การวิเคราะห์ QCD ทำได้ยากกว่า QED เป็นอย่างมาก.

ใหม่!!: อะตอมและกลูออน · ดูเพิ่มเติม »

กล้องจุลทรรศน์

กล้องจุลทรรศน์ใช้เลนส์ประกอบ สร้างโดยจอห์น คัฟฟ์ (John Cuff) ค.ศ. 1750 กล้องจุลทรรศน์ เป็นอุปกรณ์สำหรับมองดูวัตถุที่มีขนาดเล็กเกินกว่ามองเห็นด้วยตาเปล่าเช่น วัตถุที่อยู่ไกล วัตถุที่อยู่สูง เป็นต้น ศาสตร์ที่มุ่งสำรวจวัตถุขนาดเล็กโดยใช้เครื่องมือดังกล่าวนี้ เรียกว่า จุลทรรศนศาสตร์ (microscopy).

ใหม่!!: อะตอมและกล้องจุลทรรศน์ · ดูเพิ่มเติม »

กล้องจุลทรรศน์อิเล็กตรอนชนิดส่องผ่าน

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน ปีค.ศ.1960 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) (Transmission Electron microscope) ประดิษฐ์ขึ้นครั้งแรกเมื่อปี พ.ศ. 2474 โดยเอิร์นท์ รุสกา และคณะ โดยวัตถุที่นำมาส่องต้องมีขนาดเล็ก และเฉือนให้บางมาก ๆ ประมาณ 60 ถึง 90 ไมโครเมตร เหมาะสำหรับการศึกษาโครงสร้างภายในของเซลล์ ภาพที่ปรากฏบนจอเรืองแสงเป็นภาพ 2 มิติ มีกำลังขยายสูงมากถึง 500,000 ถึง 1,000,000 เท่า นอกจากจะใช้ศึกษาสิ่งมีชีวิต ยังใช้สำหรับส่องรูปผลึกของสารต่าง ๆ ในการวิเคราะห์ทางเคมีได้.

ใหม่!!: อะตอมและกล้องจุลทรรศน์อิเล็กตรอนชนิดส่องผ่าน · ดูเพิ่มเติม »

กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์

(100) surface An STM image of single-walled carbon nanotube กล้องจุลทรรศน์แบบส่องกราดทะลุผ่าน (scanning tunneling microscope; STM) คือเครื่องมือสำหรับการจับภาพพื้นผิวในระดับของอะตอม คิดค้นขึ้นโดย Gerd Binnig และ Heinrich Rohrer (จากไอบีเอ็ม ซูริก) ในปี..

ใหม่!!: อะตอมและกล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ · ดูเพิ่มเติม »

กะรัต

กะรัต (carat) เป็นหน่วยในการวัดระดับของน้ำหนักอัญมณีต่าง ๆ อาทิ เพชร ทับทิม บุษราคัม เพทาย โกเมน เป็นต้น ซึ่งเป็นหน่วยการวัดที่แพร่หลายไปทั่วโลก และถูกกำหนดให้ใช้เป็นหน่วยในการชั่งตวงวัดอัญมณีสากลที่ใช้กันทั่วโลก น้ำหนักกะรัต เป็นหน่วยน้ำหนักมาตรฐานในการวัดน้ำหนักของอัญมณี ซึ่งจะเทียบกับในระบบเมตริกได้คือ 1 กะรัต จะมีค่าเท่ากับ 0.2 กรัม หรือหากวัดในระดับความบริสุทธิ์ของทองคำ ทองคำ 24 กะรัตจะมีค่าความบริสุทธิ์ 99.99%.

ใหม่!!: อะตอมและกะรัต · ดูเพิ่มเติม »

การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก

รื่องตรวจ MRI ภาพจากการตรวจด้วย MRI แสดงการเต้นของหัวใจ การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก หรือ การตรวจเอ็กซ์เรย์ด้วยคลื่นแม่เหล็กไฟฟ้า หรือ เอ็มอาร์ไอ หรือ nuclear magnetic resonance imaging (NMRI), or magnetic resonance tomography (MRT) คือเทคนิคการสร้างภาพทางการแพทย์ที่ใช้ในรังสีวิทยาเพื่อการตรวจทางกายวิภาคและสรีรวิทยาของร่างกายทั้งในด้านสุขภาพและโรคต่างๆโดยเครื่องตรวจที่ใช้สนามแม่เหล็กและคลื่นวิทยุความเข้มสูงในการสร้างภาพเหมือนจริงของอวัยวะภายในต่างๆของร่างกาย โดยเฉพาะ สมอง หัวใจ กระดูก-กล้ามเนื้อ และส่วนที่เป็นมะเร็ง ด้วยคอมพิวเตอร์รายละเอียดและความคมชัดสูง เป็นภาพตามระนาบได้ทั้งแนวขวาง แนวยาวและแนวเฉียง เป็น 3 มิติ ภาพที่ได้จึงจะชัดเจนกว่า การถ่ายภาพรังสีส่วนตัดอาศัยคอมพิวเตอร์ หรือ CT Scan ทำให้แพทย์สามารถตรวจวินิจฉัยความผิดปกติในร่างกายได้อย่างแม่นยำ การตรวจทางการแพทย์ด้วยเครื่องมือชนิดนี้ไม่ก่อให้เกิดความเจ็บปวดใดๆ แก่ร่างกาย และไม่มีอันตรายจากรังสีตกค้าง.

ใหม่!!: อะตอมและการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: อะตอมและการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การสลายให้อนุภาคบีตา

ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.

ใหม่!!: อะตอมและการสลายให้อนุภาคบีตา · ดูเพิ่มเติม »

การสลายให้อนุภาคแอลฟา

การสลายให้อนุภาคแอลฟาการสลายให้อนุภาคแอลฟา (Alpha decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีซึ่งนิวเคลียสอะตอมจะปลดปล่อยอนุภาคแอลฟาออกมา ดังนั้นจึงเปลี่ยนสภาพ (หรือ 'สลาย') อะตอมโดยสูญเสียเลขมวล 4 และเลขอะตอม 2 เช่น: U \rightarrow Th + He^ Suchocki, John.

ใหม่!!: อะตอมและการสลายให้อนุภาคแอลฟา · ดูเพิ่มเติม »

การหลอมนิวเคลียส

้นโค้งพลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที การหลอมนิวเคลียส (nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่​​ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike) การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้.

ใหม่!!: อะตอมและการหลอมนิวเคลียส · ดูเพิ่มเติม »

การทดลองของสเติร์น-เกอร์แลค

การทดลองของสเติร์น-เกอร์แลค ตั้งชื่อตาม ออตโต สเติร์น และ วอลเทอร์ เกอร์แลค เป็นการทดลองในปี..

ใหม่!!: อะตอมและการทดลองของสเติร์น-เกอร์แลค · ดูเพิ่มเติม »

การแบ่งแยกนิวเคลียส

prompt gamma rays) ออกมาด่วย (ไม่ได้แสดงในภาพ) การแบ่งแยกนิวเคลียส หรือ นิวเคลียร์ฟิชชัน (nuclear fission) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์หรือกระบวนการการสลายกัมมันตรังสีอย่างหนึ่งที่นิวเคลียสของอะตอม แตกออกเป็นชิ้นขนาดเล็ก (นิวเคลียสที่เบากว่า) กระบวนการฟิชชันมักจะผลิตนิวตรอนและโปรตอนอิสระ (ในรูปของรังสีแกมมา) พร้อมทั้งปลดปล่อยพลังงานออกมาจำนวนมาก แม้ว่าจะเป็นการปลดปล่อยจากการสลายกัมมันตรังสีก็ตาม นิวเคลียร์ฟิชชันของธาตุหนักถูกค้นพบเมื่อวันที่ 17 ธันวาคม 1938 โดยชาวเยอรมัน นายอ็อตโต ฮาห์นและผู้ช่วยของเขา นายฟริตซ์ Strassmann และได้รับการอธิบายในทางทฤษฎีในเดือนมกราคมปี 1939 โดยนาง Lise Meitner และหลานชายของเธอ นายอ็อตโต โรเบิร์ต Frisch.

ใหม่!!: อะตอมและการแบ่งแยกนิวเคลียส · ดูเพิ่มเติม »

การแปรนิวเคลียส

การแปรนิวเคลียส (nuclear transmutation) เป็นการแปลงธาตุเคมีหรือไอโซโทปหนึ่งเป็นอีกอย่างหนึ่ง หรือกล่าวได้ว่า อะตอมของธาตุสามารถเปลี่ยนเป็นอะตอมของธาตุอื่นด้วย "การเปลี่ยนสภาพ" การแปรนิวเคลียสเกิดขึ้นโดยปฏิกิริยานิวเคลียร์ (ซึ่งอนุภาคภายนอกทำปฏิกิริยากับนิวเคลียส) หรือโดยการสลายตัวของสารกัมมันตรังสี (ซึ่งไม่ต้องอาศัยอนุภาคภายนอก) การแปรนิวเคลียสตามธรรมชาติประเภทหนึ่งเกิดขึ้นเมื่อธาตุกัมมันตรังสีบางชนิดสลายตัวอย่างต่อเนื่องตามธรรมชาติ แล้วจึงเปลี่ยนสภาพเป็นอีกธาตุหนึ่ง ตัวอย่างคือ การสลายตัวตามธรรมชาติของโพแทสเซียม-40 เป็น อาร์กอน-40 ซึ่งมีที่มาจากอาร์กอนส่วนใหญ่ในอากาศ เช่นกับบนโลก การแปรนิวเคลียสตามธรรมชาติจากกลไกที่แตกต่างของปฏิกิริยานิวเคลียร์ตามธรรมชาติเกิดขึ้น เนื่องจากการยิงรังสีคอสมิกใส่ธาตุ (ตัวอย่างเช่น เพื่อให้เกิดคาร์บอน-14) และยังเกิดขึ้นบางครั้งจากการยิงนิวตรอนตามธรรมชาติ (ตัวอย่างเช่น เครื่องปฏิกรณ์นิวเคลียร์ฟิชชันธรรมชาติ) การแปรนิวเคลียสทำขึ้นยังเกิดขึ้นในเครื่องจักรที่มีพลังงานมากพอที่จะทำให้เกิดการเปลี่ยนแปลงโครงสร้างนิวเคลียสของธาตุ เครื่องจักรซึ่งสามารถเกิดการแปรนิวเคลียสทำขึ้นรวมไปถึงเครื่องเร่งอนุภาคและเครื่องปฏิกรณ์โทมาแมค เครื่องปฏิกรณ์พลังงานฟิชชันแบบเดิมยังเกิดการแปรทำขึ้นได้ มิใช่จากกำลังของเครื่องจักร แต่โดยการให้นิวตรอน ซึ่งเกิดขึ้นจากฟิชชันจากปฏิกิริยาลูกโซ่นิวเคลียร์ทำขึ้น ชนกับธาตุ การแปรนิวเคลียสทำขึ้นถูกพิจารณาว่าเป็นกลไกที่เป็นไปได้สำหรับการลดปริมาณและความอันตรายของของเสียกัมมันตรังสี หมวดหมู่:นิวเคลียร์เคมี หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:เคมีนิวเคลียร์ หมวดหมู่:กัมมันตรังสี.

ใหม่!!: อะตอมและการแปรนิวเคลียส · ดูเพิ่มเติม »

การเคลื่อนที่แบบบราวน์

มุมมองการเคลื่อนที่แบบบราวน์ 3 แบบที่แตกต่างกัน จากการเคลื่อนที่ 32 ครั้ง, 256 ครั้ง และ 2048 ครั้ง แสดงด้วยจุดสีที่อ่อนลงตามลำดับ ภาพเสมือนจริง 3 มิติของการเคลื่อนที่แบบบราวน์ ในกรอบเวลา 0 ≤ ''t'' ≤ 2 การเคลื่อนที่แบบบราวน์ (Brownian motion; ตั้งชื่อตามนักพฤกษศาสตร์ โรเบิร์ต บราวน์) หมายถึงการเคลื่อนที่ของอนุภาคในของไหล (ของเหลวหรือก๊าซ) ที่คิดว่าเป็นไปโดยสุ่ม หรือแบบจำลองคณิตศาสตร์ที่ใช้เพื่ออธิบายการเคลื่อนที่แบบสุ่มดังกล่าว มักเรียกกันว่า ทฤษฎีอนุภาค มีการนำแบบจำลองคณิตศาสตร์ของการเคลื่อนที่แบบบราวน์ไปประยุกต์ใช้ในโลกจริงมากมาย ตัวอย่างที่นิยมอ้างถึงคือ ความผันผวนของตลาดหุ้น อย่างไรก็ดี การเคลื่อนไหวของราคาหุ้นอาจเพิ่มขึ้นเนื่องจากเหตุการณ์ที่ไม่อาจคาดการณ์ได้ซึ่งอาจไม่เกิดซ้ำกันอีก การเคลื่อนที่แบบบราวน์เป็นหนึ่งในกระบวนการสโตคาสติก (หรือความน่าจะเป็น) แบบเวลาต่อเนื่องที่ง่ายที่สุดแบบหนึ่ง ทั้งเป็นขีดจำกัดของกระบวนการทำนายที่ทั้งง่ายกว่าและซับซ้อนกว่านี้ (ดู random walk และ Donsker's theorem) ความเป็นสากลเช่นนี้คล้ายคลึงกับความเป็นสากลของการแจกแจงแบบปกติ ซึ่งสำหรับทั้งสองกรณีนี้ การนำไปใช้งานเน้นที่ความสะดวกในการใช้งานเชิงคณิตศาสตร์มากกว่าเรื่องของความแม่นยำของแบบจำลอง ทั้งนี้เนื่องจากการเคลื่อนที่ของบราวน์ (ซึ่งอนุพันธ์เวลาเป็นอนันต์เสมอ) เป็นการประมาณการอุดมคติสำหรับกระบวนการทางกายภาพแบบสุ่มที่เกิดขึ้นจริงที่กรอบเวลามักจำกัดอยู่ที่ค่าหนึ่งเสมอ.

ใหม่!!: อะตอมและการเคลื่อนที่แบบบราวน์ · ดูเพิ่มเติม »

กำแพงคูลอมบ์

กำแพงคูลอมบ์ (Coulomb barrier) ตั้งชื่อตามกฎของคูลอมบ์ ซึ่งตั้งชื่อตามนักฟิสิกส์ ชาร์ล-โอกุสแต็ง เดอ คูลอมบ์ (1736–1806) เป็นกำแพงพลังงานที่เกิดจากปฏิกิริยาไฟฟ้าสถิตย์ซึ่งนิวเคลียสสองตัวจะต้องเอาชนะให้ได้เพื่อจะเข้าใกล้กันมากพอจะทำอันตรกิริยานิวเคลียร์ต่อกันได้ กำแพงพลังงานนี้ได้จากพลังงานศักย์ของไฟฟ้าสถิตย์ โดยที่ ค่า U ที่เป็นบวกหมายถึงเป็นแรงผลัก อนุภาคที่จะทำอันตรกิริยาจึงมีระดับพลังงานสูงขึ้นเมื่อเข้าใกล้กัน ค่าพลังงานศักย์ที่เป็นลบหมายถึงสถานะที่เป็นพันธะกัน (เนื่องจากแรงยึดเหนี่ยว) หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:นิวเคลียร์ฟิวชั่น หมวดหมู่:นิวเคลียร์เคมี.

ใหม่!!: อะตอมและกำแพงคูลอมบ์ · ดูเพิ่มเติม »

ภาษากรีก

ษากรีก ซึ่งคนที่พูดและเขียนภาษานี้เรียกว่า เฮลเลนิก หรือ เอลเลนิกา (Ελληνικά) เป็นภาษากลุ่มอินโด-ยูโรเปียน เกิดในประเทศกรีซ และเคยเป็นภาษาพูดตามชายฝั่งของเอเชียไมเนอร์และทางใต้ของประเทศอิตาลีในยุคโบราณ มีการพูดภาษาถิ่นจำนวนหนึ่ง เช่น ไอโอนิก ดอริก และแอททิก การเรียนการสอนภาษากรีกในประเทศไทยยังไม่แพร่หลายนัก ปัจจุบันมีเพียง คณะมนุษยศาสตร์ มหาวิทยาลัยรามคำแหง, รูปแบบไฟล.doc /สืบค้นเมื่อวันที่ 21 มกราคม..

ใหม่!!: อะตอมและภาษากรีก · ดูเพิ่มเติม »

มวลสารระหว่างดาว

การกระจายตัวของประจุไฮโดรเจน ซึ่งนักดาราศาสตร์เรียกว่า เอชทู ในช่องว่างระหว่างดาราจักร ที่สังเกตการณ์จากซีกโลกด้านเหนือผ่าน Wisconsin Hα Mapper มวลสารระหว่างดาว (interstellar medium; ISM) ในทางดาราศาสตร์หมายถึงกลุ่มแก๊สและฝุ่นที่กระจายตัวอยู่ในพื้นที่ว่างระหว่างดวงดาว เป็นสสารที่ดำรงอยู่ระหว่างดาวฤกษ์ต่างๆ ในดาราจักร เติมเติมช่องว่างระหว่างดวงดาวและผสานต่อเนื่องกับช่องว่างระหว่างดาราจักรที่อยู่โดยรอบ การแผ่คลื่นแม่เหล็กไฟฟ้าเป็นพลังงานของสสารมีปริมาณเท่ากันกับสนามการแผ่รังสีระหว่างดวงดาว มวลสารระหว่างดาวประกอบด้วยองค์ประกอบอันเจือจางอย่างมากของไอออน อะตอม โมเลกุล ฝุ่นขนาดใหญ่ รังสีคอสมิก และสนามแม่เหล็กของดาราจักร โดยที่ 99% ของมวลของสสารเป็นแก๊ส และอีก 1% เป็นฝุ่น มีความหนาแน่นเฉลี่ยในดาราจักรทางช้างเผือก ระหว่างไม่กี่พันจนถึงหลักร้อยล้านหน่วยอนุภาคต่อลูกบาศก์เมตร ประมาณ 90% ของแก๊สเป็นไฮโดรเจน ส่วนอีกประมาณ 10% เป็นฮีเลียม เมื่อพิจารณาตามจำนวนของนิวเคลียส โดยมีสสารมวลหนักผสมอยู่บ้างเล็กน้อย มวลสารระหว่างดาวมีบทบาทสำคัญอย่างยิ่งสำหรับการศึกษาฟิสิกส์ดาราศาสตร์ เนื่องจากมันอยู่ในระหว่างกลางของเหล่าดวงดาวในดาราจักร ดาวฤกษ์ใหม่จะเกิดขึ้นจากย่านที่หนาแน่นที่สุดของสสารนี้กับเมฆโมเลกุล โดยได้รับสสารและพลังงานมาจากเนบิวลาดาวเคราะห์ ลมระหว่างดาว และซูเปอร์โนวา ความสัมพันธ์ระหว่างดาวฤกษ์กับมวลสารระหว่างดาวช่วยให้นักดาราศาสตร์สามารถคำนวณอัตราการสูญเสียแก๊สของดาราจักร และสามารถคาดการณ์ช่วงเวลาการก่อตัวของดาวฤกษ์กัมมันต์ได้.

ใหม่!!: อะตอมและมวลสารระหว่างดาว · ดูเพิ่มเติม »

มวลอะตอม

อะตอมของ ลิเทียม-7 ที่ทันสมัยประกอบไปด้วย 3 โปรตอน 4 นิวตรอน และ 3 อิเล็กตรอน (มวลของอิเล็กตรอนทั้งหมดจะเป็น ~1/4300 ของมวลของนิวเคลียส) มันมีมวล 7.016 u ลิเทียม-6 ที่หายากในธรรมชาติ (มวล 6.015 u) มีนิวตรอนเพียง 3 ตัว เป็นผลให้มวลอะตอม (เฉลี่ย) ลดลงเหลือเพียง 6.941 u มวลอะตอม (ma) (อังกฤษ: Atomic mass) คือมวลของอนุภาคของอะตอมหรืออนุภาคย่อยของอะตอมหรือโมเลกุลของธาตุใด ๆ มีหน่วยเป็น หน่วยมวลอะตอมหรือเอเอ็มยู (unified Atomic Mass Unit - UAMU) หรือแค่ "u" โดย 1 u มีค่าเท่ากับ 1/12 ของมวลของหนึ่งอะตอมนิ่งของคาร์บอน-12 หรือ 1.66 x 10-24 กรัม โดยน้ำหนักนี้เทียบมาจาก 1 อะตอมของไฮโดรเจน หรือ 1/16 ของ 1 อะตอมของออกซิเจน สำหรับอะตอมทั่วไป มวลของโปรตอนและนิวตรอนเกือบจะเป็นมวลทั้งหมดของอะตอม และมวลอะตอมที่มีค่าเป็น u เกือบจะเป็นค่าเดียวกับเลขมวล.

ใหม่!!: อะตอมและมวลอะตอม · ดูเพิ่มเติม »

มวลนิ่ง

มวลนิ่ง (invariant mass, rest mass, intrinsic mass, proper mass) คือคุณสมบัติของพลังงานและโมเมนตัมรวมของวัตถุหรือระบบกายภาพหนึ่งๆ ที่ไม่แปรเปลี่ยนไปเลยในทุกกรอบอ้างอิง เมื่อตัวระบบทั้งหมดนั้นหยุดนิ่ง (หรือเทียบได้ว่า มีค่าโมเมนตัมรวมเป็นศูนย์) มวลนิ่งจะมีค่าเท่ากับพลังงานรวมของระบบ หารด้วย c2 โปรดอ่านเพิ่มเติมเกี่ยวกับนิยามของมวล จาก ความสมมูลระหว่างมวล-พลังงาน ทั้งนี้ เนื่องจากมวลของระบบจะต้องวัดด้วยมาตรวัดน้ำหนักหรือมวลในกรอบอ้างอิงที่ระบบมีโมเมนตัมรวมเป็นศูนย์ ดังนั้นมาตรวัดนั้นๆ จึงถือเป็นการวัดมวลนิ่งของระบบเสมอ.

ใหม่!!: อะตอมและมวลนิ่ง · ดูเพิ่มเติม »

มหานวดารา

ำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง มหานวดารา นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม.

ใหม่!!: อะตอมและมหานวดารา · ดูเพิ่มเติม »

มาร์กาเร็ต ท็อดด์

มาร์กาเร็ต ท็อดด์ (Margaret Todd; ค.ศ. 1859 - ค.ศ. 1918) เป็นนักเขียนและแพทย์ชาวสก๊อต ซึ่งเสนอคำว่า ไอโซโทป ให้แก่เฟรเดอริก ซอดดี นักเคมี เมื่อปี..

ใหม่!!: อะตอมและมาร์กาเร็ต ท็อดด์ · ดูเพิ่มเติม »

ระบบสุริยะ

ระบบสุริยะ (Solar System) ประกอบด้วยดวงอาทิตย์และวัตถุอื่น ๆ ที่โคจรรอบดวงอาทิตย์เนื่องจากแรงโน้มถ่วง ได้แก่ ดาวเคราะห์ 8 ดวงกับดวงจันทร์บริวารที่ค้นพบแล้ว 166 ดวง ดาวเคราะห์แคระ 5 ดวงกับดวงจันทร์บริวารที่ค้นพบแล้ว 4 ดวง กับวัตถุขนาดเล็กอื่น ๆ อีกนับล้านชิ้น ซึ่งรวมถึง ดาวเคราะห์น้อย วัตถุในแถบไคเปอร์ ดาวหาง สะเก็ดดาว และฝุ่นระหว่างดาวเคราะห์ โดยทั่วไปแล้วจะแบ่งย่านต่าง ๆ ของระบบสุริยะ นับจากดวงอาทิตย์ออกมาดังนี้คือ ดาวเคราะห์ชั้นในจำนวน 4 ดวง แถบดาวเคราะห์น้อย ดาวเคราะห์ขนาดใหญ่รอบนอกจำนวน 4 ดวง และแถบไคเปอร์ซึ่งประกอบด้วยวัตถุที่เย็นจัดเป็นน้ำแข็ง พ้นจากแถบไคเปอร์ออกไปเป็นเขตแถบจานกระจาย ขอบเขตเฮลิโอพอส (เขตแดนตามทฤษฎีที่ซึ่งลมสุริยะสิ้นกำลังลงเนื่องจากมวลสารระหว่างดวงดาว) และพ้นไปจากนั้นคือย่านของเมฆออร์ต กระแสพลาสมาที่ไหลออกจากดวงอาทิตย์ (หรือลมสุริยะ) จะแผ่ตัวไปทั่วระบบสุริยะ สร้างโพรงขนาดใหญ่ขึ้นในสสารระหว่างดาวเรียกกันว่า เฮลิโอสเฟียร์ ซึ่งขยายออกไปจากใจกลางของแถบจานกระจาย ดาวเคราะห์ชั้นเอกทั้ง 8 ดวงในระบบสุริยะ เรียงลำดับจากใกล้ดวงอาทิตย์ที่สุดออกไป มีดังนี้คือ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน นับถึงกลางปี ค.ศ. 2008 วัตถุขนาดย่อมกว่าดาวเคราะห์จำนวน 5 ดวง ได้รับการจัดระดับให้เป็นดาวเคราะห์แคระ ได้แก่ ซีรีสในแถบดาวเคราะห์น้อย กับวัตถุอีก 4 ดวงที่โคจรรอบดวงอาทิตย์อยู่ในย่านพ้นดาวเนปจูน คือ ดาวพลูโต (ซึ่งเดิมเคยถูกจัดระดับไว้เป็นดาวเคราะห์) เฮาเมอา มาคีมาคี และ อีรีส มีดาวเคราะห์ 6 ดวงและดาวเคราะห์แคระ 3 ดวงที่มีดาวบริวารโคจรอยู่รอบ ๆ เราเรียกดาวบริวารเหล่านี้ว่า "ดวงจันทร์" ตามอย่างดวงจันทร์ของโลก นอกจากนี้ดาวเคราะห์ชั้นนอกยังมีวงแหวนดาวเคราะห์อยู่รอบตัวอันประกอบด้วยเศษฝุ่นและอนุภาคขนาดเล็ก สำหรับคำว่า ระบบดาวเคราะห์ ใช้เมื่อกล่าวถึงระบบดาวโดยทั่วไปที่มีวัตถุต่าง ๆ โคจรรอบดาวฤกษ์ คำว่า "ระบบสุริยะ" ควรใช้เฉพาะกับระบบดาวเคราะห์ที่มีโลกเป็นสมาชิก และไม่ควรเรียกว่า "ระบบสุริยจักรวาล" อย่างที่เรียกกันติดปาก เนื่องจากไม่เกี่ยวข้องกับคำว่า "จักรวาล" ตามนัยที่ใช้ในปัจจุบัน.

ใหม่!!: อะตอมและระบบสุริยะ · ดูเพิ่มเติม »

ระดับพลังงาน

ในทฤษฎีควอนตัมระดับพลังงาน ใช้ในการอ้างอิงถึงการจัดเรียงอิเล็กตรอนในอะตอมหรือโมเลกุล พลังงานศักย์จะมีค่าเท่ากับศูนย์เมื่ออยู่ที่ระยะอนันต์ และจะมีค่าติดลบสำหรับ bound electron states ระดับพลังงานหลักของอิเล็กตรอนในอะตอมจะถูกอ้างถึงโดยใช้ เลขควอนตัมหลัก (principal quantum number;n) และค่าDegeneracy หมวดหมู่:สเปกโทรสโกปี หมวดหมู่:สมบัติทางเคมี หมวดหมู่:ฟิสิกส์อะตอม หมวดหมู่:ฟิสิกส์โมเลกุล หมวดหมู่:เคมีควอนตัม.

ใหม่!!: อะตอมและระดับพลังงาน · ดูเพิ่มเติม »

ระดับพลังงานแฟร์มี

ระดับพลังงานแฟร์มี (Fermi level) คือระดับพลังงานศักย์ของอิเล็กตรอนภายในของแข็งแบบผลึกในสมมุติฐานทางทฤษฎี การที่อิเล็กตรอนอยู่ในระดับพลังงานนี้จะหมายความว่า อิเล็กตรอนนั้นมีพลังงานศักย์เป็น \epsilon ซึ่งมีค่าเท่ากับพลังงานศักย์เคมี \mu ค่าทั้งสองนี้อยู่ในฟังก์ชันการกระจายตัวของแฟร์มี-ดิแรก (Fermi-Dirac distribution function) ซึ่งสามารถคำนวณความน่าจะเป็นที่อิเล็กตรอนซึ่งมีพลังงาน \epsilon สามารถครอบครองสถานะควอนตัมของอนุภาคเดี่ยวหนึ่งๆ ภายในของแข็งดังกล่าวนั้น T หมายถึง อุณหภูมิสัมบูรณ์ และ k คือค่าคงตัวของโบลทซ์มานน.

ใหม่!!: อะตอมและระดับพลังงานแฟร์มี · ดูเพิ่มเติม »

รัศมีอะตอม

รัศมีอะตอม คือ ระยะห่างระหว่างนิวเคลียสของอะตอมถึงอิเล็กตรอนนอกสุดของอะตอมนั้นในสภาพที่เสถียรซึ่งวัดได้ในหน่วยพิโกเมตรหรืออังสตรอม รัศมีอะตอมสามารถแบ่งได้เป็น 3 ชนิด ขึ้นอยู่กับชนิดของแรงยึดเหนี่ยวระหว่างอะตอมของธาตุนั้นๆ ได้แก่ รัศมีโควาเลนต์ รัศมีแวนเดอร์วาลส์ และรัศมีโลห.

ใหม่!!: อะตอมและรัศมีอะตอม · ดูเพิ่มเติม »

รัศมีอะตอมของธาตุ (หน้าข้อมูล)

รัศมีอะตอมของธาตุ (หน้าข้อมูล).

ใหม่!!: อะตอมและรัศมีอะตอมของธาตุ (หน้าข้อมูล) · ดูเพิ่มเติม »

รังสีแกมมา

รังสีแกมมา (Gamma radiation หรือ Gamma ray) มีสัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17 หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น.

ใหม่!!: อะตอมและรังสีแกมมา · ดูเพิ่มเติม »

รังสีแคโทด

รังสีแคโทดทำให้เกิดภาพเงาบนผนังของท่อครุก (Crookes tube) รังสีแคโทด (cathode ray) คือกระแสของอิเล็กตรอนที่สังเกตได้ในท่อสุญญากาศ ถ้าเราติดตั้งอิเล็กโทรดสองชุดเข้ากับท่อแก้วที่เป็นสุญญากาศแล้วจ่ายโวลต์เข้าไป จะสังเกตได้ว่าแก้วทางฝั่งตรงข้ามของอิเล็กโทรดขั้วลบจะเรืองแสง ซึ่งเกิดจากการปลดปล่อยอิเล็กตรอนและเดินทางตั้งฉากกับแคโทด (คือขั้วอิเล็กโทรดที่เชื่อมต่อกับขั้วลบของแรงดันจ่าย) ปรากฏการณ์นี้สังเกตพบครั้งแรกโดย โจฮันน์ ฮิตทอร์ฟ นักฟิสิกส์ชาวเยอรมันเมื่อปี..

ใหม่!!: อะตอมและรังสีแคโทด · ดูเพิ่มเติม »

รางวัลโนเบลสาขาเคมี

หรียญรางวัลโนเบล รางวัลโนเบลสาขาเคมี (Nobelpriset i kemi, Nobel Prize in Chemistry) เป็นรางวัลมอบโดยราชบัณฑิตยสถานด้านวิทยาศาสตร์แห่งสวีเดนเป็นประจำทุกปีแก่นักวิทยาศาสตร์ในสาขาต่างๆ ของเคมี รางวัลนี้เป็นหนึ่งในห้ารางวัลโนเบลซึ่งก่อตั้งจากความประสงค์ของอัลเฟรด โนเบลใน..

ใหม่!!: อะตอมและรางวัลโนเบลสาขาเคมี · ดูเพิ่มเติม »

ลัทธินิยมคอร์พัสคิวลาร์

ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) คือทฤษฎีทางฟิสิกส์ที่เชื่อว่าสสารทุกชนิดประกอบขึ้นด้วยอนุภาคขนาดเล็ก ๆ ซึ่งกลายเป็นทฤษฎีที่มีบทบาทสำคัญในคริสต์ศตวรรษที่ 17 นักวิทยาศาสตร์ผู้นิยมลัทธิคอร์พัสคิวลาร์รวมไปถึง เรอเน เดส์การ์ตส์, โรเบิร์ต บอยล์, และ จอห์น ล็อก แนวคิดคอร์พัสคิวลาร์นิยมนี้คล้ายคลึงกับทฤษฎีอะตอมนิยม (atomism) เว้นแต่เพียงว่า แนวคิดอะตอมนิยมบอกว่าอะตอมนั้นแบ่งแยกไม่ได้อีกแล้ว แต่คอร์พัสเคิลยังสามารถแบ่งย่อยลงไปได้อีก ยกตัวอย่างเช่น ความเชื่อในทางทฤษฎีว่าการใส่ปรอทเข้าไปในเหล็กจะสามารถเปลี่ยนแปลงโครงสร้างภายใน ซึ่งเป็นขั้นตอนหนึ่งในการเปลี่ยนโลหะให้กลายเป็นทองคำได้ ผู้ที่นิยมแนวคิดนี้มีความเชื่อว่าคุณสมบัติบางอย่างของวัตถุนั้นเป็นผลลัพธ์ที่สร้างขึ้นมาจากความคิดจิตใจ เป็นคุณสมบัติ "อันดับที่สอง" ที่แยกออกมาจากคุณสมบัติ "พื้นฐาน" ของวัตถุ แนวคิดคอร์พัสคิวลาร์นิยมดำรงอยู่เป็นทฤษฎีกระแสหลักตลอดเวลาหลายศตวรรษ ต่อมาถูกควบรวมเข้ากับศาสตร์ในการเล่นแร่แปรธาตุ (Alchemy) โดยนักวิทยาศาสตร์ยุคแรก ๆ เช่น โรเบิร์ต บอยล์ และ ไอแซก นิวตัน ในคริสต์ศตวรรษที่ 17.

ใหม่!!: อะตอมและลัทธินิยมคอร์พัสคิวลาร์ · ดูเพิ่มเติม »

ลิเทียม

ลิเทียม (Lithium) เป็นธาตุมีสัญลักษณ์ Li และเลขอะตอม 3 ในตารางธาตุ ตั้งอยู่ในกลุ่ม 1 ในกลุ่มโลหะอัลคาไล ลิเทียมบริสุทธิ์ เป็นโลหะที่อ่อนนุ่ม และมีสีขาวเงิน ซึ่งถูกออกซิไดส์เร็วในอากาศและน้ำ ลิเทียมเป็นธาตุของแข็ง ที่เบาที่สุด และใช้มากในโลหะผสมสำหรับการนำความร้อน ในถ่านไฟฉายและเป็นส่วนผสมในยาบางชนิดที่เรียกว่า "mood stabilizer".

ใหม่!!: อะตอมและลิเทียม · ดูเพิ่มเติม »

ลูซิปปัส

ลูซิปปัส ลูซิปปัส (Leucippus) มีชีวิตอยู่ในช่วงครึ่งแรกของศตวรรษที่ 5 ก่อนคริสตกาล เป็นชาวกรีกในยุคแรกที่สุดคนหนึ่งซึ่งพัฒนาทฤษฎีเกี่ยวกับอะตอม คือแนวคิดที่ว่าทุกสิ่งทุกอย่างล้วนประกอบขึ้นจากส่วนประกอบหลากหลายชนิดที่ไม่สามารถแบ่งแยกได้อีกต่อไปและไม่สามารถทำลายได้ เรียกว่า อะตอม แนวคิดนี้ได้รับการต่อเติมให้ละเอียดยิ่งขึ้นโดยดิมอคริตัสผู้เป็นศิษย์และผู้สืบทอดของเขา นอกจากนี้มีนักคิดเกี่ยวกับอะตอมอีกคนหนึ่งในยุคก่อนหน้านี้ คือโมกัสแห่งไซดอน ผู้มีชีวิตอยู่ในช่วงสงครามเมืองทรอย (ศตวรรษที่ 13-12 ก่อนคริสตกาล) เชื่อว่าลูซิปปัสน่าจะเกิดในเมืองไมลีตัส แม้จะมีหลักฐานบางแห่งเอ่ยถึงสถานที่เกิดของเขาว่าเป็น แอบเดียราในเทรซ และอีเลี.

ใหม่!!: อะตอมและลูซิปปัส · ดูเพิ่มเติม »

ศาสนาเชน

ระมหาวีระ ศาสนาเชน, ไชนะ หรือ ชินะ (แปลว่า ผู้ชนะ) (Jainism) เป็นศาสนาแบบอินเดีย อนุมานกาลราวยุคเดียวกับสมัยพุทธกาล เป็นหนึ่งในลัทธิสำคัญทั้งหก ที่เกิดร่วมสมัยกับพระโคตมพุทธเจ้า ศาสนาเชนเป็นศาสนาประเภทอเทวนิยมเช่นเดียวกับศาสนาพุทธ คือไม่นับถือพระเป็นเจ้า ถือหลักการไม่เบียดเบียน หรืออหิงสาอย่างเอกอุ ถือว่าการบำเพ็ญตนให้ลำบากคืออัตตกิลมถานุโยค เป็นทางนำไปสู่การบรรลุธรรมที่ ผู้ที่ฝึกฝนดีแล้ว ย่อมไม่หวั่นไหวทุกสิ่งทุกอย่างที่เกิดทางกาย วาจา ใจ มีศาสดาคือพระมหาวีระ หรือ นิครนถนาฏบุตร หรือ องค์ตีรถังกร(ผู้สร้างทางข้ามพ้นไป)โดยศาสนิกเชนถือว่าเป็นศาสดาองค์ที่ 24 ของศาสนาเชน จึงถือว่าศาสนาเชนเก่าแก่กว่าศาสนาพุทธ ศาสนาเชนเกิดขึ้นในอนุทวีปอินเดียเมื่อประมาณศตวรรษที่ 6 ก่อน..

ใหม่!!: อะตอมและศาสนาเชน · ดูเพิ่มเติม »

ศูนย์กลางมวล

ูนย์กลางมวล (center of mass) ของระบบหนึ่งๆ เป็นจุดเฉพาะเจาะจงซึ่งเสมือนหนึ่งมวลของระบบรวมตัวกันอยู่ ณ จุดนั้น เป็นฟังก์ชันของตำแหน่งและมวลขององค์ประกอบที่รวมกันอยู่ในระบบ ในกรณีที่ระบบเป็นวัตถุแบบ rigid body ตำแหน่งของศูนย์กลางมวลมักเป็นส่วนหนึ่งอยู่ในวัตถุหรือมีความเกี่ยวพันกับวัตถุนั้น แต่ถ้าระบบมีมวลหลายชิ้นสัมพันธ์กันอย่างหลวมๆ ในพื้นที่ว่าง ตัวอย่างเช่น การยิงกระสุนออกจากปืน ตำแหน่งศูนย์กลางมวลจะอยู่ในอากาศระหว่างวัตถุทั้งสองโดยอาจไม่สัมพันธ์กับตำแหน่งของวัตถุแต่ละชิ้นก็ได้ หากระบบอยู่ภายใต้สนามแรงโน้มถ่วงที่เป็นเอกภาพ มักเรียกศูนย์กลางมวลว่าเป็น ศูนย์ถ่วง (center of gravity) คือตำแหน่งที่วัตถุนั้นถูกกระทำโดยแรงโน้มถ่วง ตำแหน่งศูนย์กลางมวลของวัตถุหนึ่งๆ ไม่จำเป็นต้องเป็นจุดศูนย์กลางทางเรขาคณิตของรูปร่างวัตถุนั้น วิศวกรจะพยายามออกแบบรถสปอร์ตให้มีจุดศูนย์ถ่วงอยู่ต่ำที่สุดเท่าที่จะเป็นไปได้เพื่อให้สามารถบังคับรถได้ดีขึ้น นักกระโดดสูงก็ต้องพยายามบิดร่างกายเพื่อให้สามารถข้ามผ่านคานให้ได้ขณะที่ศูนย์กลางมวลของพวกเขาข้ามไม่ได้.

ใหม่!!: อะตอมและศูนย์กลางมวล · ดูเพิ่มเติม »

ศูนย์การบินอวกาศก็อดเดิร์ด

ทางอากาศ ศูนย์การบินอวกาศก็อดเดิร์ด ศูนย์การบินอวกาศก็อดเดิร์ด (Goddard Space Flight Center; GSFC) เป็นห้องทดลองด้านอวกาศที่สำคัญแห่งหนึ่งขององค์การนาซา ตั้งขึ้นเมื่อวันที่ 1 พฤษภาคม ค.ศ. 1959 เป็นศูนย์การบินอวกาศแห่งแรกของนาซา มีเจ้าหน้าที่พลเรือนประมาณ 10,000 คน ตั้งอยู่ทางตะวันออกเฉียงเหนือของกรุงวอชิงตัน ดี.ซี. ห่างออกไปประมาณ 6.5 ไมล์ ในเขตเมืองกรีนเบลท์ รัฐแมริแลนด์ สหรัฐอเมริกา ศูนย์การบินอวกาศก็อดเดิร์ดเป็นองค์กรที่ใหญ่ที่สุดซึ่งรวบรวมนักวิทยาศาสตร์และวิศวกรมาไว้ด้วยกันเพื่อศึกษาเพิ่มพูนความรู้เกี่ยวกับโลก ระบบสุริยะ และเอกภพ โดยอาศัยการสังเกตการณ์ผ่านอุปกรณ์สังเกตการณ์ในอวกาศ รวมถึงเป็นห้องทดลองในการวิจัยพัฒนาและควบคุมการทำงานของยานอวกาศสำหรับงานวิทยาศาสตร์ที่ไม่ต้องใช้มนุษย์ควบคุม นอกเหนือจากงานวิจัยเกี่ยวกับอวกาศ ศูนย์การบินอวกาศก็อดเดิร์ดยังศึกษาและพัฒนาเทคโนโลยีต่างๆ ที่เกี่ยวข้องเพื่อสนับสนุนภารกิจการปฏิบัติงานในอวกาศรวมถึงการออกแบบและสร้างยานอวกาศด้วย นักวิทยาศาสตร์ของศูนย์การบินอวกาศก็อดเดิร์ดคนหนึ่งคือ จอห์น ซี. เมเทอร์ ได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี..

ใหม่!!: อะตอมและศูนย์การบินอวกาศก็อดเดิร์ด · ดูเพิ่มเติม »

ศูนย์สัมบูรณ์

ูนย์สัมบูรณ์ (Absolute zero) คืออุณหภูมิในทางทฤษฎีที่เอนโทรปีจะมีค่าต่ำที่สุด ซึ่งเท่ากับ 0 เคลวิน หรือ −273.15 องศาเซลเซียส (−459.67 องศาฟาเรนไฮต์) ในการตีความดั้งเดิม ศูนย์สัมบูรณ์เป็นอุณหภูมิที่โมเลกุลของสสารไม่มีพลังงานจลน์ แต่ปัจจุบันถือว่าพลังงานจลน์ที่สถานะพื้นไม่สามารถทำให้หายไปได้ ศูนย์สัมบูรณ์เป็นอุณหภูมิที่อนุภาคทุกชนิดหยุดการเคลื่อนไหวอย่างสิ้นเชิงตามหลักกลศาสตร์ควอนตัม ดังนั้นศูนย์สัมบูรณ์จึงน่าจะเป็นอุณหภูมิที่โมเลกุลของสสารสั่นน้อยที่สุดเท่าที่จะเป็นไปได้ ซึ่งอาจไม่ต้องพิจารณาปริมาตรของแก๊ส ณ อุณหภูมินี้ เพราะแก๊สจะกลายเป็นของเหลวไปก่อนที่อุณหภูมิจะลดลงถึงตำแหน่งนี้ อย่างไรก็ตามในทางปฏิบัติยังไม่สามารถสร้างสภาพศูนย์สัมบูรณ์ขึ้นมาได้จริง หมวดหมู่:อุณหภูมิ หมวดหมู่:ความเย็น อุณหภูมิ คือการวัดค่าเฉลี่ยของพลังงานจลน์ของอนุภาคในสสารใดๆ ซึ่งสอดคล้องกับความร้อนหรือเย็นของสสารนั้น ในอดีตมีแนวคิดเกี่ยวกับอุณหภูมิเกิดขึ้นเป็น 2 แนวทาง คือตามแนวทางของหลักอุณหพลศาสตร์ และตามกาประเทศไทย บายเชิงจุลภาคทางฟิสิกส์เชิงสถิติ อุณหพลศาสตร์นั้นเกี่ยวข้องกับการวัดในเชิงมหภาค ดังนั้นคำจำกัดความอุณหภูมิในเชิงอุณหพลศาสตร์ในเบื้องแรก ซึ่งกำหนดขึ้นโดยลอร์ดเคลวิน จึงระบุเกี่ยวกับค่าตัวแปรต่างๆ ที่สามารถตรวจวัดได้จากการสังเกต ส่วนฟิสิกส์สถิติจะให้ความเข้าใจในเชิงลึกยิ่งกว่าอุณหพลศาสตร์ โดยอธิบายถึงการสะสมจำนวนอนุภาคขนาดใหญ่ และตีความพารามิเตอร์ต่างๆ ในอุณหพลศาสตร์ (เชิงมหภาค) ในฐานะค่าเฉลี่ยทางสถิติของพารามิเตอร์ของอนุภาคในเชิงจุลภาค ในการศึกษาฟิสิกส์เชิงสถิติ สามารถตีความคำนิยามอุณหภูมิในอุณหพลศาสตร์ว่า เป็นการวัดพลังงานเฉลี่ยของอนุภาคในแต่ละองศาอิสระในระบบอุณหพลศาสตร์ โดยที่อุณหภูมินั้นสามารถมองเป็นคุณสมบัติเชิงสถิติ ดังนั้นระบบจึงต้องประกอบด้วยปริมาณอนุภาคจำนวนมากเพื่อจะสามารถบ่งบอกค่าอุณหภูมิอันมีความหมายที่นำไปใช้ประโยชน์ได้ ในของแข็ง พลังงานนี้พบในการสั่นไหวของอะตอมของสสารในสภาวะสมดุล ในแก๊สอุดมคติ พลังงานนี้พบในการเคลื่อนไหวไปมาของอนุภาคโมเลกุลของแก.

ใหม่!!: อะตอมและศูนย์สัมบูรณ์ · ดูเพิ่มเติม »

สภาวะสมดุลอุทกสถิต

้าปริมาตรแก๊สส่วนที่ระบายสีไม่มีการเคลื่อนที่ แรงที่กระทำต่อแก๊สทางด้านขึ้นจะต้องเท่ากับแรงที่กระทำทางด้านลง สภาวะสมดุลอุทกสถิต (Hydrostatic equilibrium) เป็นสภาวะที่เกิดขึ้นเมื่อแรงกดจากความโน้มถ่วงมีค่าเท่ากับแรงดันต้านที่เกิดจากความดันในทิศทางตรงกันข้าม ตามกฎของนิวตัน แรงที่กระทำต่อปริมาตรของไหลที่ไม่มีการเคลื่อนที่ หรือมีการเคลื่อนที่ในอัตราคงที่ จะต้องมีผลรวมแรงเท่ากับศูนย์ กล่าวคือ แรงกระทำทางด้านขึ้นต้องเท่ากับแรงกระทำทางด้านลง สมดุลของแรงในลักษณะนี้เรียกว่า "สมดุลอุทกสถิต" (hydrostatic balance).

ใหม่!!: อะตอมและสภาวะสมดุลอุทกสถิต · ดูเพิ่มเติม »

สมบัติทางเคมี

"สมบัติทางเคมี" (Chemical property) เป็นคำอรรถาธิบายที่เกี่ยวข้องกับพฤติกรรมของวัสดุที่สภาวะมาตรฐาน (คือ ที่อุณหภูมิห้อง ความกดดันบรรยากาศเท่ากับ 1) สมบัติเหล่านี้จะปรากฏระหว่างปฏิกิริยาเคมี คำจำกัดความนี้จะคอบคุมเนื้อหาดังนี้.

ใหม่!!: อะตอมและสมบัติทางเคมี · ดูเพิ่มเติม »

สสาร

ว.

ใหม่!!: อะตอมและสสาร · ดูเพิ่มเติม »

สสารมืด

รมืด (Dark Matter) สสารมืดคือสสารในจักรวาลที่เรามองไม่เห็นแต่รู้ว่ามีอยู่ เพราะอิทธิพลจากแรงโน้มถ่วงของมันต่อสสารปกติในกาแล็กซี่ สสารมืดเป็นองค์ประกอบในอวกาศชนิดหนึ่งซึ่งเป็นเพียงสมมุติฐานทางด้านฟิสิกส์ดาราศาสตร์และจักรวาลวิทยา ว่ามันเป็นสสารซึ่งไม่สามารถส่องแสงหรือสะท้อนแสงได้เพียงพอที่ระบบตรวจจับการแผ่รังสีของคลื่นแม่เหล็กไฟฟ้าจะสามารถตรวจจับได้โดยตรง แต่การมีอยู่ของมันศึกษาได้จากการสำรวจทางอินฟราเรดจากผลกระทบของแรงโน้มถ่วงรวมที่มีต่อวัตถุท้องฟ้าที่เรามองเห็น จากการสังเกตการณ์โครงสร้างขนาดใหญ่ในอวกาศที่ใหญ่กว่าดาราจักรในปัจจุบัน ตลอดจนถึงทฤษฎีบิกแบง นับได้ว่าสสารมืดเป็นส่วนประกอบของมวลจำนวนมากในเอกภพในสังเกตการณ์ของเรา ปรากฏการณ์ที่ตรวจพบอันเกี่ยวข้องกับสสารมืด เช่น ความเร็วในการหมุนตัวของดาราจักร ความเร็วในการโคจรของดาราจักรในกระจุกดาราจักร รวมถึงการกระจายอุณหภูมิของแก๊สร้อนในดาราจักรและในคลัสเตอร์ของดาราจักร สสารมืดยังมีบทบาทอย่างมากในการก่อตัวและการพัฒนาการของดาราจักร ผลการศึกษาด้านต่างๆ ล้วนบ่งชี้ว่า ในกระจุกดาราจักรและเอกภพโดยรวม ยังคงมีสสารชนิดอื่นอีกนอกเหนือจากสิ่งที่ตอบสนองต่อคลื่นแม่เหล็กไฟฟ้า เรียกสสารโดยรวมเหล่านั้นว่า "สสารมืด" สสารปกติจะถูกตรวจจับได้จากการแผ่พลังงานออกมา เนบิวลา กาแล็กซี ดาวฤกษ์ ดาวเคราะห์ ต้นไม้ หรือแม้กระทั่งจุลชีพเล็กๆ จะถูกตรวจจับได้จากรังสีแม่เหล็กไฟฟ้าชนิดใดชนิดหนึ่งที่แผ่ออกมา ทว่าสสารมืดจะไม่แผ่พลังงานเพียงพอที่จะตรวจจับได้โดยตรง นักวิทยาศาสตร์รู้ว่าในจักรวาลมีสสารมืดตั้งแต่ปี 1933 เมื่อ ฟริตซ์ ซวิคกี้ นักฟิสิกส์ดาราศาสตร์ของสถาบันเทคโนโลยีแห่งแคลิฟอร์เนีย ศึกษากระจุกกาแล็กซีโคมา โดยวัดมวลทั้งหมดของกระจุกกาแล็กซีนี้บนพื้นฐานการศึกษาการเคลื่อนที่ของกาแล็กซีบริเวณขอบของกระจุกกาแล็กซี สสารมืด มีมวลมากกว่าที่มองเห็น จากการประมาณค่าพบว่าการแผ่รังสีทั้งหมดในจักรวาลพบว่า 4% เป็นของวัตถุที่สามารถมองเห็นได้ 22% มาจากสสารมืด 74% มาจากพลังงานมืด แต่เป็นการยากมากที่จะทดสอบได้ว่าสสารมืดเกิดจากอะไร แต่เชื่อว่าน่าจะมาจากการประกอบกันของส่วนเล็ก ๆ ของ baryons จนเกิดเป็นสสารมืดขึ้น ซึ่งปัญหานี้เป็นปัญหาใหญ่ในการศึกษาด้านอนุภาคทางฟิสิกส์เนื่องจากมีมวลบางส่วนของระบบที่ศึกษาหายไป สสารมืด จึงเป็นสิ่งที่น่าสนใจในการศึกษาอย่างยิ่ง.

ใหม่!!: อะตอมและสสารมืด · ดูเพิ่มเติม »

สารประกอบ

น้ำ ถือเป็นสารประกอบทางเคมีอย่างหนึ่ง สารประกอบ เป็นสารเคมีที่เกิดจากธาตุเคมีตั้งแต่สองตัวขึ้นไปมารวมตัวกันโดย พันธะเคมีด้วยอัตราส่วนของส่วนประกอบที่แน่นอน ตัวอย่าง เช่น ไดไฮโรเจนโมน็อกไซด์ หรือ น้ำ มีสูตรเคมีคือ H2Oซึ่งเป็นสารที่ประกอบด้วย ไฮโดรเจน 2 อะตอม และ ออกซิเจน 1 อะตอม ในสารประกอบอัตราส่วนของส่วนประกอบจะต้องคงที่และตัวชี้วัดความเป็นสารประกอบที่สำคัญคือ คุณสมบัติทางกายภาพ ซึ่งจะแตกต่างจาก ของผสม (mixture) หรือ อัลลอย (alloy) เช่น ทองเหลือง (brass) ซูเปอร์คอนดักเตอร์ YBCO, สารกึ่งตัวนำ อะลูมิเนียม แกลเลียม อาร์เซไนด์ (aluminium gallium arsenide) หรือ ช็อคโกแลต (chocolate) เพราะเราสามารถกำหนดอัตราส่วนของ ของผสมได้ ตัวกำหนดคุณลักษณะเฉพาะของสารประกอบที่สำคัญคือ สูตรเคมี (chemical formula) ซึ่งจะแสดงอัตราส่วนของอะตอมในสารประกอบนั้น ๆ และจำนวนอะตอมในโมเลกุลเดียว เช่น สูตรเคมีของ อีทีน (ethene) จะเป็นC2H4 ไม่ใช่ CH2) สูตรไม่ได้ระบุว่าสารประกอบประกอบด้วยโมเลกุล เช่น โซเดียมคลอไรด์ (เกลือแกง, NaCl) เป็น สารประกอบไอออนิก (ionic compound).

ใหม่!!: อะตอมและสารประกอบ · ดูเพิ่มเติม »

สารประกอบอินทรีย์

มีเทนเป็นหนึ่งในสารประกอบอินทรีย์ที่เรียบง่ายที่สุด สารประกอบอินทรีย์ หมายถึง สารประกอบเคมีที่อยู่ในสถานะใดก็ได้ ไม่ว่าจะเป็นของแข็ง ของเหลว หรือแก๊ส ที่ประกอบด้วยโมเลกุลคาร์บอน ยกเว้นสารประกอบบางชนิดที่ไม่จัดว่าเป็นสารประกอบอินทรีย์แม้ว่าจะมีคาร์บอนเป็นองค์ประกอบก็ตาม ตัวอย่างเช่น สารประกอบคาร์ไบน์, คาร์บอเนต, ออกไซด์ของคาร์บอนและไซยาไนด์ เช่นเดียวกับอัญรูปของคาร์บอน อย่างเช่น เพชรและแกรไฟต์ ซึ่งถูกจัดเป็นสารประกอบอนินทรีย์ ความแตกต่างระหว่างสารประกอบคาร์บอนที่เป็นสารประกอบ "อินทรีย์" และ "อนินทรีย์" นั้น ถึงแม้ว่า "จะมีประโยชน์ในการจัดระเบียบวิชาเคมีอย่างกว้างขวาง...

ใหม่!!: อะตอมและสารประกอบอินทรีย์ · ดูเพิ่มเติม »

สปิน (ฟิสิกส์)

ในการศึกษาด้านกลศาสตร์ควอนตัมและฟิสิกส์อนุภาค สปิน (spin) คือคุณลักษณะพื้นฐานของอนุภาคมูลฐาน, อนุภาคประกอบ (ฮาดรอน) และนิวเคลียสอะตอม อนุภาคมูลฐานประเภทเดียวกันทุกตัวจะมี เลขควอนตัมสปิน เลขเดียวกัน ซึ่งเป็นส่วนสำคัญของสถานะควอนตัมของอนุภาค เมื่อรวมเข้ากับทฤษฎีสถิติของสปิน (spin-statistics theorem) สปินของอิเล็กตรอนจะส่งผลตามหลักการกีดกันของเพาลี อันเป็นตัวการเบื้องหลังของตารางธาตุ ทิศทางสปิน (บางครั้งก็เรียกย่อๆ ว่า "สปิน") ของอนุภาคหนึ่งเป็นองศาอิสระภายในที่สำคัญของอนุภาคนั้น โวล์ฟกัง เพาลี เป็นบุคคลแรกที่เสนอแนวคิดเรื่องของสปิน แต่เขายังไม่ได้ตั้งชื่อให้กับมัน ปี..

ใหม่!!: อะตอมและสปิน (ฟิสิกส์) · ดูเพิ่มเติม »

สนามแม่เหล็ก

กระแสไฟฟ้าที่ไหลผ่านเส้นลวดทำให้เกิดสนามแม่เหล็ก (M) รอบๆ บริเวณเส้นลวด ทิศทางของสนามแม่เล็กที่เกิดขึ้นนี้เป็นไปตามกฎมือขวา กฎมือขวา Hans Christian Ørsted, ''Der Geist in der Natur'', 1854 สนามแม่เหล็ก นั้นอาจเกิดขึ้นได้จากการเคลื่อนที่ของประจุไฟฟ้า หรือในทางกลศาสตร์ควอนตัมนั้น การสปิน(การหมุนรอบตัวเอง) ของอนุภาคต่างๆ ก็ทำให้เกิดสนามแม่เหล็กเช่นกัน ซึ่งสนามแม่เหล็กที่เกิดจากการ สปิน เป็นที่มาของสนามแม่เหล็กของแม่เหล็กถาวรต่างๆ สนามแม่เหล็กคือปริมาณที่บ่งบอกแรงกระทำบนประจุที่กำลังเคลื่อนที่ สนามแม่เหล็กเป็นสนามเวกเตอร์และทิศของสนามแม่เหล็ก ณ ตำแหน่งใดๆ คือทิศที่เข็มของเข็มทิศวางตัวอย่างสมดุล เรามักจะเขียนแทนสนามแม่เหล็กด้วยสัญลักษณ์ \mathbf\ เดิมทีแล้ว สัญลักษณ์ \mathbf \ นั้นถูกเรียกว่าความหนาแน่นฟลักซ์แม่เหล็กหรือความเหนี่ยวนำแม่เหล็ก ในขณะที่ \mathbf.

ใหม่!!: อะตอมและสนามแม่เหล็ก · ดูเพิ่มเติม »

สนามไฟฟ้า

นามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนานแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง.

ใหม่!!: อะตอมและสนามไฟฟ้า · ดูเพิ่มเติม »

สเปกตรัม

ีต่อเนื่องของรุ้งกินน้ำ สเปกตรัม (ละติน spectrum ภาพ, การปรากฏ) หมายถึง เงื่อนไขอย่างหนึ่ง ที่ไม่ได้จำกัดเฉพาะกลุ่มของค่าหนึ่งๆ แต่สามารถแปรผันได้อย่างไม่สิ้นสุดภายใต้ความต่อเนื่อง (continuum) คำนี้มีการใช้เป็นครั้งแรกในเรื่องวิทยาศาสตร์ที่เกี่ยวกับทัศนศาสตร์ (optics) โดยเฉพาะแถบสีรุ้งที่ปรากฏจากการแยกแสงขาวด้วยปริซึม นอกจากนั้นแล้วสามารถใช้ในความหมายอื่นที่ไม่ใช่วิทยาศาสตร์ เช่น สเปกตรัมของความคิดเห็นทางการเมือง สเปกตรัมของการออกฤทธิ์ของยา ซึ่งค่าต่างๆ ในสเปกตรัมไม่จำเป็นต้องเป็นจำนวนที่นิยามไว้อย่างแม่นยำเหมือนในทัศนศาสตร์ แต่เป็นค่าบางค่าที่อยู่ภายในช่วงของสเปกตรัม สเปกตรัมที่มองเห็นได้ แสงเป็นคลื่นของการแผ่รังสีแม่เหล็กไฟฟ้า  " แสงสีขาว"       เป็นส่วนผสมชองแสงสีต่างๆ  แต่ละแสงสีมีความถี่และความยาวคลื่นเฉพาะ  ตัวสีเหล่านี้รวมตัวเป็นสเปกตรัมที่มองเห็นได้  ตาและสมองของเรารับรู้สิ่งต่างๆ  จากความแตกต่างของความยาวคลื่นของสีที่เรามองเห็นได้  แสงสีที่ปล่อยออกมา             ลำแสงขาวที่ถูกหักเหขณะที่มันผ่านเข้าและออกจากปริซึม  ปริซึมหักเหแสงที่มีความยาวคลื่นต่างๆกันด้วยปริมาณต่างกัน  แล้วปล่อยให้ลำแสงขาวออกมาเป็นสเปกตรัมที่มองเห็นได้  แสงสี  และความร้อน            อะตอมของวัตถุร้อนจะให้รังสีอินฟราเรด  และแสงสีแดงบางส่วนออกมา  ขณะทีวัตถุร้อนขึ้น  อะตอมของวัตถุจะให้แสงสีที่มีความยาวคลื่นสั้นลง  ได้แก่  แสงสีส้มแล้วเป็นแสงสีเหลือง  วัตถุที่ร้อนมากจะให้แสงสีทั้งสเปกตรัมทำให้เห็นเป็นแสงสีขาว สีดิฟแฟรกชั่น             พลังงานคลื่นทุกรูปจะ  "ดิฟแฟรก"  หรือกระจายออกจาเมื่อผ่านช่องว่าง   หรือรอบๆวัตถุ  แผ่นดิฟแฟรกชันเกรตติ้ง  เป็นแผ่นแก้วที่สลักเป็นช่องแคบๆ  รังสีแสงจะกระจายออก  ขณะที่ผ่านช่องแคบนั้นและมีสอดแทรกระหว่างรังสีโค้งเหล่านั้นเกิดเป็นทางของสีต่างๆกัน   สีท้องฟ้า  ท้องฟ้าสีฟ้า             ดวงอาทิตย์ให้แสงสีขาวบริสุทธิ์  ซึ่งจะกระเจิงโดยโมเลกุลของอากาศ  ขณะที่ส่องเข้ามาในบรรยากาศของโลก  แสงสีฟ้าจะกระเจิงได้ดีกว่าแสงสีอื่น จึงทำให้ท้องฟ้าเป็นสีฟ้า  ท้องฟ้าสีแดง             เมื่อดวงอาทิตย์ใกล้จะลับขอบฟ้า  แสงสีฟ้าทางปลายอีกด้านหนึ่งของสเปกตรัมจะกระเจิง  เราจะเห็นดวงอาทิตย์เป็นแสงสีแดง-ส้ม  เพราะแสงสีจากปลายสเปกตรัมด้านนี้ผ่านมายังตาเรา  แต่แสงสีฟ้าหายไป รุ้งปฐมภูมิ             จะเห็นรุ้งในขณะทีฝนตก  เมื่อดวงอาทิตย์  อยู่ช้างหลังเรา  รังสีแสงอาทิตย์ส่องผ่านหยดน้ำฝน  ในท้องฟ้า  หยดน้ำฝนนั้นคล้ายปริซึมเล็กๆ  แสงขาวจะหักเหเป็นสเปกตรัมภายในหยดน้ำฝน  และจะสะท้อนกลับออกมาสู่อากาศเป็นแนวโค้งสีต่างๆ อ้างอิง.

ใหม่!!: อะตอมและสเปกตรัม · ดูเพิ่มเติม »

สเปกตรัมแม่เหล็กไฟฟ้า

สเปกตรัมแม่เหล็กไฟฟ้า (electromagnetic spectrum) คือ แถบรังสีของคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นต่างๆกัน สเปกตรัมที่มองเห็นได้คือแสง เมื่อแสงขาวผ่านปริซึมจะเกิดการหักเหเป็นแสงสีต่างๆ ซึ่งเรียกสเปกตรัมตั้งแต่ความยาวคลื่นน้อยไปหามากตามลำดับ ดังนี้ ม่วง คราม น้ำเงิน เขียว เหลือง แสด แดง สเปกตรัมแม่เหล็กไฟฟ้า.

ใหม่!!: อะตอมและสเปกตรัมแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

สเปกโทรสโกปี

ลื่อนไหวแสดงการกระเจิงของแสง เมื่อแสงเคลื่อนที่ผ่านปริซึม สเปกโทรสโกปี (spectroscopy) แต่เดิมหมายถึงการศึกษาปฏิกิริยาระหว่างการแผ่รังสีกับสสารในรูปของฟังก์ชันความยาวคลื่น (λ) สเปกโทรสโกปีจะอ้างถึงการกระเจิงของแสงที่ตามองเห็นตามขนาดความยาวคลื่นของมัน เช่น การกระเจิงของแสงผ่านปริซึม ต่อมาหลักการนี้ได้ขยายออกไปครอบคลุมการวัดปริมาณใดๆ ที่อยู่ในรูปฟังก์ชันของทั้งความยาวคลื่นและความถี่ ดังนั้นมันจึงเกี่ยวข้องกับการเปลี่ยนแปลงของสนามหรือความถี่ (ν) ด้วย ขอบเขตการศึกษายังขยายไปครอบคลุมเรื่องของพลังงาน (E) ในฐานะตัวแปร ทั้งนี้เนื่องมาจากความสัมพันธ์กันระหว่างพลังงานและความถี่ ตามสมการ E.

ใหม่!!: อะตอมและสเปกโทรสโกปี · ดูเพิ่มเติม »

หมู่เกาะแห่งเสถียรภาพ

Z.

ใหม่!!: อะตอมและหมู่เกาะแห่งเสถียรภาพ · ดูเพิ่มเติม »

หลักการกีดกันของเพาลี

หลักการกีดกันของเพาลี (Pauli exclusion principle) คือหลักการของกลศาสตร์ควอนตัมที่ว่า ต้องไม่มีเฟอร์มิออน (อนุภาคที่มีสปินไม่เป็นจำนวนเต็ม) ที่เทียบเท่ากันสองตัวใดๆ ครอบครองสถานะควอนตัมเดียวกันได้ในเวลาเดียวกัน หากกล่าวให้เข้มงวดยิ่งขึ้นคือ ฟังก์ชันคลื่นรวมของเฟอร์มิออนที่เทียบเท่ากันสองตัวจะเป็นแบบกึ่งสมมาตรเมื่อเทียบกับการแลกเปลี่ยนอนุภาค หลักการนี้พัฒนาขึ้นโดยนักฟิสิกส์ชาวออสเตรีย โวล์ฟกัง เพาลี เมื่อปี..

ใหม่!!: อะตอมและหลักการกีดกันของเพาลี · ดูเพิ่มเติม »

หลักความไม่แน่นอน

ในวิชาควอนตัมฟิสิกส์ หลักความไม่แน่นอนของไฮเซนแบร์ก (Heisenberg uncertainty principle) กล่าวว่า คู่คุณสมบัติทางฟิสิกส์ที่แน่นอนใดๆ เช่น ตำแหน่งและโมเมนตัม จะไม่สามารถทำนายสภาวะล่วงหน้าได้อย่างแน่นอน ยิ่งเรารู้ถึงคุณสมบัติข้อใดข้อหนึ่งอย่างละเอียด ก็ยิ่งทำนายคุณสมบัติอีกข้อหนึ่งได้ยากยิ่งขึ้น หลักการนี้มิได้กล่าวถึงข้อจำกัดของความสามารถของนักวิจัยในการตรวจวัดปริมาณสำคัญของระบบ แต่เป็นธรรมชาติของตัวระบบเอง กล่าวอีกนัยหนึ่ง เป็นไปไม่ได้ที่จะวัดทั้งตำแหน่งและความเร็วของอนุภาคในเวลาเดียวกันด้วยระดับความแน่นอนหรือความแม่นยำใดๆ ก็ตาม สำหรับกลศาสตร์ควอนตัม เราสามารถอธิบายอนุภาคได้ด้วยคุณสมบัติของคลื่น ตำแหน่ง คือที่ที่คลื่นอยู่อย่างหนาแน่น และโมเมนตัมก็คือความยาวคลื่น ตำแหน่งนั้นไม่แน่นอนเมื่อคลื่นกระจายตัวออกไป และโมเมนตัมก็ไม่แน่นอนในระดับที่ไม่อาจระบุความยาวคลื่นได้ คลื่นที่มีตำแหน่งแน่นอนมีแต่เพียงพวกที่เกาะกลุ่มกันเป็นจุดๆ เดียว และคลื่นชนิดนั้นก็มีความยาวคลื่นที่ไม่แน่นอน ในทางกลับกัน คลื่นที่มีความยาวคลื่นแน่นอนมีเพียงพวกที่มีคาบการแกว่งตัวปกติแบบไม่จำกัดในอวกาศ และคลื่นชนิดนี้ก็ไม่สามารถระบุตำแหน่งที่แน่นอนได้ ดังนั้นในกลศาสตร์ควอนตัม จึงไม่มีสภาวะใดที่สามารถบอกถึงอนุภาคที่มีทั้งตำแหน่งที่แน่นอนและโมเมนตัมที่แน่นอน ยิ่งสามารถระบุตำแหน่งแน่นอนได้แม่นเท่าไร ความแน่นอนของโมเมนตัมก็ยิ่งน้อย นิพจน์ทางคณิตศาสตร์สำหรับหลักการนี้คือ ทุกๆ สถานะควอนตัมมีคุณสมบัติการเบี่ยงเบนของค่าเฉลี่ยกำลังสอง (RMS) ของตำแหน่งจากค่าเฉลี่ย (ค่าเบี่ยงเบนมาตรฐานของการกระจายของ X): คูณด้วยค่าเบี่ยงเบน RMS ของโมเมนตัมจากค่าเฉลี่ย (ค่าเบี่ยงเบนมาตรฐานของ P): จะต้องไม่น้อยกว่าเศษส่วนค่าคงที่ของพลังค์: ค่าวัดใดๆ ของตำแหน่งด้วยความแม่นยำ \scriptstyle \Delta X ที่ทลายสถานะควอนตัม ทำให้ค่าเบี่ยงเบนมาตรฐานของโมเมนตัม \scriptstyle \Delta P ใหญ่กว่า \scriptstyle \hbar/2\Delta x.

ใหม่!!: อะตอมและหลักความไม่แน่นอน · ดูเพิ่มเติม »

หลุมพลังงาน

หลุมพลังงาน (potential well) คือบริเวณหนึ่งที่ล้อมรอบด้วยระดับพลังงานศักย์ต่ำสุดในย่านนั้น พลังงานที่ติดอยู่ในหลุมพลังงานจะไม่สามารถแปลงไปเป็นพลังงานในรูปแบบอื่นได้ (เช่น พลังงานจลน์ ในกรณีของหลุมพลังงานความโน้มถ่วง) เนื่องจากมันถูกกักเอาไว้ในขอบเขตหลุมพลังงานต่ำสุดในย่านนั้น ดังนั้นวัตถุจึงไม่สามารถข้ามผ่านระดับพลังงานต่ำสุดได้ดังที่เป็นไปตามธรรมชาติของเอนโทรปี.

ใหม่!!: อะตอมและหลุมพลังงาน · ดูเพิ่มเติม »

หลุยส์ เดอ เบรย

หลุยส์-วิกตอร์-ปีแยร์-แรมง ดุ๊กเดอ เบรย ที่ 7 (Louis-Victor-Pierre-Raymond, 7th duc de Broglie; FRS; 15 สิงหาคม ค.ศ. 1892- 19 มีนาคม ค.ศ. 1987) เป็นนักฟิสิกส์และนักวิทยาศาสตร์รางวัลโนเบลชาวฝรั่งเศส เป็นสมาชิกคนที่ 16 ที่ได้รับเลือกตั้งให้ดำรงตำแหน่ง seat 1 ของบัณฑิตยสถานฝรั่งเศส เมื่อปี..

ใหม่!!: อะตอมและหลุยส์ เดอ เบรย · ดูเพิ่มเติม »

หน่วยมวลอะตอม

หน่วยมวลอะตอม (unified atomic mass unit u) หรือ ดัลตัน (dalton Da) เป็นหน่วยที่ใช้ในการวัดมวลของอะตอม และ โมเลกุล โดยคำจำกัดความแล้วกำหนดให้เท่า 1 หน่วยมวลอะตอม เท่ากับ 1/12 ของมวลของ อะตอม 1 อะตอมของคาร์บอน-12 สัญลักษณ์ของหน่วยนี้คือ amu ย่อมาจาก atomic mass unit ยังมีใช้ในงานตีพิมพ์เก่า ๆ โดยทั่วไปหน่วยมวลอะตอมนี้จะเขียนโดยไม่มีหน่วยกำกับ ในบทความวิชาการทาง biochemistry และ molecular biology นั้นจะใช้หน่วน ดัลตัน ย่อ "Da" เนื่องจากโปรตีน นั้นเป็นโมเลกุลขนาดใหญ่ โดยทั่วไปจึงมีการใช้หน่วย กิโลดัลตัน หรือ "kDa" เท่ากับ 1000 ดัลตัน.

ใหม่!!: อะตอมและหน่วยมวลอะตอม · ดูเพิ่มเติม »

ออกซิเจน

ออกซิเจน (Oxygen) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ O และเลขอะตอม 8 ธาตุนี้พบมาก ทั้งบนโลกและทั่วทั้งจักรวาล โมเลกุลออกซิเจน (O2 หรือที่มักเรียกว่า free oxygen) บนโลกมีความไม่เสถียรทางเทอร์โมไดนามิกส์จึงเกิดปฏิกิริยาออกซิเดชันกับธาตุอื่น ๆ ได้ง่าย ออกซิเจนเกิดขึ้นครั้งแรกในโลกจากการสังเคราะห์ด้วยแสงของแบคทีเรียและพื.

ใหม่!!: อะตอมและออกซิเจน · ดูเพิ่มเติม »

ออกไซด์

ออกไซด์ หมายถึง สารประกอบ ที่เกิดจาก ธาตุออกซิเจน รวมกับธาตุอื่นๆ; ออกไซด์ของโลหะ ออกไซด์ของโลหะส่วนใหญ่เป็น สารประกอบไอออนิก และเป็นเบส เช่น แคลเซียมออกไซด์ (CaO) ออกไซด์ของโลหะทรานซิชั่น อาจเรียกว่า สนิม; ออกไซด์ของกึ่งโลหะ รวมถึง ออกไซด์ของโลหะบางชนิด เป็นได้ทั้งกรดและเบส เช่น อะลูมิเนียมออกไซด์ (Al2O3) ฯลฯ; ออกไซด์ของอโลหะ เป็นสารประกอบโควาเลนต์ และเกือบทั้งหมดเป็นกรด เช่น คาร์บอนไดออกไซด์ (CO2).

ใหม่!!: อะตอมและออกไซด์ · ดูเพิ่มเติม »

ออร์บิทัลเชิงอะตอม

ออบิทัล เป็นทางคณิตศาสตร์ที่อธิบายคลื่นเหมือนพฤติกรรมของทั้ง อิเล็กตรอนหนึ่งหรือคู่ของอิเล็กตรอนในอะตอม ฟังก์ชันนี้สามารถใช้เพื่อคำนวณโอกาสในการหาอิเล็กตรอนของอะตอมใด ๆ หน้าที่เหล่านี้อาจเป็นกราฟสามมิติของสถานที่ที่น่าจะพบอิเล็กตรอน ระยะจึงอาจดูได้โดยตรงที่พื้นที่ทางกายภาพกำหนดโดยฟังก์ชันที่อิเล็กตรอน โดยที่ orbitals atomic เป็นควอนตัมเป็นไปได้ของอิเล็กตรอนแต่ละบุคคลในกลุ่มอิเล็กตรอนรอบอะตอม เดียวตามที่อธิบายโดยฟังก์ชันโคจร แม้จะมีการเปรียบเทียบอย่างเห็นได้ชัดในดาวเคราะห์ซึ่งโคจรรอบดวงอาทิตย์ ซึ่งอิเล็กตรอนไม่สามารถอธิบายอนุภาคของแข็งและ orbitals ปรมาณูเพื่อไม่ค่อยหากเคยคล้ายรูปไข่เส้นทางของดาวเคราะห.

ใหม่!!: อะตอมและออร์บิทัลเชิงอะตอม · ดูเพิ่มเติม »

อะตอมไฮโดรเจน

วาดแสดงถึงอะตอมไฮโดรเจน มีเส้นผ่านศูนย์กลางประมาณสองเท่าของรัศมีของแบบจำลองของบอร์ (ไม่ใช่สัดส่วนจริง) อะตอมไฮโดรเจน (hydrogen atom) คืออะตอมของไฮโดรเจนซึ่งเป็นธาตุเคมีชนิดหนึ่ง อะตอมที่มีค่าประจุไฟฟ้าเป็นกลางประกอบด้วยโปรตอนที่มีประจุบวกหนึ่งตัว และอิเล็กตรอนที่มีประจุลบหนึ่งตัวโคจรอยู่โดยรอบนิวเคลียสด้วยแรงคูลอมบ์ อะตอมไฮโดรเจนเป็นส่วนประกอบทางเคมีประมาณ 75% ของมวลพื้นฐานทั้งหมดของเอกภพนี้ (มวลเอกภพส่วนใหญ่ไม่ได้อยู่ในรูปแบบธาตุเคมี หรือแบริออน แต่ส่วนใหญ่อยู่ในรูปของสสารมืดและพลังงานมืด).

ใหม่!!: อะตอมและอะตอมไฮโดรเจน · ดูเพิ่มเติม »

อัลเบิร์ต ไอน์สไตน์

แอลเบิร์ต ไอน์สไตน์ (Albert Einstein, อัลแบร์ท ไอน์ชไตน์; 14 มีนาคม พ.ศ. 2422 – 18 เมษายน พ.ศ. 2498) เป็นนักฟิสิกส์ทฤษฎี ในวันที่ 15 กุมภาพันธ์ 2428 ชาวเยอรมันเชื้อสายยิว (ตามลำดับ) ซึ่งเป็นที่ยอมรับกันอย่างกว้างขวางว่าเป็นนักวิทยาศาสตร์ที่ยิ่งใหญ่ที่สุดในคริสต์ศตวรรษที่ 20 เขาเป็นผู้เสนอทฤษฎีสัมพัทธภาพ และมีส่วนร่วมในการพัฒนากลศาสตร์ควอนตัม สถิติกลศาสตร์ และจักรวาลวิทยา เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ใน..

ใหม่!!: อะตอมและอัลเบิร์ต ไอน์สไตน์ · ดูเพิ่มเติม »

อังสตรอม

อังสตรอม (angstrom, angström, หรือ ångström) มีสัญลักษณ์ คือ Å) เป็นหน่วยวัดความยาว แต่มิใช่หน่วยเอสไอ ทว่าเป็นที่ยอมรับกันสำหรับใช้ร่วมกับหน่วยเอสไอ บางครั้งใช้ระบุขนาดของอะตอม ความยาวของพันธะเคมี และสเปกตรัมแสงที่มองเห็น.

ใหม่!!: อะตอมและอังสตรอม · ดูเพิ่มเติม »

อัตราเร็วของแสง

ปรากฏการณ์เชเรนคอฟ ในเครื่องปฏิกรณ์นิวเคลียร์ เป็นผลมาจาก อิเล็กตรอนเคลื่อนที่เร็วกว่าแสงที่เดินทางในน้ำ อัตราเร็วของแสง (speed of light) ในสุญญากาศ มีนิยามว่าเท่ากับ 299,792,458 เมตรต่อวินาที (หรือ 1,080,000,000 กิโลเมตรต่อชั่วโมง หรือประมาณ 186,000.000 ไมล์ต่อวินาที หรือ 671,000,000 ไมล์ต่อชั่วโมง) ค่านี้เขียนแทนด้วยตัว c ซึ่งมาจากภาษาละตินคำว่า celeritas (แปลว่า อัตราเร็ว) และเรียกว่าเป็นค่าคงที่ของไอน์สไตน์ แสงเป็นสิ่งที่แปลกประหลาดนั่นคือไม่ว่าผู้สังเกตจะเคลื่อนที่หรือหยุดนิ่ง ไม่ว่าจะอยู่ในสถานที่ใด ด้วยเงื่อนไขใด อัตราเร็วของแสงที่ผู้สังเกตคนนั้นวัดได้ จะเท่าเดิมเสมอ ซึ่งขัดกับความรู้สึกของคนทั่วไป แต่เป็นไปตาม ทฤษฎีสัมพัทธภาพ ของ อัลเบิร์ต ไอน์สไตน์ สังเกตว่าอัตราเร็วของแสงในสุญญากาศ เป็น นิยาม ไม่ใช่ การวัด ในหน่วยเอสไอกำหนดให้ เมตร มีนิยามว่าเป็นระยะทางที่แสงเดินทางในสุญญากาศในเวลา 1/299,792,458 วินาที แสงที่เดินทางผ่านตัวกลางโปร่งแสง (คือไม่เป็นสุญญากาศ) จะมีอัตราเร็วต่ำกว่า c อัตราส่วนของ c ต่ออัตราเร็วของแสงที่เดินทางผ่านในตัวกลาง เรียกว่า ดรรชนีหักเหของตัวกลางนั้น โดยเมื่อผ่านแก้ว จะมีดรรชนีหักเห 1.5-1.9 ผ่านน้ำจะมีดรรชีนีหักเห 1.3330 ผ่านเบนซินจะมีดรรชนีหักเห 1.5012 ผ่านคาร์บอนไดซัลไฟต์จะมีดรรชนีหักเห 1.6276 ผ่านเพชรจะมีดรรชนีหักเห 2.417 ผ่านน้ำแข็งจะมีดรรชนีหักเห 1.309.

ใหม่!!: อะตอมและอัตราเร็วของแสง · ดูเพิ่มเติม »

อันตรกิริยาอย่างอ่อน

อิเล็กตรอนปฏินิวทรืโนอย่างละหนึ่งตัว ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อน (weak interaction) หรือบางครั้งเรียกกันทั่วไปว่า แรงนิวเคลียร์อย่างอ่อน (weak nuclear force) เป็นกลไกที่รับผิดชอบแรงอ่อนหรือแรงนิวเคลียร์อ่อน แรงนี้เป็นหนึ่งในสี่แรงพื้นฐาน่ของธรรมชาติที่รู้จักกันดีในการปฏิสัมพันธ์, แรงที่เหลือได้แก่อันตรกิริยาอย่างเข้ม, แรงแม่เหล็กไฟฟ้าและแรงโน้มถ่วง อันตรกิริยาอย่างอ่อนเป็นผู้รับผิดชอบต่อการสลายให้กัมมันตรังสีของอนุภาคย่อยของอะตอม และมันมีบทบาทสำคัญในปฏิกิริยานิวเคลียร์ฟิชชัน ทฤษฎีของอันตรกิริยาอย่างอ่อนบางครั้งเรียกว่าควอนตัม flavordynamics (QFD), คล้ายกับ QCD และ QED, แต่คำนี้ที่ไม่ค่อยได้ใช้เพราะแรงอ่อนเป็นที่เข้าใจกันดีที่สุดในแง่ของทฤษฎีไฟฟ้าอ่อน (electro-weak theory (EWT)) ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อนเกิดจากการปล่อยหรือการดูดซึมของ W และ Z โบซอน อนุภาคทุกตัวในตระกูลเฟอร์มิออนที่รู้จักกันแล้วมีปฏิสัมพันธ์ต่อกันผ่านทางอันตรกิริยาอย่างอ่อน อนุภาคเหล่านั้นมีสปินครึ่งจำนวนเต็ม (หนึ่งในคุณสมบัติพื้นฐานของอนุภาค) พวกมันสามารถเป็นอนุภาคมูลฐานเช่นอิเล็กตรอนหรืออาจจะเป็นอนุภาคผสมเช่นโปรตอน มวลของ W+ W- และ Z โบซอน แต่ละตัวจะมีขนาดใหญ่กว่ามวลของโปรตอนหรือของนิวตรอนอย่างมาก สอดคล้องกับช่วงระยะทำการที่สั้นของแรงที่อ่อน แรงถูกเรียกว่าอ่อนเพราะความแรงของสนามในระยะทางที่กำหนดโดยทั่วไปจะมีขนาดเป็นเลขยกกำลังที่น้อยกว่าแรงนิวเคลียร์อย่างเข้มและแรงแม่เหล็กไฟฟ้ามาก ๆ ในช่วงยุคของควาร์ก แรงไฟฟ้าอ่อน (electroweak force) แยกออกเป็นแรงแม่เหล็กไฟฟ้​​าและแรงอ่อน ตัวอย่างที่สำคัญของอันตรกิริยาอย่างอ่อนได้แก่การสลายให้อนุภาคบีตา และการผลิตดิวเทอเรียมจากไฮโดรเจนที่จำเป็นเพื่อให้พลังงานในกระบวนการเทอร์โมนิวเคลียร์ของดวงอาทิตย์ เฟอร์มิออนส่วนใหญ่จะสลายตัวโดยอันตรกิริยาอย่างอ่อนไปตามเวลา การสลายตัวดังกล่าวยังทำให้การหาอายุด้วยวืธีเรดิโอคาร์บอน (radiocabon dating) มีความเป็นไปได้เมื่อคาร์บอน-14 สูญสลายผ่านอันตรกิริยาอย่างอ่อนกลายเป็นไนโตรเจน-14 นอกจากนี้มันยังสามารถสร้างสารเรืองแสงรังสี (radioluminescence) ที่ใช้กันทั่วไปในการส่องสว่างทริเทียม (tritium illumination) และในสาขาที่เกี่ยวข้องกับ betavoltaics ควาร์กเป็นผู้สร้างอนุภาคผสมเช่นนิวตรอนและโปรตอน ควาร์กมีหกชนิดที่เรียกว่า "ฟเลเวอร์" (flavour) ได้แก่ อัพ, ดาวน์, สเตรนจ์, ชาร์ม, ทอปและบอตทอม - ซึ่งเป็นคุณสมบัติของอนุภาคผสมเหล่านั้น อันตรกิริยาอย่างอ่อนเป็นหนึ่งเดียวในแง่ที่ว่ามันจะยอมให้ควาร์กสามารถที่จะสลับฟเลเวอร์ของพวกมันไปเป็นอย่างอื่นได้ ตัวอย่างเช่นในระหว่างการสลายตัวในอนุภาคบีตาลบ ดาวน์ควาร์กตัวหนึ่งสลายตัวกลายเป็นอัพควาร์ก เป็นการแปลงนิวตรอนให้เป็นโปรตอน นอกจากนี้อันตรกิริยาอย่างอ่อนยังเป็นปฏิสัมพันธ์พื้นฐานอย่างเดียวเท่านั้นที่ทำลายการสมมาตรแบบเท่าเทียมกัน และในทำนองเดียวกัน มันเป็นอย่างเดียวเท่านั้นที่ทำลาย CP-สมมาตร.

ใหม่!!: อะตอมและอันตรกิริยาอย่างอ่อน · ดูเพิ่มเติม »

อันตรกิริยาอย่างเข้ม

นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.

ใหม่!!: อะตอมและอันตรกิริยาอย่างเข้ม · ดูเพิ่มเติม »

อันตรกิริยาของสปินกับออร์บิท

ในการศึกษาฟิสิกส์ควอนตัม อันตรกิริยาของสปินกับออร์บิท (spin–orbit interaction, spin–orbit effect หรือ spin–orbit coupling) คืออันตรกิริยาระหว่างสปินของอนุภาคหนึ่งกับกับการเคลื่อนที่ของอนุภาคนั้น ตัวอย่างแรกที่สุดและเป็นตัวอย่างซึ่งเป็นที่รู้จักดีที่สุด คืออันตรกิริยาของสปินกับออร์บิทที่ทำให้เกิดการเคลื่อนตัวของระดับพลังงานอะตอมของอิเล็กตรอน อันเนื่องมาจากอันตรกิริยาทางแม่เหล็กไฟฟ้าระหว่างสปินของอิเล็กตรอนกับสนามแม่เหล็กที่เกิดจากการโคจรของอิเล็กตรอนรอบๆ นิวเคลียส การเคลื่อนตัวดังกล่าวนี้ตรวจจับได้จากการแยกแยะเส้นสเปกตรัม อีกปรากฏการณ์หนึ่งที่คล้ายคลึงกัน เกิดจากความสัมพันธ์ระหว่างโมเมนตัมเชิงมุมกับแรงนิวเคลียร์ชนิดเข้ม ที่เกิดขึ้นจากการที่โปรตอนและนิวตรอนเคลื่อนที่อยู่ภายในนิวเคลียสอะตอม ทำให้เกิดการเคลื่อนตัวของระดับพลังงานของมันในชั้นพลังงาน มีการศึกษาปรากฏการณ์สปิน-ออร์บิทของอิเล็กตรอนในสารกึ่งตัวนำและวัสดุอื่นอย่างกว้างขวางในสาขาวิชาสปินทรอนิกส์และนำไปสู่การประยุกต์ใช้ที่มีประโยชน์มากม.

ใหม่!!: อะตอมและอันตรกิริยาของสปินกับออร์บิท · ดูเพิ่มเติม »

อาร์กอน

อาร์กอน (Argon) เป็นธาตุเคมีในตารางธาตุที่มีสัญลักษณ์ Ar และเลขอะตอม 18 เป็นก๊าซมีตระกูล ตัวที่ 3 อยู่ในกลุ่ม 18 ก๊าซอาร์กอนประกอบเป็น 1% ของบรรยากาศของโลก ชื่ออาร์กอน มาจากภาษากรีกจากคำว่า αργον แปลว่า ไม่ว่องไว (inactive) ในขณะที่มีการอ้างอิงถึงความจริงที่ว่าองค์ประกอบเกือบจะไม่มีปฏิกิริยาทางเคมี ออคเต็ต สมบูรณ์ (ครบ8อิเล็กตรอน) ในเปลือกนอกทำให้อะตอมอาร์กอนที่มีความเสถียรภาพและความทนทานต่อพันธะกับองค์ประกอบอื่นๆที่อุณหภูมิสามจุดเท่ากับ 83.8058K เป็นจุดคงที่ที่กำหนดในอุณหภูมิระดับนานาชาติปี1990 อาร์กอนที่ผลิตโดยอุตสาหกรรมการกลั่นลำดับส่วนของอากาศและของเหลว อาร์กอนส่วนใหญ่จะใช้เป็นก๊าซเฉื่อยในการเชื่อมและกระบวนการทางอุตสาหกรรมที่อุณหภูมิสูงมีสารอื่นๆที่ปกติจะไม่ทำปฏิกิริยากลายเป็นทำปฏิกิริยา ตัวอย่างเช่น ชั้นบรรยากาศอาร์กอนนอกจากนี้ยังมีการปลดปล่อยก๊าซหลอด อาร์กอนทำให้ก๊าซสีเขียว-สีฟ้า โดเด่นด้วยแสงเลเซอร์ นอกจากนั่นอาร์กอนยังใช้ในการริเริ่มการเรืองแสงอีกด้ว.

ใหม่!!: อะตอมและอาร์กอน · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: อะตอมและอิเล็กตรอน · ดูเพิ่มเติม »

อิเล็กตรอนโวลต์

อิเล็กตรอนโวลต์ (electron volt / electronvolt, สัญลักษณ์: eV) เป็นหน่วยการวัดพลังงาน เท่ากับปริมาณของพลังงานจลน์ ที่เกิดขึ้นจากการที่อิเล็กตรอนอิสระเดินทางผ่านความต่างศักย์จากไฟฟ้าสถิตขนาด 1 โวลต์ในสุญญากาศ พลังงานหนึ่งอิเล็กตรอนโวลต์เป็นพลังงานที่น้อยมาก คือ หน่วยอิเล็กตรอนโวลต์ได้รับการยอมรับ (แต่ไม่แนะนำ) ให้ใช้กับระบบ SI หน่วยนี้ได้ถูกใช้อย่างแพร่หลายในวงการโซลิดสเตต ปรมาณู นิวเคลียร์ และฟิสิกส์อนุภาค และมักใช้ร่วมกับตัวนำหน้าหน่วย m k M หรือ G.

ใหม่!!: อะตอมและอิเล็กตรอนโวลต์ · ดูเพิ่มเติม »

อุณหภูมิ

อุณหภูมิของก๊าซอุดมคติอะตอมเดี่ยวสัมพันธ์กับค่าเฉลี่ยพลังงานจลน์ของอะตอม อุณหภูมิ คือการวัดค่าเฉลี่ยของพลังงานจลน์ของอนุภาคในสสารใดๆ ซึ่งสอดคล้องกับความร้อนหรือเย็นของสสารนั้น ในอดีตมีแนวคิดเกี่ยวกับอุณหภูมิเกิดขึ้นเป็น 2 แนวทาง คือตามแนวทางของหลักอุณหพลศาสตร์ และตามการอธิบายเชิงจุลภาคทางฟิสิกส์เชิงสถิติ แนวคิดทางอุณหพลศาสตร์นั้น ถูกพัฒนาขึ้นโดยลอร์ดเคลวิน โดยเกี่ยวข้องกับการวัดในเชิงมหภาค ดังนั้นคำจำกัดความอุณหภูมิในเชิงอุณหพลศาสตร์ในเบื้องแรก จึงระบุเกี่ยวกับค่าตัวแปรต่างๆ ที่สามารถตรวจวัดได้จากการสังเกต ส่วนแนวทางของฟิสิกส์เชิงสถิติจะให้ความเข้าใจในเชิงลึกยิ่งกว่าอุณหพลศาสตร์ โดยอธิบายถึงการสะสมจำนวนอนุภาคขนาดใหญ่ และตีความพารามิเตอร์ต่างๆ ในอุณหพลศาสตร์ (เชิงมหภาค) ในฐานะค่าเฉลี่ยทางสถิติของพารามิเตอร์ของอนุภาคในเชิงจุลภาค ในการศึกษาฟิสิกส์เชิงสถิติ สามารถตีความคำนิยามอุณหภูมิในอุณหพลศาสตร์ว่า เป็นการวัดพลังงานเฉลี่ยของอนุภาคในแต่ละองศาอิสระในระบบอุณหพลศาสตร์ โดยที่อุณหภูมินั้นสามารถมองเป็นคุณสมบัติเชิงสถิติ ดังนั้นระบบจึงต้องประกอบด้วยปริมาณอนุภาคจำนวนมากเพื่อจะสามารถบ่งบอกค่าอุณหภูมิอันมีความหมายที่นำไปใช้ประโยชน์ได้ ในของแข็ง พลังงานนี้พบในการสั่นไหวของอะตอมของสสารในสภาวะสมดุล ในแก๊สอุดมคติ พลังงานนี้พบในการเคลื่อนไหวไปมาของอนุภาคโมเลกุลของแก.

ใหม่!!: อะตอมและอุณหภูมิ · ดูเพิ่มเติม »

อูนไบเฮกเซียม

อูนไบเฮกเซียม (Unbihexium, Unbihexium) เป็นธาตุที่มีเลขอะตอมเท่ากับ 126 และมีสัญลักษณ์ Ubh "อูนไบเฮกเซียม" เป็นชื่อชั่วคราวในระบบ IUPAC และมีชื่อชั่วคราวอีกชื่อตามพยากรณ์ของดมีตรี เมนเดเลเยฟว่า "เอกา-พลูโทเนียม" (eka-plutonium) อูนไบเฮกเซียมเป็นธาตุในหมู่ซูเปอร์แอกทิไน.

ใหม่!!: อะตอมและอูนไบเฮกเซียม · ดูเพิ่มเติม »

องค์การวิจัยนิวเคลียร์ยุโรป

องค์การวิจัยนิวเคลียร์ยุโรป (European Organization for Nuclear Research; CERN; Organisation européenne pour la recherche nucléaire) เรียกโดยทั่วไปว่า "เซิร์น" เป็นองค์การความร่วมมือระหว่างประเทศในทวีปยุโรปเพื่อวิจัยและพัฒนาทางด้านนิวเคลียร์ ก่อตั้งเมื่อวันที่ 29 กันยายน พ.ศ. 2497 โดยมีประเทศสมาชิกก่อตั้ง 12 ประเทศ มีสำนักงานใหญ่อยู่ที่กรุงเจนีวา สวิตเซอร์แลนด์ เมื่อแรกก่อตั้ง เซิร์น มีชื่อว่า "สภาวิจัยนิวเคลียร์ยุโรป" หรือ Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Research) ซึ่งเป็นที่มาของชื่อย่อ CERN บทบาทหลักของเซิร์นคือ การจัดเตรียมเครื่องเร่งอนุภาคและโครงสร้างอื่นๆที่จำเป็นต่อการวิจัยด้านฟิสิกส์อนุภาค เซิร์นเป็นสถานที่ทำการทดลองมากมายที่เกิดจากความร่วมมือระหว่างประเทศเพื่อนำไปใช้ให้เกิดประโยชน์ และยังมีชื่อเสียงในฐานะเป็นต้นกำเนิดของเวิลด์ไวด์เว็บ สำนักงานหลักที่เขตเมแร็ง มีศูนย์คอมพิวเตอร์ขนาดใหญ่ที่มีอุปกรณ์ประมวลผลข้อมูลที่มีประสิทธิภาพสูงมากเพื่อการวิเคราะห์ข้อมูลจากการทดลอง และเนื่องจากจำเป็นต้องทำให้นักวิจัยในสถานที่อื่นสามารถนำข้อมูลเหล่านี้ไปใช้ได้ จึงต้องมีฮับสำหรับข่ายงานบริเวณกว้างอีกด้วย ในฐานะที่เป็นองค์การระหว่างประเทศ สถานที่ของเซิร์นจึงไม่อยู่ภายใต้อำนาจทางกฎหมายของทั้งสวิตเซอร์แลนด์และฝรั่งเศส ใน..

ใหม่!!: อะตอมและองค์การวิจัยนิวเคลียร์ยุโรป · ดูเพิ่มเติม »

อนุภาคบีตา

อานุภาพการทะลุทะลวงของรังสีสามชนิดเปรียบเทียบกัน รังสีแอลฟาประกอบด้วยกลุ่มนิวเคลียสของฮีเลียมและไม่สามารถทะลุทะลวงแผ่นกระดาษได้ รังสีบีตาประกอบด้วยกลุ่มของอิเล็กตรอนหรือโพซิตรอนจะไม่สามารถทะลุทะลวงแผ่นอะลูมิเนียมได้ รังสีแกมมาจะถูกดูดซับด้วยตะกั่ว อนุภาคบีตา (Beta particle) เป็นกลุ่มของอิเล็กตรอนหรือโพซิตรอนความเร็วสูงและพลังงานสูงที่ปล่อยออกมาจากบางชนิดของนิวเคลียสที่มีกัมมันตรังสี เช่นโปแตสเซียม-40 อนุภาคบีตาที่ปล่อยออกมาในรูปของการแผ่รังสีแบบไอโอไนซิ่ง (ionizing radiation) จะเป็นรังสี เรียกว่ารังสีบีตา อนุภาคบีตาเกิดจากการสลายให้กัมมันตรังสีที่เรียกว่าการสลายให้อนุภาคบีตา อนุภาคบีตาถูกกำหนดโดยอีกษรกรีกว่า β มีสองรูปแบบของการสลายบีตา ได่แก่ β− and β+ ซึ่งก่อให้เกิดอิเล็กตรอนและโพซิตรอนตามลำดั.

ใหม่!!: อะตอมและอนุภาคบีตา · ดูเพิ่มเติม »

อนุภาคมูลฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ในฟิสิกส์ของอนุภาค อนุภาคมูลฐาน (elementary particle หรือ fundamental particle) หมายถึงอนุภาคหนึ่งที่โครงสร้างย่อยไม่เป็นที่รู้จัก ดังนั้นเราจึงไม่รู้ว่ามันประกอบขึ้นด้วยอนุภาคอื่นหรือไม่ มันเป็นหน่วยย่อยที่สุดในทางทฤษฎีฟิสิกส์ทั่วไป เราไม่ถือว่ามันประกอบขึ้นมาจากสิ่งใดอีก อนุภาคมูลฐานที่เรารู้จักกันดีที่สุดคือ อิเล็กตรอน ซึ่งไม่สามารถแยกย่อยเป็นอนุภาคใดๆได้อีก อนุภาคมูลฐานที่รู้จักแล้ว ได้แก่ เฟอร์มิออนพื้นฐาน (ควาร์ก, เลปตอน, ปฏิควาร์ก และปฏิเลปตอน) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคสสาร" และ "อนุภาคปฏิสสาร" อีกชนิดหนึ่งได้แก่ โบซอนพื้นฐาน (เกจโบซอน และอนุภาคฮิกส์) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคแรง" ที่เป็นตัวเชื่อมปฏิสัมพันธ์พื้นฐานในหมู่เฟอร์มิออนด้วยกัน อนุภาคที่ประกอบด้วยอนุภาคมูลฐานตั้งแต่สองอนุภาคขึ้นไปจะเป็น "อนุภาคผสม" (composite particle) สสารในชีวิตประจำวันจะประกอบด้วยอะตอม ที่ครั้งหนึ่งเคยถูกสันนิษฐานว่ามันเป็นอนุภาคมูลฐานของสสาร คำว่า "อะตอม" แปลว่า "แบ่งไม่ได้" ในภาษากรีก แม้ว่าการมีอยู่ของอะตอมยังคงเป็นที่ถกเถียงกันจนถึงประมาณปี 1910 อย่างที่นักฟิสิกส์ชั้นนำบางคนถือว่าโมเลกุลเป็นภาพลวงตาทางคณิตศาสตร์ และถือว่าสสารอย่างสุดขั้วที่สุดจะประกอบด้วยพลังงาน ในไม่ช้า มีการค้นพบว่าอะตอมประกอบด้วยองค์ประกอบย่อย เมื่อเริ่มทศวรรษที่ 1930 อิเล็กตรอนและโปรตอนได้ถูกค้นพบ พร้อมกับโฟตอนซึ่งเป็นอนุภาคของรังสีแม่เหล็กไฟฟ้า ในช่วงเวลานั้น การค้นพบล่าสุดของกลศาสตร์ควอนตัมได้มีก​​ารเปลี่ยนแปลงอย่างรุนแรงของแนวคิดของอนุภาค อย่างเช่นอนุภาคเดี่ยวดูเหมือนจะสามารถขยายสนามได้อย่างที่คลื่นสามารถทำได้ (ทวิภาคของอนุภาคกับคลื่น (particle-wave duality)) ข้อความที่ขัดแย้งยังคงหลีกเลี่ยงคำอธิบายที่น่าพอใจ โดยผ่านทางทฤษฎีควอนตัม โปรตอนและนิวตรอนถูกพบว่าประกอบด้วยควาร์กหลายตัว ได้แก่อัพควาร์กและดาวน์ควาร์ก ซึ่งในปัจจุบันถือว่าพวกนี้เป็นอนุภาคมูลฐาน และภายในโมเลกุลหนึ่ง สามองศาอิสระของอิเล็กตรอน (ประจุ, สปินและวงโคจร) สามารถแยกผ่านทาง wavefunction ออกเป็นสาม'อนุภาคคล้าย' (quasiparticle) (Holon, spinon และ Orbiton) แต่อิเล็กตรอนอิสระ ซึ่งไม่ได้กำลังโคจรรอบนิวเคลียส จะขาดการเคลื่อนไหวในการโคจร และจะปรากฏในรูปที่แบ่งแยกไม่ได้ จึงยังคงถือว่าเป็นอนุภาคมูลฐาน ราวปี 1980 สถานะของอนุภาคมูลฐานที่เป็นมูลฐานอย่างแท้จริง-"องค์ประกอบสุดชั้ว" ของสสาร- ได้ถูกละทิ้งเป็นส่วนใหญ่สำหรับแนวโน้มที่จะเป็นการปฏิบัติมากขึ้น ได้ถูกประมวลอยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค ซึ่งเป็นทฤษฎีที่ประสบความสำเร็จจากทดลองทางวิทยาศาสตร์มากที่สุด การขยายความและทฤษฎีทั้งหลายที่อธิบายเกินกว่าแบบจำลองมาตรฐาน รวมทั้งทฤษฎี supersymmetry ที่นิยมกันอย่างสุดขั้ว ได้เพิ่มจำนวนอนุภาคมูลฐานเป็นสองเท่าโดยการตั้งสมมติฐานที่แต่ละอนุภาคที่รู้จักกันแล้วควบรวมเข้ากับพันธมิตร"เงา" ทำให้มีจำนวนอนุภาคมากกว่าเดิม แม้ว่าสุดยอดพันธมิตรดังกล่าวทั้งหมดยังคงไม่ได้ถูกค้นพบแต่อย่างใด ในขณะเดียวกัน โบซอนมูลฐานที่เป็นตัวเชื่อมแรงโน้มถ่วงที่เรียกว่า แกรวิตอน (Graviton) ก็ยังคงเป็นสมมุติฐานอยู.

ใหม่!!: อะตอมและอนุภาคมูลฐาน · ดูเพิ่มเติม »

อ็องตวน ลาวัวซีเย

อ็องตวน-โลร็อง เดอ ลาวัวซีเย (Antoine-Laurent de Lavoisier; 26 สิงหาคม พ.ศ. 2286 - 8 พฤษภาคม พ.ศ. 2337) เป็นนักวิทยาศาสตร์ชาวฝรั่งเศสผู้ซึ่งต้องจบชีวิตลงโดยกิโยติน เขามีผลงานสำคัญคือ ได้ตั้งกฎการอนุรักษ์มวล (หรือกฎทรงมวล) และการล้มล้างทฤษฎีโฟลจิสตัน ซึ่งเป็นประโยชน์มากในการศึกษาวิชาเคมี.

ใหม่!!: อะตอมและอ็องตวน ลาวัวซีเย · ดูเพิ่มเติม »

ฮันส์ ไกเกอร์

ันเนส ฮันส์ วิลเลม เกนการ์ ไกเกอร์ (Johannes "Hans" Wilhelm "Gengar" Geiger; 30 กันยายน ค.ศ. 1882 – 24 กันยายน ค.ศ. 1945) เป็นนักฟิสิกส์ชาวเยอรมัน เป็นที่รู้จักในฐานะผู้ร่วมคิดค้นไกเกอร์มูลเลอร์เคาน์เตอร์ และการทดลองของไกเกอร์-มาร์สเดน ซึ่งเป็นการค้นพบ นิวเคลียสอะตอม ปี..

ใหม่!!: อะตอมและฮันส์ ไกเกอร์ · ดูเพิ่มเติม »

ฮีเลียม

ีเลียม (Helium) เป็นธาตุเคมีที่มีสัญลักษณ์ว่า He และมีเลขอะตอมเท่ากับ 2 ฮีเลียมเป็นแก๊สไม่มีสี ไม่มีกลิ่น ไม่มีรส ไม่เป็นพิษ เฉื่อย มีอะตอมเดี่ยวซึ่งถูกจัดให้อยู่ในหมู่แก๊สมีตระกูลบนตารางธาตุ จุดเดือดและจุดหลอมเหลวของฮีเลียม มีค่าต่ำสุดกว่าบรรดาธาตุทั้งหมดในตารางธาตุ และมันจะปรากฏในอยู่รูปของแก๊สเท่านั้น ยกเว้นในสภาวะที่เย็นยิ่งยว.

ใหม่!!: อะตอมและฮีเลียม · ดูเพิ่มเติม »

ฌ็อง แปแร็ง

็อง บาติสต์ แปแร็ง (Jean Baptiste Perrin; 30 กันยายน ค.ศ. 1870 – 17 เมษายน ค.ศ. 1942) เป็นนักฟิสิกส์ชาวฝรั่งเศส และผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: อะตอมและฌ็อง แปแร็ง · ดูเพิ่มเติม »

จอห์น ดาลตัน

อห์น ดาลตัน (John Dalton; 6 กันยายน ค.ศ. 1766 - 27 กรกฎาคม ค.ศ. 1844) เป็นนักเคมีและฟิสิกส์ เกิดที่ Eaglesfield ใกล้กับ Cockermouth ใน Cumbria ประเทศอังกฤษ มีชื่อเสียงจากการเป็นผู้ริเริ่มทฤษฎีอะตอม และการทำวิจัยในเรื่องการอธิบายสาเหตุตาบอดสี.

ใหม่!!: อะตอมและจอห์น ดาลตัน · ดูเพิ่มเติม »

จุด (เรขาคณิต)

ป็นแนวความคิดที่ใช้กำหนดตำแหน่งที่แน่นอนในปริภูมิ ซึ่งจุดนั้นไม่มีปริมาตร พื้นที่ หรือความยาว มีการใช้อย่างแพร่หลายทั้งในภูมิศาสตร์ ฟิสิกส์ ภาพกราฟิกส์เวกเตอร์ (ทั้งสองมิติและสามมิติ) และในสาขาอื่นๆ อีกมากมาย สำหรับในทางคณิตศาสตร์ จุดเป็นส่วนหนึ่งของทอพอโลยี ซึ่งรูปแบบใด ๆ ในปริภูมิ จุดคือองค์ประกอบพื้นฐานของวัตถุรูปแบบใด ๆ ในปริภูมิ ถึงแม้จุดจะไร้ขนาดและทิศทาง แต่การเขียนจุดขึ้นมาลอย ๆ ยังจำเป็นต้องเขียนแทนด้วยวงกลมทึบขนาดเล็ก (หรือเท่าปลายดินสอ) เพื่อแสดงให้เห็นว่ามีจุดอยู่ ณ ตำแหน่งนั้น.

ใหม่!!: อะตอมและจุด (เรขาคณิต) · ดูเพิ่มเติม »

ธาตุ

ในทางเคมี ธาตุ คือ สารบริสุทธิ์ซึ่งประกอบด้วยอนุภาคมูลฐานเลขอะตอม อันเป็นจำนวนของโปรตอนในนิวเคลียสของธาตุนั้น ตัวอย่างธาตุที่คุ้นเคยกัน เช่น คาร์บอน ออกซิเจน อะลูมิเนียม เหล็ก ทองแดง ทองคำ ปรอทและตะกั่ว จนถึงเดือนพฤษภาคม..

ใหม่!!: อะตอมและธาตุ · ดูเพิ่มเติม »

ธาตุหลัก

ปรัชญาและโลกทัศน์ต่าง ๆ มีชุด ธาตุหลัก เชื่อกันว่า ธาตุหลักเหล่านี้สะท้อนส่วนและหลักการพื้นฐานที่สุดซึ่งประกอบอยู่ในทุกสิ่ง หรือทุกสิ่งมีองค์ประกอบและพลังอาศัยธาตุหลักเหล่านี้ นักประวัติศาสตร์สืบย้อนวิวัฒนาการของทฤษฎีธาตุเคมีสมัยใหม่ เช่นเดียวกับสารประกอบเคมีและสารผสมสสารธรรมชาติไปถึงแบบจำลองสมัยกลางและสมัยกรีก.

ใหม่!!: อะตอมและธาตุหลัก · ดูเพิ่มเติม »

ธาตุหลังยูเรเนียม

ตุกัมมันตรังสีอย่างรุนแรง ธาตุเหล่านี้มีความรู้ความเข้าใจเกี่ยวกับพวกมันน้อยมากเนื่องจากความไม่เสถียรและกัมมันตภาพรังสี ในทางเคมี ธาตุหลังยูเรเนียม (transuranium element, transuranic element) เป็นธาตุเคมีซึ่งมีเลขอะตอมมากกว่า 92 (เลขอะตอมของยูเรเนียม) ธาตุเหล่านี้เป็นธาตุไม่เสถียรและจะสลายตัวให้รังสีจนกลายสภาพไปเป็นธาตุอื่น.

ใหม่!!: อะตอมและธาตุหลังยูเรเนียม · ดูเพิ่มเติม »

ทริเทียม

ทริเทียม (tritium) เป็นไอโซโทปหนึ่งในสามชนิดของอะตอมไฮโดรเจนซึ่งได้แก่ ไฮโดรเจนธรรมดาหรือโปรเทียม ดิวเทอเรียม และทริเทียม (มีสัญลักษณ์ T หรือ 3H) องค์ประกอบของทริเทียมมีนิวเคลียสเกาะกันอยู่ด้วยอนุภาคมูลฐาน 2 ชนิดคือ โปรตอน 1 อนุภาคกับนิวตรอน 2 อนุภาค และมีอนุภาคมูลฐานอีกชนิดหนึ่งคืออิเล็กตรอนอีก 1 อนุภาคโคจรอยู่รอบนิวเคลียส ทริเทียมเป็นไอโซโทปกัมมันตรังสีโดยเกิดการสลายกัมมันตรังสีแบบการสลายให้รังสีบีตา (b-) หรือก็คืออนุภาคอิเล็กตรอน ด้วยครึ่งชีวิต 12.32 ปี โดยแปรเป็นธาตุฮีเลียม-3 หมวดหมู่:วัสดุนิวเคลียร์ หมวดหมู่:ไอโซโทป.

ใหม่!!: อะตอมและทริเทียม · ดูเพิ่มเติม »

ทรงรี

ทรงรี วาดในซอฟต์แวร์นิวพลอต ทรงรี คือผิวกำลังสองชนิดหนึ่ง ในสามมิติ เทียบได้กับวงรีในสองมิติ รูปสมการมาตรฐานของทรงรี บนแกน x-y-z ในระบบพิกัดคาร์ทีเซียน คือ ++.

ใหม่!!: อะตอมและทรงรี · ดูเพิ่มเติม »

ทฤษฎีกรุป

ทฤษฎีกรุป (Group theory) เป็นการศึกษาเรื่องสมมาตรด้วยวิธีการทางคณิตศาสตร์ โดยใช้โครงสร้างที่เรียกว่ากรุป ซึ่งก็คือเซตและการดำเนินการทวิภาคแบบปิดโดยสอดคล้องกับสมบัติสามข้อต่อไปนี้.

ใหม่!!: อะตอมและทฤษฎีกรุป · ดูเพิ่มเติม »

ทฤษฎีอะตอม

ในวิชาเคมีและฟิสิกส์ ทฤษฎีอะตอมคือทฤษฎีที่ว่าด้วยธรรมชาติของสสาร ซึ่งกล่าวว่า สสารทุกชนิดประกอบด้วยหน่วยเล็กๆ ที่เรียกว่า อะตอม ซึ่งตรงกันข้ามกับแนวคิดดั้งเดิมที่แบ่งสสารออกเป็นหน่วยเล็กหลายชนิดตามแต่อำเภอใจ แนวคิดนี้เริ่มต้นเป็นแนวคิดเชิงปรัชญาของชาวกรีกโบราณ (ดีโมครีตุส) และชาวอินเดีย ต่อมาได้เข้ามาสู่วิทยาศาสตร์กระแสหลักในช่วงต้นคริสต์ศตวรรษที่ 19 เมื่อมีการค้นพบในสาขาวิชาเคมีซึ่งพิสูจน์ว่า พฤติกรรมของสสารนั้นดูเหมือนมันประกอบขึ้นด้วยอนุภาคขนาดเล็ก คำว่า "อะตอม" (จากคำกริยาในภาษากรีกโบราณว่า atomos, 'แบ่งแยกไม่ได้') ถูกนำมาใช้เรียกอนุภาคพื้นฐานที่ประกอบกันขึ้นเป็นธาตุเคมี เพราะนักเคมีในยุคนั้นเชื่อว่ามันคืออนุภาคมูลฐานของสสาร อย่างไรก็ดี เมื่อเข้าสู่คริสต์ศตวรรษที่ 20 การทดลองจำนวนมากเกี่ยวกับแม่เหล็กไฟฟ้าและสารกัมมันตรังสี ทำให้นักฟิสิกส์ค้นพบว่าสิ่งที่เราเรียกว่า "อะตอมซึ่งแบ่งแยกไม่ได้อีก" นั้นที่จริงแล้วยังประกอบไปด้วยอนุภาคที่เล็กกว่าอะตอมอีกจำนวนมาก (ตัวอย่างเช่น อิเล็กตรอน โปรตอน และนิวตรอน) ซึ่งสามารถแยกแยะออกจากกันได้ อันที่จริงแล้วในสภาวะแวดล้อมสุดโต่งดังเช่นดาวนิวตรอนนั้น อุณหภูมิและความดันที่สูงอย่างยิ่งยวดกลับทำให้อะตอมไม่สามารถดำรงอยู่ได้เลยด้วยซ้ำ เมื่อพบว่าแท้จริงแล้วอะตอมยังแบ่งแยกได้ ในภายหลังนักฟิสิกส์จึงคิดค้นคำว่า "อนุภาคมูลฐาน" (elementary particle) เพื่อใช้อธิบายถึงอนุภาคที่แบ่งแยกไม่ได้ วิทยาศาสตร์ที่ศึกษาเกี่ยวกับอนุภาคที่เล็กกว่าอะตอมนี้เรียกว่า ฟิสิกส์อนุภาค (particle physics) ซึ่งนักฟิสิกส์ในสาขานี้หวังว่าจะสามารถค้นพบธรรมชาติพื้นฐานที่แท้จริงของอะตอมได้.

ใหม่!!: อะตอมและทฤษฎีอะตอม · ดูเพิ่มเติม »

ทฤษฎีคอพัสคิวลาร์ของแสง

ทฤษฎีคอพัสคิวลาร์ของแสง (corpuscular theory of light) คือทฤษฎีที่ริเริ่มโดยเซอร์ไอแซก นิวตัน โดยกล่าวว่าแสงประกอบขึ้นด้วยอนุภาคเล็กๆ เรียกว่า คอพัสเคิลเดินทางเป็นเส้นตรงด้วยความเร็วจำกัดค่าหนึ่ง และมีพลังงานจลน์ ทฤษฎีของนิวตันมีอิทธิพลอยู่เป็นเวลามากกว่า 100 ปี และสำคัญกว่า ของคริสตียาน เฮยเคินส์ ส่วนหนึ่งเนื่องจากชื่อเสียงของนิวตันนั่นเอง อย่างไรก็ดีเมื่อทฤษฎีคอร์พัสคิวลาร์ไม่สามารถอธิบายปรากฏการณ์เลี้ยวเบนของคลื่น การแทรกสอด และการโพลาไรซ์ของแสงได้อย่างเหมาะสม มันจึงถูกละทิ้งไป ทฤษฎีคลื่นของเฮยเคินส์จึงเป็นที่ยอมรับต่อม.

ใหม่!!: อะตอมและทฤษฎีคอพัสคิวลาร์ของแสง · ดูเพิ่มเติม »

ทวิภาคของคลื่น–อนุภาค

ทวิภาคของคลื่น–อนุภาค (Wave–particle duality) เป็นสมมติฐานที่กล่าวว่าอนุภาคทุกชนิดมีคุณสมบัติที่เป็นทั้งคลื่นและอนุภาค และในทางกลับกันคลื่นก็จะมีทั้งคุณสมบัติของคลื่นเองและอนุภาคด้วย แนวคิดนี้เป็นศูนย์กลางของกลศาสตร์ควอนตัม ซึ่งเกิดขึ้นเนื่องจากการที่แนวคิดแบบดั้งเดิมเกี่ยวกับ "อนุภาค" และ "คลื่น" ไม่สามารถใช้อธิบายพฤติกรรมของวัตถุในระดับของควอนตัมได้ การแปลความกลศาสตร์ควอนตัมมาตรฐานอธิบายปฏิทรรศน์นี้ว่าเป็นคุณสมบัติพื้นฐานของเอกภพ ขณะที่การแปลความแบบอื่นๆ อธิบายลักษณะทวิภาคนี้ว่าเป็นผลสืบเนื่องที่เกิดขึ้นมาจากขีดจำกัดต่างๆ อันหลากหลายของผู้สังเกตการณ์เอง ในที่นี้จะมุ่งประเด็นไปที่การอธิบายพฤติกรรมนี้จากมุมมองของการตีความโคเปนเฮเกน (Copenhagen interpretation) ซึ่งนิยมใช้กันอย่างกว้างขวาง โดยถือว่าความเป็นทวิภาคของคลื่น-อนุภาค เป็นรูปแบบหนึ่งของหลักการการเติมเต็ม (complementarity) ว่าปรากฏการณ์หนึ่งๆ สามารถมองได้ทั้งในทางหนึ่งหรืออีกทางหนึ่งก็ได้ แต่จะไม่สามารถมองได้ทั้งสองทางพร้อมๆ กัน.

ใหม่!!: อะตอมและทวิภาคของคลื่น–อนุภาค · ดูเพิ่มเติม »

ทองคำ

ทองคำ (gold) คือธาตุเคมีที่มีหมายเลขอะตอม 79 และสัญลักษณ์คือ Au (มาจากภาษาละตินว่า aurum) จัดอยู่ในกลุ่มธาตุโลหะมีสกุลชนิดหนึ่ง ทองคำเป็นธาตุโลหะทรานซิชันสีเหลืองทองมันวาวเนื้ออ่อนนุ่ม สามารถยืดและตีเป็นแผ่นได้ ทองคำไม่ทำปฏิกิริยากับสารเคมีส่วนใหญ่ ทองคำใช้เป็นทุนสำรองทางการเงินของหลายประเทศ ใช้ประโยชน์เป็นเครื่องประดับ งานทันตกรรม และอุปกรณ์อิเล็กทรอนิก.

ใหม่!!: อะตอมและทองคำ · ดูเพิ่มเติม »

ทางช้างเผือก

ทางช้างเผือก คือดาราจักรที่มีระบบสุริยะและโลกของเราอยู่ เมื่อมองบนท้องฟ้าจะปรากฏเป็นแถบขมุกขมัวคล้ายเมฆของแสงสว่างสีขาว ซึ่งเกิดจากดาวฤกษ์จำนวนมากภายในดาราจักรที่มีรูปร่างเป็นแผ่นจาน ส่วนที่สว่างที่สุดของทางช้างเผือกอยู่ในกลุ่มดาวคนยิงธนู ซึ่งเป็นทิศทางไปสู่ใจกลางดาราจักร แต่เดิมนั้น นักดาราศาสตร์คิดว่าดาราจักรทางช้างเผือกมีลักษณะเป็นดาราจักรชนิดก้นหอยธรรมดา แต่หลังจากผ่านการประเมินครั้งใหม่ในปี พ.ศ. 2548 พบว่าทางช้างเผือกน่าจะเป็นดาราจักรชนิดก้นหอยมีคานเสียมากกว่า เมื่อเทียบกับเส้นศูนย์สูตรฟ้า ทางช้างเผือกขึ้นไปเหนือสุดที่กลุ่มดาวแคสซิโอเปีย และลงไปใต้สุดบริเวณกลุ่มดาวกางเขนใต้ ซึ่งแสดงให้เห็นว่าระนาบศูนย์สูตรของโลก ทำมุมเอียงกับระนาบดาราจักรอยู่มาก คนในเมืองใหญ่ไม่มีโอกาสมองเห็นทางช้างเผือกเนื่องจากมลภาวะทางแสงและฝุ่นควันในตัวเมือง แถบชานเมืองและในที่ห่างไกลสามารถมองเห็นทางช้างเผือกได้ แต่บางคนอาจนึกว่าเป็นก้อนเมฆในบรรยากาศ มุมมองของทางช้างเผือกไปทางกลุ่มดาวแมงป่อง (รวมถึงศูกย์กลางดาราจักร) เห็นได้จากการปนเปื้อในนเขตที่ไม่ใช่แสง (ทะเลทรายหินสีดำ, รัฐเนวาด้า, สหรัฐอเมริกา) เมื่อสังเกตเห็นท้องฟ้ายามค่ำคืนคำว่า "ทางช้างเผือก" ถูกจำกัดกลุ่มหมอกของแสงสีขาวบาง 30 องศา ลอยกว้างข้ามท้องฟ้า (แม้ว่าทั้งหมดของดาวที่สามารถมองเห็นได้ด้วยตาเปล่าเป็นส่วนหนึ่งของดาราจักรทางช้างเผือก) แสงในแถบนี้มาจากดาวที่สลายและวัสดุอื่น ๆ ที่อยู่ภายในระนาบทางช้างเผือก บริเวณมืดภายในวง เช่น ระแหงดี และถุงถ่าน ที่สอดคล้องกับบริเวณที่มีแสงจากดาวไกลถูกบล็อกโดย ฝุ่นละอองระหว่างดวงดาว ดาราจักรทางช้างเผือก มีความสว่างพื้นผิวที่ค่อนข้างต่ำ การมองเห็นของมันสามารถลดน้อยลงโดยแสงพื้นหลังเช่น มลพิษทางแสงหรือแสงเล็ดลอดจากดวงจันทร์ เราสามารถมองเห็นได้อย่างง่ายดายเมื่อมีขนาด จำกัดคือ 5.1 หรือมากกว่า ในขณะที่แสดงการจัดการที่ดีของรายละเอียดที่ 6.1 ซึ่งทำให้ทางช้างเผือกมองเห็นได้ยากจากใด ๆ สถานที่ในเมืองหรือชานเมืองสดใสสว่าง แต่ที่โดดเด่นมากเมื่อมองจากพื้นที่ชนบทเมื่อดวงจันทร์อยู่ใต้เส้นขอบฟ้า ดาราจักรทางช้างเผือกผ่านส่วนในประมาณ 30 กลุ่มดาว ศูนย์กลางของดาราจักรที่อยู่ในทิศทางของกลุ่มดาวคนยิงธนู มันอยู่ที่นี่ว่าทางช้างเผือกเป็นที่สว่างที่สุด จากราศีธนู กลุ่มหมอกแสงสีขาวที่ปรากฏขึ้นจะผ่านไปทางทิศตะวันตกในทางช้างเผือกไปยังไม่ใช้ศูนย์กลางของทางช้างเผือกในกลุ่มดาวสารถี กลุ่มดาวแล้วยังไปทางทิศตะวันตกส่วนที่เหลือของทางรอบท้องฟ้ากลับไปกลุ่มดาวคนยิงธนู ข้อเท็จจริงที่ว่ากลุ่มแบ่งออกท้องฟ้ายามค่ำคืนเป็นสองซีกโลกเท่ากับแสดงให้เห็นว่าระบบสุริยะตั้งอยู่ใกล้กับระนาบทางช้างเผือก ระนาบทางช้างเผือก มีแนวโน้มเอียงประมาณ 60 องศาไปสุริยุปราคา (ระนาบของวงโคจรของโลก) เมื่อเทียบกับเส้นศูนย์สูตร ที่ผ่านเท่าทิศเหนือของกลุ่มดาวค้างคาว และเท่าทิศใต้ของกลุ่มดาวกางเขนใต้ แสดงให้เห็นความโน้มเอียงสูงของระนาบเส้นศูนย์สูตรของโลกและระนาบสัมพันธ์สุริยุปราคากับระนาบทางช้างเผือก ขั้วโลกเหนือทางช้างเผือกที่ตั้งอยู่ที่ขวาขึ้น 12h 49m ลดลง +27.4° (B1950) อยู่ใกล้กับ Beta Comae Berenices และขั้วโลกทางช้างเผือกทิศใต้ที่อยู่ใกล้กับดาวอัลฟา ช่างแกะสลัก เนื่องจากการแนวโน้มเอียงสูง ขึ้นอยู่กับเวลากลางคืนและปี ส่วนโค้งของทางช้างเผือกจะปรากฏค่อนข้างต่ำหรือค่อนข้างสูงในท้องฟ้า สำหรับผู้สังเกตการณ์จากประมาณ 65 องศาเหนือถึง 65 องศาใต้บนพื้นผิวโลกทางช้างเผือกผ่านโดยตรงข้างบนวันละสองครั้ง ตาปลา โมเสกในดาราจักรทางช้างเผือก โค้งที่เอียงสูงทั่วท้องฟ้ายามค่ำคืนที่ถ่ายจากตำแหน่งที่ตั้งท้องฟ้ามืดใน ชิลี.

ใหม่!!: อะตอมและทางช้างเผือก · ดูเพิ่มเติม »

ของแข็ง

ของแข็ง (Soild) เป็นสถานะหนึ่งในสี่ของสถานะพื้นฐานของสสาร (สถานะอื่นได้แก่ ของเหลว แก๊ส พลาสมา) ซึ่งมีลักษณะที่สามารถทนและต้านทานต่อการเปลี่ยนแปลงรูปร่วงหรือปริมาตร แตกต่างกับของเหลว วัตถุที่เป็นของแข็งไม่สามารถไหลได้และไม่เปลี่ยนแปลงรูปร่างและปริมาตรไปตามภาชนะที่บรรจุ อะตอมภายในโมเลกุลของของแข็งอยู่ชิดกันมากและมีแรงยึดเหนี่ยวระหว่างอนุภาคที่หนาแน่นกับอนุภาคอื่น ๆ สาขาของฟิสิกส์มีสาขาหนึ่งที่มีเพื่อศึกษาของแข็งโดยเฉพาะ เรียกว่าฟิสิกส์ของแข็งและมันยังเป็นสาขาหลักของฟิสิกส์สสารอัดแน่น (ซึ่งจะมีการศึกษาเกี่ยวกับของเหลวรวมอยู่ด้วย) ของแข็งที่มีความหนาแน่นน้อยที่สุดในโลกคือ ซิลิกานาโนโฟม (silica nanofoam) มีความหนาแน่นประมาณ 1 มิลลิกรัมต่อลูกบาศก์เซนติเมตร ซึ่งน้อยกว่าความหนาแน่นของอากาศ เป็นผลิตภัณฑ์ของแอโรเจล (aerogel) ที่ดูดอากาศออก หมวดหมู่:สถานะของสสาร หมวดหมู่:ของแข็ง หมวดหมู่:วัสดุศาสตร์.

ใหม่!!: อะตอมและของแข็ง · ดูเพิ่มเติม »

ของเหลว

รูปทรงของของเหลวเปลี่ยนไปตามภาชนะที่บรรจุ ของเหลว (Liquid) เป็นสถานะของของไหล ซึ่งปริมาตร จะถูกจำกัดภายใต้สภาวะคงที่ของอุณหภูมิและความดัน และรูปร่างของมันจะถูกกำหนดโดยภาชนะที่บรรจุมันอยู่ ยิ่งไปกว่านั้นของเหลวยังออกแรงกดดันต่อภาชนะด้านข้างและบางสิ่งบางอย่างในตัวของของเหลวเอง ความกดดันนี้จะถูกส่งผ่านไปทุกทิศทาง ถ้าของเหลวอยู่ในระเบียบของสนามแรงโน้มถ่วง ความดัน pที่จุดใด ๆ สามารถแสดงเป็นสูตรทางคณิตศาสตร์ได้ดังนี้ ที่ซึ่ง \rho เป็น ความหนาแน่น ของของเหลว (ซึ่งกำหนดให้คงที่) และ z คือความลึก ณ จุดใต้พื้นผิวของเหลวนั้น สังเกตว่าในสูตรนี้กำหนดให้ความดันที่ผิวบนเท่ากับ 0 และไม่ต้องคำนึงถึง ความตึงผิวของเหลวมีลักษณะเฉพาะของ แรงตึงผิว (surface tension) และ แรงยกตัว (capillarity) โดยทั่วไปของเหลวจะขยายตัวเมื่อถูกความร้อนและหดตัวเมื่อถูกความเย็น วัตถุที่จมอยู่ในของเหลวจะมีปรากฏการณ์ที่เรียกว่า แรงลอยตัว (buoyancy) ของเหลวเมื่อได้รับความร้อนจนถึง จุดเดือด จะเปลี่ยนสถานะเป็น ก๊าซ และเมื่อทำให้เย็นจนถึง จุดเยือกแข็งมันก็จะเปลี่ยนสถานะเป็น ของแข็ง โดย การกลั่นแยกส่วน (fractional distillation) ของเหลวจะถูกแยกจากกันและกันโดย การระเหย (vaporization) ที่ จุดเดือด ของของเหลวแต่ละชนิด การเก เนื่องจากโมเลกุลของของเหลวมีแรงดึงดูดซึ่งกันและกัน การเคลื่อนที่ของแต่ละโมเลกุลจึงอยู่ภายใต้อิทธิพลของโมเลกุลอื่นที่อยู่ใกล้เคียง โมเลกุลที่อยู่ตรงกลางได้รับแรงดึงดูดจากโมเลกุลอื่นที่อยู่ล้อมรอบเท่ากันทุกทิศทุกทาง ส่วนโมเลกุลที่ผิวหน้าจะได้รับแรงดึงดูดจากโมเลกุลที่อยู่ด้านล่างและด้านข้างเท่านั้น โมเลกุลที่ผิวหน้าจึงถูกดึงเข้าภายในของเหลว ทำให้พื้นที่ผิวของของเหลวลดลงเหลอน้อยที่สุด จะเห็นได้จากหยดน้ำที่เกาะบนพื้นผิวที่เรียบและสะอาดจะมีลักษณะเป็นทรงกลมซึ่งมีพื้นที่ผิวน้อยกว่าน้ำที่อยู่ในลักษณะแผ่ออกไป ของเหลวพยายามจัดตัวเองให้มีพื้นที่ผิวน้อยที่สุด เนื่องจากโมเลกุลที่ผิวไม่มีแรงดึงเข้าทางด้านบน จึงจะมีเสถียรภาพน้อยกว่าโมเลกุลที่อยู่ตรงกลาง การลดพื้นที่ผิวเท่ากับเป็นการลดจำนวนโมเลกุลที่ผิวหน้า จึงทำให้ของเหลวเสถียรมากขึ้นในบางกรณีของเหลวมีความจำเป็นต้องเพิ่มพื้นที่ผิว โดยที่โมเลกุลที่อยู่ด้านในของของเหลวจะเคลื่อนมายังพื้นผิว ในการนี้โมเลกุลเหล่านั้นต้องเอาชนะแรงดึงดูดระหว่างโมเลกุลที่อยูรอบ ๆ หรือกล่าวว่าต้องทำงาน งานที่ใช้ในการขยายพื้นที่ผิวของของเหลว 1 หน่วย เรียกว่า ความตึงผิว (Surface tension).

ใหม่!!: อะตอมและของเหลว · ดูเพิ่มเติม »

ของเหลวผลควบแน่นโพส–ไอน์สไตน์

รควบแน่นโพส-ไอน์สไตน์ (Bose–Einstein condensate) เกิดขึ้นเมื่อเราลดอุณหภูมิของธาตุลงให้ต่ำมากๆ โดยปกติจะสูงกว่าศูนย์องศาสัมบูรณ์ (-273.15 องศาเซลเซียส) เพียงแค่เศษเสี้ยวเดียวของ 1 องศาเซลเซียส ซึ่งเป็นอุณหภูมิในทางทฤษฎีที่ทุกสิ่งทุกอย่างหยุดการเคลื่อนไหวนิ่งสนิท พฤติกรรมที่โดยปกติจะเห็นได้ในระดับอะตอมก็สามารถเห็นได้ในระดับที่กว้างขึ้น ตัวอย่างเช่น ถ้านำสสารควบแน่นโพส-ไอน์สไตน์มาใส่ในถ้วยแก้ว และรักษาระดับความเย็นให้เพียงพอ สสารดังกล่าวจะไหลคลานออกมาข้างนอกถ้วยแก้วด้วยตัวมันเอง สสารควบแน่นโพส-ไอน์สไตน์ได้รับการพยากรณ์ว่ามีอยู่จริงโดยไอน์สไตน์ในปี..

ใหม่!!: อะตอมและของเหลวผลควบแน่นโพส–ไอน์สไตน์ · ดูเพิ่มเติม »

ดมีตรี เมนเดเลเยฟ

มีตรี อีวาโนวิช เมนเดเลเยฟ (Дми́трий Ива́нович Менделе́ев; อักษรโรมัน:Dmitriy Ivanovich Mendeleyev) เกิดเมื่อวันที่ 8 กุมภาพันธ์ ค.ศ. 1834 ถึงแก่กรรมวันที่ 2 กุมภาพันธ์ ค.ศ. 1907 ในเมืองเซนต์ปีเตอร์สเบิร์ก เมนเดเลเยฟเป็นนักเคมีชาวรัสเซีย เขาได้รับการยกย่องมีฐานะบุคคลแรกที่สร้างตารางธาตุฉบับแรกขึ้นมา แต่เมนเดเลเยฟนั้นมีความคิดแตกต่างจากผู้เขียนตารางธาตุคนอื่นๆ นั่นคือ เขาได้ทำนายคุณสมบัติของธาตุต่าง ๆ ที่ยังไม่ได้ค้นพบด้วย และนอกจากการทุ่มเทให้กับการวางแบบแผนตารางธาตุและเคมีแล้ว เขายังให้ความสนใจปัญหาสังคมด้ว.

ใหม่!!: อะตอมและดมีตรี เมนเดเลเยฟ · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: อะตอมและดาวฤกษ์ · ดูเพิ่มเติม »

ดิมอคริตัส

มอคริตัส (Democritus; Δημόκριτος, Dēmokritos) (ราว 460 ก่อน ค.ศ. – ราว 370 ก่อน ค.ศ.) เป็นนักปรัชญาชาวกรีก เขาเป็นสาวกผู้ทรงอิทธิพลของโสกราตีส (Socrates) และเป็นศิษย์ของลูซิปปัส (Leucippus) ผู้ตั้งทฤษฎีอะตอมBarnes (1987).

ใหม่!!: อะตอมและดิมอคริตัส · ดูเพิ่มเติม »

ดิวเทอเรียม

วเทอเรียม (Deuterium) สัญญลักษณ์ 2H ถูกเรียกอีกชื่อหนึ่งว่าไฮโดรเจนหนัก เป็นหนึ่งในสองของไอโซโทปของไฮโดรเจนที่เสถียร โดยที่นิวเคลียสของอะตอมมีโปรตอน 1 ตัวและนิวตรอน 1 ตัว ในขณะที่ไอโซโทปของไฮโดรเจนที่รู้จักกันทั่วไปมากกว่าที่เรียกอีกอย่างหนึ่งว่า โปรเทียม (protium) มีเพียงโปรตอนเดียวเท่านั้น ไม่มีนิวตรอน ดิวเทอเรียมมี'ความอุดมในธรรมชาติ' โดยพบในมหาสมุทรทั่วไปประมาณหนึ่งอะตอมใน 6420 อะตอมของไฮโดรเจน ทำให้ดิวเทอเรียมมีสัดส่วนที่ประมาณ 0.0156% (หรือ 0.0312% ถ้าคิดตามมวล) ของไฮโดรเจนที่เกิดในธรรมชาติทั้งหมดในมหาสมุทร ในขณะที่โปรเทียมมีสัดส่วนมากกว่า 99.98% ความอุดมของดิวเทอเรียมเปลี่ยนแปงเล็กน้อยตามชนิดของน้ำตามธรรมชาติ (ดู ค่าเฉลี่ยของน้ำในมหาสมุทรตามมาตรฐานเวียนนา) นิวเคลียสของดิวเทอเรียมเรียกว่าดิวเทอรอน เราใช้สัญลักษณ์ 2H แทนดิวเทอเรียม อย่างไรก็ตาม บ่อยครั้งที่เราใช้ D แทนดิวเทอเรียม เช่นเมื่อเราต้องการจะเขียนสัญลักษณ์แทนโมเลกุลก๊าซดิวเทอเรียม จะสามารถเขียนแทนได้ว่า 2H2 หรือ D2 ก็ได้ หากแทนที่ดิวเทอเรียมในโมเลกุลของน้ำ จะทำให้เกิดสารดิวเทอเรียมออกไซด์หรือที่เรียกว่าน้ำมวลหนักขึ้น ถึงแม้น้ำชนิดหนักจะไม่เป็นสารพิษที่ร้ายแรงมากนัก แต่ก็ไม่เคยถูกนำมาใช้ในการอุปโภคบริโภค การมีอยู่ของดิวเทอเรียมในดาวฤกษ์เป็นข้อมูลสำคัญในวิชาจักรวาลวิทยา โดยปฏิกิริยานิวเคลียร์ฟิวชันในดาวฤกษ์จะทำลายดิวเทอเรียม ยังไม่พบกระบวนการในธรรมชาติใดๆที่ทำให้เกิดดิวเทอเรียมนอกจากปรากฏการณ์บิ๊กแบง ดิวเทอเรียมไม่มีอะไรต่างจากไฮโดรเจนมากนักในเชิงเคมีฟิสิกส์ นอกเสียจากว่ามีมวลที่หนักกว่า ซึ่งมวลที่หนักกว่านี้เองที่ทำให้ดิวเทอเรียมเปรียบเสมือนกับไฮโดรเจนที่เชื่องช้า เนื่องจากการที่มีมวลมากกว่า จะทำให้มีอัตราการเกิดปฏิกิริยาน้อยกว.

ใหม่!!: อะตอมและดิวเทอเรียม · ดูเพิ่มเติม »

ดูดความร้อน

ในการศึกษาเทอร์โมไดนามิกส์ กระบวนการดูดความร้อน (Endothermic) หมายถึงกระบวนการหรือปฏิกิริยาที่ระบบดูดซับพลังงานจากสิ่งแวดล้อมในรูปของความร้อน กระบวนการตรงข้ามคือกระบวนการคายความร้อน ซึ่งปลดปล่อยพลังงานออกไปในรูปแบบของความร้อน คำนี้คิดขึ้นโดย Marcellin Berthelot (25 ตุลาคม ค.ศ. 1827 – 18 มีนาคม ค.ศ. 1907) หลักการนี้ใช้กันแพร่หลายตั้งแต่ฟิสิกส์กายภาพไปจนถึงปฏิกิริยาเคมี ซึ่งพลังงานความร้อนถูกแปลงไปเป็นพลังงานพัน.

ใหม่!!: อะตอมและดูดความร้อน · ดูเพิ่มเติม »

ดีบุก

ีบุก (อังกฤษ: Tin) คือธาตุเคมีที่มีหมายเลขอะตอม 50 และสัญลักษณ์คือ Sn (มาจากคำในภาษาลาตินว่า Stannum) ดีบุกเป็นโลหะที่ไม่ดี หลอมเหลวได้ง่าย ทนต่อการกัดกร่อน และถูกอ๊อกซิไดซ์ในอากาศได้ดี พบในโลหะผสมหลายชนิด ใช้ประโยชน์ในการเคลือบโลหะเพื่อป้องกันการกันกร่อน ดีบุกส่วนใหญ่สกัดได้จากแร่แคสสิเตอร์ไรต์ (cassiterite).

ใหม่!!: อะตอมและดีบุก · ดูเพิ่มเติม »

คริสต์ศักราช

ริสต์ศักราช (Anno Domini Nostri Iesu Christi Anno Domini: AD หรือ A.D. ส: คฺฤสฺตศกฺราช ป: คิตฺถสกฺกาช) เขียนย่อว.. หมายถึง ปีของพระเยซูคริสต์ โดยเริ่มนับจากปีที่เชื่อว่าพระเยซูทรงประสูติ เป็น..

ใหม่!!: อะตอมและคริสต์ศักราช · ดูเพิ่มเติม »

ครึ่งชีวิต

ครึ่งชีวิต (t½) (Half-life) คือเวลาที่สารกัมมันตรังสีใช้ในการสลายตัวเหลือครึ่งหนึ่งของที่มีอยู่เดิม มักถูกใช้เพื่ออธิบายคุณสมบัติของการสลายตัวของสารกัมมันตรังสี แต่อาจจะใช้เพื่ออธิบายปริมาณใด ๆ ก็ตามที่มีสลายตัวแบบเอ็กโพเนนเชียลด้วย จุดกำเนิดของคำศัพท์คำนี้ ได้ระบุไว้ว่าเออร์เนสต์ รัทเทอร์ฟอร์ดได้ค้นพบหลักการนี้ในปี 1907 และเรียกว่า "ช่วงเวลาครึ่งชีวิต" (half-life period) ต่อมาคำนี้ถูกย่อให้สั้นลงเหลือเป็น "ครึ่งชีวิต" (half-life) ในช่วงต้นทศวรรษปี 1950 หมวดหมู่:กัมมันตรังสี หมวดหมู่:นิวเคลียร์เคมี หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:การยกกำลัง.

ใหม่!!: อะตอมและครึ่งชีวิต · ดูเพิ่มเติม »

คลื่นนิ่ง

ลื่นนิ่ง เป็นคลื่นที่ไม่เคลื่อนที่ อาจเกิดจากตัวกลางเคลื่อนที่ไปในทิศทางตรงข้ามกับคลื่น หรือ เกิดจากการแทรกสอดของคลื่นสองลูก เคลื่อนที่ในทิศทางตรงข้ามกัน.

ใหม่!!: อะตอมและคลื่นนิ่ง · ดูเพิ่มเติม »

ความสมมูลมวล–พลังงาน

ประติมากรรมสูง 3 เมตร แสดงสมการ ''E''.

ใหม่!!: อะตอมและความสมมูลมวล–พลังงาน · ดูเพิ่มเติม »

ความถี่

วามถี่ (frequency) คือจำนวนการเกิดเหตุการณ์ซ้ำในหนึ่งหน่วยของเวลา ความถี่อาจเรียกว่า ความถี่เชิงเวลา (temporal frequency) หมายถึงแสดงให้เห็นว่าต่างจากความถี่เชิงพื้นที่ (spatial) และความถี่เชิงมุม (angular) คาบคือระยะเวลาของหนึ่งวงจรในเหตุการณ์ที่เกิดซ้ำ ดังนั้นคาบจึงเป็นส่วนกลับของความถี่ ตัวอย่างเช่น ถ้าหัวใจของทารกเกิดใหม่เต้นที่ความถี่ 120 ครั้งต่อนาที คาบ (ช่วงเวลาระหว่างจังหวะหัวใจ) คือครึ่งวินาที (นั่นคือ 60 วินาทีหารจาก 120 จังหวะ) ความถี่เป็นตัวแปรสำคัญในวิทยาศาสตร์และวิศวกรรม สำหรับระบุอัตราของปรากฏการณ์การแกว่งและการสั่น เช่น การสั่นของเครื่องจักร โสตสัญญาณ (เสียง) คลื่นวิทยุ และแสง.

ใหม่!!: อะตอมและความถี่ · ดูเพิ่มเติม »

ความดัน

วามดัน คือ แรงที่กระทำตั้งฉากต่อหนึ่งหน่วยพื้นที่ ภาพจำลอง–ความดันที่เกิดขึ้นจากการชนของอนุภาคในภาชนะปิด ความดันที่ระดับต่าง ๆ (หน่วยเป็น บาร์) ความดัน (pressure; สัญลักษณ์ p หรือ P) เป็นปริมาณชนิดหนึ่งในทางฟิสิกส์ หมายถึง อัตราส่วนระหว่างแรงที่กระทำตั้งฉากซึ่งทำโดยของแข็ง ของเหลว หรือแก๊ส ต่อพื้นที่ของสารใด ๆ (ของแข็ง ของเหลว หรือแก๊ส) ความดันเป็นปริมาณสเกลาร์ ซึ่งเป็นปริมาณที่มีแต่ขนาดไม่มีทิศทาง จากความหมายของความดันข้างต้นสามารถเขียนเป็นสูตรคณิตศาสตร์ (โดยทั่วไป) ได้ดังนี้ กำหนดให้ เนื่องจาก F มีหน่วยเป็น "นิวตัน" (N) และ A มีหน่วยเป็น "ตารางเมตร" (m2) ความดันจึงมีหน่วยเป็น "นิวตันต่อตารางเมตร" (N/m2; เขียนในรูปหน่วยฐานว่า kg·m−1·s−2) ในปี ค.ศ. 1971 (พ.ศ. 2514) มีการคิดค้นหน่วยของความดันขึ้นใหม่ เรียกว่า ปาสกาล (pascal, Pa) และกำหนดให้หน่วยชนิดนี้เป็นหน่วยเอสไอสำหรับความดัน โดยให้ 1 ปาสกาลมีค่าเท่ากับ 1 นิวตันต่อตารางเมตร (หรือ แรง 1 นิวตัน กระทำตั้งฉากกับพื้นที่ขนาด 1 ตารางเมตร) เพื่อให้เห็นภาพ ความดัน 1 ปาสกาลจะมีค่าประมาณ แรงกดของธนบัตรหนึ่งดอลลาร์ที่วางอยู่เฉย ๆ บนโต๊ะราบ ซึ่งนับว่าเป็นขนาดที่เล็กมาก ดังนั้นในชีวิตประจำวัน ความดันทั้งหลายมักมีค่าตั้งแต่ "กิโลปาสกาล" (kPa) ขึ้นไป โดยที่ 1 kPa.

ใหม่!!: อะตอมและความดัน · ดูเพิ่มเติม »

ควาร์ก

วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..

ใหม่!!: อะตอมและควาร์ก · ดูเพิ่มเติม »

คายความร้อน

การระเบิด คือปฏิกิริยาคายความร้อนที่รุนแรงที่สุดแบบหนึ่ง ในการศึกษาเทอร์โมไดนามิกส์ กระบวนการคายความร้อน (Exothermic) หมายถึงกระบวนการหรือปฏิกิริยาที่ปลดปล่อยพลังงานออกจากระบบ โดยมากมักปลดปล่อยในรูปของความร้อน แต่ก็อาจอยู่ในรูปของแสง (เช่นประกายไฟ หรือระเบิด) ไฟฟ้า (เช่นแบตเตอรี่) หรือเสียง (เช่นเสียงเผาไหม้ไฮโดรเจน) ผู้คิดคำนี้ขึ้นครั้งแรกคือ Marcellin Berthelot กระบวนการตรงข้ามของการคายความร้อนคือกระบวนการดูดความร้อน ซึ่งดูดซับพลังงานในรูปของความร้อน หลักการนี้ประยุกต์ใช้ได้มากมายตั้งแต่ฟิสิกส์เชิงกายภาพจนถึงปฏิกิริยาเคมี ซึ่งพลังงานจากพันธะเคมีจะถูกแปลงไปเป็นพลังงานความร้อน.

ใหม่!!: อะตอมและคายความร้อน · ดูเพิ่มเติม »

คาร์บอนไดออกไซด์

ร์บอนไดออกไซด์ (carbon dioxide) หรือ CO2 เป็นก๊าซไม่มีสี ซึ่งหากหายใจเอาก๊าซนี้เข้าไปในปริมาณมากๆ จะรู้สึกเปรี้ยวที่ปาก เกิดการระคายเคืองที่จมูกและคอ และหาจยใจไม่ออกเนื่องจากอาจเกิดการละลายของแก๊สนี้ในเมือกในอวัยวะ ก่อให้เกิดกรดคาร์บอนิกอย่างอ่อน คาร์บอนไดออกไซด์มีความหนาแน่น 1.98 kg/m3 ซึ่งเป็นประมาณ 1.5 เท่าของอากาศ โมเลกุลประกอบด้วยพันธะคู่ 2 พันธะ (O.

ใหม่!!: อะตอมและคาร์บอนไดออกไซด์ · ดูเพิ่มเติม »

ค่าคงตัวของพลังค์

งตัวของพลังค์ h นั้นได้ชื่อมาจาก มักซ์ พลังค์ ซึ่งเป็นหนึ่งในผู้บุกเบิกทฤษฎีกลศาสตร์ควอนตัม ค่าคงตัวของพลังค์เป็นปริมาณที่เกี่ยวข้องกับขนาดของควอนตา (quanta) และมีค่าเท่ากับ หรือเขียนในหน่วยอิเล็กตรอนโวลต์ได้เท่ากับ ค่าคงตัวของพลังค์มีหน่วยเป็นพลังงานคูณกับเวลา ซึ่งเป็นหน่วยวัดaction นั่นเอง หรืออาจเขียนได้ในหน่วยของโมเมนตัมคูณระยะทางเช่นกัน ปริมาณอีกอย่างซึ่งมีความเกี่ยวข้องกันคือค่าคงตัวของพลังค์แบบลดค่า (reduced Planck constant) หรือบางครั้งเรียกว่าค่าคงตัวของดิแรค เมื่อ π คือค่าคงที่พาย ชื่อเรียกปริมาณนี้อ่านออกเสียงว่า เอช-บาร์ ตัวเลขที่ใช้ในที่นี้เป็นตัวเลขที่คณะกรรมการข้อมูลวิทยาศาสตร์และเทคโนโลยี (CODATA) แนะนำให้ใช้ตั้งแต่ปี..

ใหม่!!: อะตอมและค่าคงตัวของพลังค์ · ดูเพิ่มเติม »

ตะกั่ว

ตะกั่ว (Lead) เป็นธาตุที่มีหมายเลขอะตอม 82 และสัญลักษณ์คือ Pb (Plumbum) ตะกั่วเป็นธาตุโลหะ เนื้ออ่อนนุ่มสามารถยืดได้ เมื่อตัดใหม่ๆ จะมีสีขาวอมน้ำเงิน แต่เมื่อถูกกับอากาศสีจะเปลี่ยนเป็นสีเทา ตะกั่วเป็นโลหะหนักที่มีพิษ ใช้ทำวัสดุก่อสร้าง แบตเตอรี่ กระสุนปืน โลหะผสม.

ใหม่!!: อะตอมและตะกั่ว · ดูเพิ่มเติม »

ตารางธาตุ

ตารางธาตุในลักษณะที่เป็นมาตรฐาน ตารางธาตุ (Periodic table) คือ ตารางที่ใช้แสดงรายชื่อธาตุเคมี ซึ่งจัดเรียงบนพื้นฐานของเลขอะตอม (จำนวนโปรตอนในนิวเคลียส) การจัดเรียงอิเล็กตรอน และสมบัติทางเคมี โดยจะเรียงตามเลขอะตอมที่เพิ่มขึ้น ซึ่งจะระบุไว้ในร่วมกับสัญลักษณ์ธาตุเคมี ในกล่องของธาตุนั้น ตารางธาตุมาตรฐานจะมี 18 หมู่และ 7 คาบ และมีคาบพิเศษเพิ่มเติมมาอยู่ด้านล่างของตารางธาตุ ตารางยังสามารถเปลี่ยนเป็นการจัดเรียงตามบล็อก โดย บล็อก-s จะอยู่ซ้ายมือ บล็อก-p จะอยู่ขวามือ บล็อก-d จะอยู่ตรงกลางและบล็อก-f อยู่ที่ด้านล่าง แถวแนวนอนในตารางธาตุจะเรียกว่า คาบ และแถวในแนวตั้งเรียกว่า หมู่ โดยหมู่บางหมู่จะมีชื่อเฉพาะ เช่นแฮโลเจน หรือแก๊สมีตระกูล โดยคำนิยามของตารางธาตุ ตารางธาตุยังมีแนวโน้มของสมบัติของธาตุ เนื่องจากเราสามารถใช้ตารางธาตุบอกความสัมพันธ์ระหว่างสมบัติของธาตุแต่ละตัว และใช้ทำนายสมบัติของธาตุใหม่ ธาตุที่ยังไม่ถูกค้นพบ หรือธาตุที่สังเคราะห์ขึ้น และด้วยความพิเศษของตารางธาตุ ทำให้มันถูกใช้อย่างกว้างขวางในการศึกษาวิชาเคมีหรือวิทยาศาสตร์สาขาอื่น ๆ ดมีตรี เมนเดเลเยฟ รู้จักกันในฐานะผู้ที่ตีพิมพ์ตารางธาตุในลักษณะแบบนี้เป็นคนแรก ใน..

ใหม่!!: อะตอมและตารางธาตุ · ดูเพิ่มเติม »

ซิลิเกต

ซิลิเกต (silicates) เป็นแร่ที่เกิดจากการรวมตัวของ ซิลิกอนและ ออกซิเจน และยังมีสารอื่นประกอบ ทำให้เกิดลักษณะต่างๆกันหลายชนิด ซึ่งสามารถแบ่งออกได้เป็น 6 ชนิด คือ นีโซซิลิเกต (Nesosilicate), โซโรซิลิเกต (Sorosilicate), ไซโคลซิลิเกต (Cyclosilicate), ไอโนซิลิเกต (Inosilicate), ฟิลโลซิลิเกต (Phyllosilicate), เทกโทซิลิเกต (Tectsilicate).

ใหม่!!: อะตอมและซิลิเกต · ดูเพิ่มเติม »

ซีนอน

|- | Critical pressure || 5.84 MPa |- | Critical temperature || 289.8 K (16.6 °C) ซีนอน (Xenon) คือธาตุเคมีที่มีหมายเลขอะตอม 54 และสัญลักษณ์คือ Xe ซีนอนเป็นธาตุที่มีลักษณะเป็นก๊าซมีตระกูล (Noble gases) ไม่มีสี ไม่มีกลิ่น น้ำหนักมาก พบเพียงเล็กน้อยในบรรยากาศโลก -มีน้ำหนักอะตอมเท่ากับ 131.30 amu -จุดหลอมเหลวเท่ากับ -111.9 องศา -จุดเดือน(โดยประมาณ)อยู่ที่ -108.12 +/-.01 องศา -ความหนาที่(stp) 5.8971 g/l เลขออกซิเดชันสามัญ +2,+4,+6,+8 1.

ใหม่!!: อะตอมและซีนอน · ดูเพิ่มเติม »

ซีเซียม

ซีเซียม (อังกฤษ:Caesium) คือธาตุเคมีที่มีหมายเลขอะตอม 55 และสัญลักษณ์คือ Cs ซีเซียมเป็นธาตุโลหะแอลคาไลมีลักษณะเป็นเงินทองอ่อนนุ่มเป็นของเหลวที่อุณหภูมิห้อง ธาตุนี้ใช้ในนาฬิกาอะตอม.

ใหม่!!: อะตอมและซีเซียม · ดูเพิ่มเติม »

ปฏิสสาร

ปฏิสสาร: ภาพถ่ายจากห้องถ่ายภาพเมฆของโพสิตรอนที่สังเกตได้เป็นครั้งแรก ในวิชาฟิสิกส์อนุภาค ปฏิสสาร (Antimatter) คือ ส่วนประกอบของแนวคิดเกี่ยวกับปฏิยานุภาคของสสาร โดยที่ปฏิสสารประกอบด้วยปฏิยานุภาคในทำนองเดียวกับที่อนุภาคประกอบขึ้นเป็นสสารปรกติ ตัวอย่างเช่น แอนติอิเล็กตรอน (ปฏิยานุภาคของอิเล็กตรอน หรือ e+) 1 ตัว และแอนติโปรตอน (โปรตอนที่มีขั้วเป็นลบ) 1 ตัว สามารถรวมตัวกันเกิดเป็นอะตอมแอนติไฮโดรเจนได้ ในทำนองเดียวกันกับที่อิเล็กตรอน 1 ตัวกับโปรตอน 1 ตัวสามารถรวมกันเป็นอะตอมไฮโดรเจนที่เป็น "สสารปกติ" หากนำสสารและปฏิสสารมารวมกัน จะเกิดการทำลายล้างกันในทำนองเดียวกับการรวมอนุภาคและปฏิยานุภาค ซึ่งจะได้โฟตอนพลังงานสูง (หรือรังสีแกมมา) หรือคู่อนุภาค-ปฏิยานุภาคอื่น เมื่อปฏิยานุภาคเจอกับอนุภาคจะเกิดการประลัย ผลลัพธ์ที่ได้จากการพบกันของสสารและปฏิสสารคือการถูกปลดปล่อยของพลังงานซึ่งเป็นสัดส่วนกับมวลตามที่ปรากฏในสมการความสมมูลระหว่างมวล-พลังงาน, E.

ใหม่!!: อะตอมและปฏิสสาร · ดูเพิ่มเติม »

ปรอท

ปรอท (Mercury; Hydragyrum) เป็นธาตุเคมีสัญลักษณ์ Hg และเลขอะตอมเท่ากับ 80 รู้จักกันทั่วไปในชื่อ ควิกซิลเวอร์ (quicksilver) และมีชื่อเดิมคือ ไฮดราเจอรัม (hydrargyrum) ปรอทเป็นโลหะหนักสีเงินในบล็อก-d เป็นธาตุโลหะชนิดเดียวที่เป็นของเหลวในที่อุณหภูมิและความดันมาตรฐาน ธาตุอื่นอีกธาตุหนึ่งที่เป็นของเหลวภายใต้สภาวะเช่นนี้คือ โบรมีน แม้ว่าโลหะอย่างซีเซียม แกลเลียม และรูบิเดียมจะละลายที่อุณหภูมิสูงกว่าอุณหภูมิห้อง ปรอทพบได้ทั่วโลก ส่วนใหญ่พบในรูปซินนาบาร์ (เมอร์คิวริกซัลไฟด์) เมอร์คิวริกซัลไฟด์บริสุทธิ์เป็นผงสีแดงชาด ได้จากปฏิกิริยาของปรอท (เกิดจากรีดักชันจากซินนาบาร์) กับกำมะถัน หากสัมผัส สูดดมไอ หรือทานอาหารทะเลที่ปนเปื้อนปรอทที่ละลายน้ำ (เช่น เมอร์คิวริกคลอไรด์ หรือเมธิลเมอร์คิวรี) อาจเกิดเป็นพิษได้ ปรอทมักใช้ประโยชน์ในเทอร์โมมิเตอร์ บารอมิเตอร์ มาโนมิเตอร์ สฟิกโมมาโนมิเตอร์ โฟลตวาล์ว สวิตช์ปรอท ปรอทรีเลย์ หลอดฟลูออเรสเซนต์ และอุปกรณ์อื่น ๆ แม้ว่ายังมีประเด็นเรื่องพิษที่อาจทำให้เทอร์โมมิเตอร์และสฟิกโมมาโนมิเตอร์ไม่ถูกนำมาใช้อีก แต่จะใช้แอลกอฮอล์ หรือแก้วที่เติมกาลินสแตน หรือเครื่องมืออิเล็กทรอนิกส์ที่เป็นเทอร์มิสเตอร์ หรืออินฟราเรดแทน เช่นเดียวกัน สฟิกโมมาโนมิเตอร์ถูกแทนด้วยเกจความดันเชิงกลและเกจรับความตึงอิเล็กทรอนิกส์ ปรอทยังคงมีใช้ในงานวิจัยทางวิทยาศาสตร์ และสารอะมัลกัมสำหรับอุดฟันในบางท้องที่ ปรอทนำมาใช้ผลิตแสงสว่าง กล่าวคือ กระแสไฟฟ้าที่ไหลผ่านไอปรอทในหลอดไฟฟลูออเรสเซนต์จะสร้างแสงอัลตราไวโอเลตคลื่นสั้น ก่อให้เกิดฟอสเฟอร์ ทำให้หลอดเรืองแสง และเกิดเป็นแสงสว่างขึ้นม.

ใหม่!!: อะตอมและปรอท · ดูเพิ่มเติม »

ประวัติศาสตร์อินเดีย

ประวัติศาสตร์อินเดีย อารยธรรมอินเดีย อารยธรรมอินเดียมีความเจริญรุ่งเรืองและมีอายุเก่าแก่ไม่แพ้อารยธรรมแหล่งอื่น ๆ ที่กล่าวมาแล้ว สรุปสาระสำคัญได้ดังนี้ 1.

ใหม่!!: อะตอมและประวัติศาสตร์อินเดีย · ดูเพิ่มเติม »

ประจุไฟฟ้า

นามไฟฟ้า ของประจุไฟฟ้าบวกและลบหนึ่งจุด ประจุไฟฟ้า เป็น คุณสมบัติทางฟิสิกส์ ของ สสาร ที่เป็นสาเหตุให้มันต้องประสบกับ แรง หนึ่งเมื่อมันถูกวางอยู่ใน สนามแม่เหล็กไฟฟ้า ประจุไฟฟ้าแบ่งออกเป็นสองประเภท: บวก และ ลบ ประจุเหมือนกันจะผลักกัน ประจุต่างกันจะดึงดูดกัน วัตถุจะมีประจุลบถ้ามันมี อิเล็กตรอน เกิน, มิฉะนั้นจะมีประจุบวกหรือไม่มีประจุ มีหน่วย SI เป็น คูลอมบ์ (C) ในสาขาวิศวกรรมไฟฟ้า, มันเป็นธรรมดาที่จะใช้ แอมแปร์-ชั่วโมง (Ah) และใน สาขาเคมี มันเป็นธรรมดาที่จะใช้ ประจุมูลฐาน (e) เป็นหน่วย สัญลักษณ์ Q มักจะหมายถึงประจุ ความรู้ช่วงต้นว่าสสารมีปฏิสัมพันธ์กันอย่างไรในขณะนี้ถูกเรียกว่า ไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) และยังคงถูกต้องสำหรับปัญหาที่ไม่จำเป็นต้องมีการพิจารณาถึง ผลกระทบควอนตัม ประจุไฟฟ้า เป็น คุณสมบัติแบบอนุรักษ์ พื้นฐานของ อนุภาคย่อยของอะตอม บางตัวที่กำหนด ปฏิสัมพันธ์ทางแม่เหล็กไฟฟ้า ของพวกมัน สสารที่มีประจุไฟฟ้าจะได้รับอิทธิพลจาก สนามแม่เหล็กไฟฟ้า และก็ผลิตสนามแม่เหล็กไฟฟ้าขึ้นเองได้ ปฏิสัมพันธ์ระหว่างประจุไฟฟ้าที่เคลื่อนที่ได้กับสนามแม่เหล็กไฟฟ้าจะเป็นแหล่งที่มาของ แรงแม่เหล็กไฟฟ้า ซึ่งเป็นหนึ่งในสี่ แรงพื้นฐาน (อ่านเพิ่มเติมที่: สนามแม่เหล็ก) การทดลองเรื่องหยดน้ำมัน ในศตวรรษที่ยี่สิบได้แสดงให้เห็นว่า ประจุจะถูก quantized; นั่นคือ ประจุของวัตถุใด ๆ จะมีค่าเป็นผลคูณที่เป็นจำนวนเต็มของหน่วยเล็ก ๆ แต่ละตัวที่เรียกว่า ประจุมูลฐาน หรือค่า e (เช่น 0e, 1e, 2e แต่ไม่ใช่ 1/2e หรือ 1/3e) e มีค่าประมาณเท่ากับ (ยกเว้นสำหรับอนุภาคที่เรียกว่า ควาร์ก ซึ่งมีประจุที่มีผลคูณที่เป็นจำนวนเต็มของ e/3) โปรตอน มีประจุเท่ากับ +e และ อิเล็กตรอน มีประจุเท่ากับ -e การศึกษาเกี่ยวกับอนุภาคที่มีประจุและการปฏิสัมพันธ์ของพวกมันจะถูกไกล่เกลี่ยโดย โฟตอน ได้อย่างไรจะเรียกว่า ไฟฟ้าพลศาสตร์ควอนตัม.

ใหม่!!: อะตอมและประจุไฟฟ้า · ดูเพิ่มเติม »

ปริซึม

ปริซึมหกเหลี่ยมปรกติ ปริซึม (prism) คือทรงหลายหน้าที่สร้างจากฐานรูปหลายเหลี่ยมที่เหมือนกันและขนานกันสองหน้า และหน้าด้านข้างเป็นรูปสี่เหลี่ยมด้านขนาน พื้นที่หน้าตัดทุกตำแหน่งที่ขนานกับฐานจะเป็นรูปเดิมตลอด และปริซึมก็เป็นพริสมาทอยด์ (prismatoid) ชนิดหนึ่งด้วย ปริซึมมุมฉาก (right prism) หมายความว่าเป็นปริซึมที่มีจุดมุมของรูปหลายเหลี่ยมบนฐานทั้งสองอยู่ตรงกันตามแนวดิ่ง ทำให้หน้าด้านข้างตั้งฉากกับฐานพอดีและเป็นรูปสี่เหลี่ยมมุมฉากทุกด้าน ส่วน ปริซึม n เหลี่ยมปกติ (n-prism) หมายถึงปริซึมที่มีรูปหลายเหลี่ยมบนฐาน เป็นรูปหลายเหลี่ยมปรกติ (ทุกด้านยาวเท่ากัน) และเมื่อปริซึมอันหนึ่งๆ สามารถเป็นได้ทั้งปริซึมมุมฉาก ปริซึม n เหลี่ยมปรกติ และขอบทุกด้านยาวเท่ากันหมด จะถือว่าปริซึมอันนั้นเป็นทรงหลายหน้ากึ่งปรกติ (semiregular polyhedron) ทรงสี่เหลี่ยมด้านขนานก็ถือเป็นปริซึมสี่เหลี่ยมด้านขนาน สำหรับปริซึมสี่เหลี่ยมมุมฉากก็เทียบเท่ากับทรงสี่เหลี่ยมมุมฉาก และปริซึมสี่เหลี่ยมจัตุรัสก็คือทรงลูกบาศก์นั่นเอง ปริมาตรของปริซึมสามารถคำนวณได้ง่ายๆ โดยการหาพื้นที่ผิวของฐานมาหนึ่งด้าน คูณด้วยความสูงของปริซึม.

ใหม่!!: อะตอมและปริซึม · ดูเพิ่มเติม »

นาซา

องค์การบริหารการบินและอวกาศแห่งชาติ (National Aeronautics and Space Administration) หรือ นาซา (NASA) ก่อตั้งขึ้นเมื่อวันที่ 29 กรกฎาคม พ.ศ. 2501 (ค.ศ. 1958) ตามรัฐบัญญัติการบินและอวกาศแห่งชาติ เป็นหน่วยงานส่วนราชการ รับผิดชอบในโครงการอวกาศและงานวิจัยห้วงอากาศอวกาศ (aerospace) ระยะยาวของสหรัฐอเมริกา คอยจัดการหรือควบคุมระบบงานวิจัยทั้งกับฝ่ายพลเรือนและฝ่ายทหาร ในเดือนกุมภาพันธ์ พ.ศ. 2549 องค์การนาซาได้ประกาศภารกิจหลักคือการบุกเบิกอนาคตแห่งการสำรวจอวกาศ การค้นพบทางวิทยาศาสตร์ และงานวิจัยทางการบินและอวกาศ คำขวัญขององค์การนาซาคือ "เพื่อประโยชน์ของคนทุกคน" (For the benefit of all).

ใหม่!!: อะตอมและนาซา · ดูเพิ่มเติม »

นิกเกิล

นิกเกิล (Nickel) คือธาตุที่มีหมายเลขอะตอม 28 และสัญลักษณ์คือ Ni อยู่ในตารางธาตุหมู่ 28 นิกเกิลเป็นโลหะที่มีความมันวาวสีขาวเงิน อยู่กลุ่มเดียวกับเหล็ก มีความแข็งแต่ตีเป็นแผ่นได้ ในธรรมชาติจะทำปฏิกิริยาเคมีกับกำมะถันเกิดเป็นแร่มิลเลอร์ไรต์ (millerite) ถ้าทำปฏิกิริยาเคมีกับสารหนู (arsenic) จะเกิดเป็นแร่นิกกอไลต์ (niccolite) แต่ถ้าทำปฏิกิริยาเคมีกับทั้งสารหนูและกำมะถันจะเป็นก้อนนิกเกิลกลานซ (nickel glance) ประเทศที่บริโภคนิเกิลมากที่สุดคือญี่ปุ่น ซึ่งใช้ 169,600 ตันต่อปี (ข้อมูลปี 2005).

ใหม่!!: อะตอมและนิกเกิล · ดูเพิ่มเติม »

นิวทริโน

นิวทริโน (Neutrino) เป็นอนุภาคมูลฐาน ที่เป็นกลางทางไฟฟ้า และมีค่าสปิน (ฟิสิกส์)เท่ากับครึ่งจำนวนเต็ม นิวทริโน (ภาษาอิตาลีหมายถึง "สิ่งเป็นกลางตัวน้อย") ใช้สัญลักษณ์แทนด้วยอักษรกรีกว่า \nu_^ (นิว) มวลของนิวทริโนมีขนาดเล็กมากเมื่อเปรียบเทียบกับอนุภาคย่อยอื่นๆ และเป็นอนุภาคเพียงชนิดเดียวที่รู้จักในขณะนี้ที่มีความเป็นไปได้ว่าจะเป็นสสารมืด โดยเฉพาะอย่างยิ่งสสารมืดร้อน นิวทริโนเป็นเลปตอน กลุ่มเดียวกับอิเล็กตรอน มิวออน และเทา (อนุภาค) แต่ไม่มีประจุไฟฟ้า แบ่งเป็น 3 ชนิด (หรือ flavour) ได้แก่ อิเล็กตรอนนิวทริโน (Ve) มิวออนนิวทริโน (Vμ) และเทานิวทริโน (VT) แต่ละเฟลเวอร์มีคู่ปฏิปักษ์ (ปฏิยานุภาค) ของมันเรียกว่า "ปฏินิวทริโน" ซึ่งไม่มีประจุไฟฟ้าและมีสปินเป็นครึ่งเช่นกัน นิวทริโนถูกสร้างขึ้นในวิธีที่อนุรักษ์ เลขเลปตอน นั่นคือ เมื่อมี อิเล็กตรอนนิวทริโน ถูกสร้างขึ้น หนึ่งตัว จะมี โพซิตรอน (ปฏิอิเล็กตรอน) หนึ่งตัวถูกสร้างขึ้นด้วย และเมื่อมี อิเล็กตรอนปฏินิวทริโนหนึ่งตัวถูกสร้างขึ้น ก็จะมีอิเล็กตรอนหนึ่งตัวถูกสร้างขึ้นเช่นกัน นิวทริโนไม่มีประจุไฟฟ้า จึงไม่ถูกกระทบโดยแรงแม่เหล็กไฟฟ้าที่จะกระทำต่อทุกอนุภาคที่มีประจุไฟฟ้า และเนื่องจากมันเป็นเลปตอน จึงไม่ถูกกระทบโดยอันตรกิริยาอย่างเข้มที่จะกระทำต่อทุกอนุภาคที่ประกอบเป็นนิวเคลียสของอะตอม นิวทริโนจึงถูกกระทบโดย อันตรกิริยาอย่างอ่อน และ แรงโน้มถ่วง เท่านั้น แรงอย่างอ่อนเป็นปฏิสัมพันธ์ที่มีระยะทำการสั้นมาก และแรงโน้มถ่วงก็อ่อนแออย่างสุดขั้วในระยะทางระดับอนุภาค ดังนั้นนิวทริโนโดยทั่วไปจึงสามารถเคลื่อนผ่านสสารทั่วไปได้โดยไม่ถูกขวางกั้นและไม่สามารถตรวจจับได้ นิวทริโนสามารถสร้างขึ้นได้ในหลายวิธี รวมทั้งในหลายชนิดที่แน่นอนของการสลายให้กัมมันตรังสี, ในปฏิกิริยานิวเคลียร์ เช่นพวกที่เกิดขึ้นในดวงอาทิตย์, ในเครื่องปฏิกรณ์นิวเคลียร์, เมื่อรังสีคอสมิกชนกับอะตอมและในซูเปอร์โนวา ส่วนใหญ่ของนิวทริโนในบริเวณใกล้โลกเกิดจากปฏิกิริยานิวเคลียร์ในดวงอาทิตย์ ในความเป็นจริง นิวทรืโนจากดวงอาทิตย์ประมาณ 65 พันล้านตัว ต่อวินาทีเคลื่อนที่ผ่านทุก ๆ ตารางเซนติเมตรที่ตั้งฉากกับทิศทางของดวงอาทิตย์ในภูมิภาคของโลก นิวทริโนมีการ แกว่ง (oscillate) ไปมาระหว่างฟเลเวอร์ที่แตกต่างกันเมื่อมีการเคลื่อนที่ นั่นคิอ อิเล็กตรอนนิวทริโนตัวหนึ่งที่ถูกสร้างขึ้นในปฏิกิริยาการสลายให้อนุภาคบีตา อาจกลายเป็นมิวออนนิวทริโนหรือเทานิวทริโนหนึ่งตัวเมื่อมาถึงเครื่องตรวจจับ ซึ่งนิวทริโนแต่ละชนิดจะมีมวลไม่เท่ากัน ถึงแม้ว่ามวลเหล่านี้มีขนาดที่เล็กมาก จากการวัดทางจักรวาลวิทยา ได้มีการคำนวณว่าผลรวมของมวลนิวทริโนสามตัวน้อยกว่าหนึ่งในล้านส่วนของมวลอิเล็กตรอน.

ใหม่!!: อะตอมและนิวทริโน · ดูเพิ่มเติม »

นิวคลีออน

นิวเคลียสอะตอมประกอบด้วยอนุภาคอัดแน่นของนิวคลีออน 2 ประเภท คือโปรตอน (สีแดง) กับนิวตรอน (สีน้ำเงิน) ในภาพนี้ โปรตอนกับนิวตรอนดูเหมือนลูกบอลเล็กๆ ที่ติดแน่นอยู่ด้วยกัน แต่ในนิวเคลียสจริงๆ ตามความเข้าใจของวิชาฟิสิกส์นิวเคลียร์ยุคใหม่ไม่ได้มีหน้าตาแบบนี้ เราพรรณนาภาพนิวเคลียสจริงๆ อย่างถูกต้องได้เพียงอาศัยกลศาสตร์ควอนตัมเท่านั้น ตัวอย่างเช่น ในนิวเคลียสจริงๆ นิวคลีออนแต่ละตัวจะอยู่ในหลายๆ ตำแหน่งในเวลาเดียวกัน กระจายไปทั่วตลอดนิวเคลียส นิวคลีออน (Nucleon) คือหนึ่งในหลายอนุภาคที่ประกอบขึ้นเป็นนิวเคลียสของอะตอม นิวเคลียสของอะตอมแต่ละตัวประกอบด้วยนิวคลีออนหนึ่งตัวหรือมากกว่านั้น ดังนั้นอะตอมแต่ละตัวจึงประกอบด้วยกลุ่มของนิวคลีออนที่ล้อมรอบด้วยอิเล็กตรอนหนึ่งตัวหรือมากกว่านั้น นิวคลีออนมีอยู่ 2 ประเภทคือนิวตรอน และโปรตอน เลขมวลของไอโซโทปอะตอมหนึ่งๆ จะมีค่าเท่ากันกับจำนวนของนิวคลีออนของไอโซโทปอะตอมนั้นๆ ด้วยเหตุนี้ เราจึงสามารถใช้เลขนิวคลีออนแทนที่เลขมวลหรือเลขมวลอะตอมซึ่งเป็นที่นิยมใช้กันอย่างกว้างขวางก็ได้ ก่อนจะถึงทศวรรษ 1960 เคยเชื่อกันว่านิวคลีออนเป็นอนุภาคมูลฐาน ซึ่งไม่อาจประกอบขึ้นจากชิ้นส่วนอื่นใดที่เล็กไปกว่านั้นอีกแล้ว แต่ปัจจุบันเราทราบกันแล้วว่ามันเป็นอนุภาคประกอบ ซึ่งเกิดจากควาร์กสามตัวเกาะเข้าด้วยกันด้วยสิ่งที่เรียกว่าอันตรกิริยาอย่างเข้ม อันตรกิริยาระหว่างนิวคลีออนตั้งแต่ 2 ตัวขึ้นไปเรียกว่า internucleon interaction หรือแรงนิวเคลียร์ ซึ่งเกิดขึ้นจากอันตรกิริยาอย่างเข้มนั่นเอง (แต่เดิมก่อนมีการค้นพบควาร์ก คำว่า "อันตรกิริยาอย่างเข้ม" มีความหมายถึงเพียง internucleon interaction เท่านั้น) ทั้งโปรตอนและนิวตรอนล้วนเป็นแบริออน และก็เป็นเฟอร์มิออนด้วย ตามคำนิยามของฟิสิกส์อนุภาค อนุภาคทั้งสองนี้ประกอบกันเป็น isospin doublet ซึ่งเป็นคำอธิบายว่าทำไมมวลของพวกมันจึงเกือบเท่ากัน โดยที่นิวตรอนหนักกว่าโปรตอนราว 0.1% เท่านั้น.

ใหม่!!: อะตอมและนิวคลีออน · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: อะตอมและนิวตรอน · ดูเพิ่มเติม »

นิวไคลด์

นิวไคลด์ (Nuclide; มาจาก นิวเคลียส) คือกลุ่มลักษณะของอะตอมที่เกิดจากคุณลักษณะเฉพาะของนิวเคลียสของมัน เช่นการดูจากจำนวน Z ของโปรตอน (ประเภทจำนวนโปรตอนเท่ากัน), จำนวน N ของนิวตรอน (ประเภทจำนวนนิวตอนเท่ากัน) และระดับพลังงานของอะตอม(ประเภทพลังงานเท่ากัน) คำว่า "นิวไคลด์" ถูกนำเสนอขึ้น โดยนาย Truman P. Kohman ในปี..

ใหม่!!: อะตอมและนิวไคลด์ · ดูเพิ่มเติม »

นิวไคลด์กัมมันตรังสี

นิวไคลด์กัมมันตรังสี (radionuclide) คืออะตอมที่มีนิวเคลียสที่ไม่เสถียร มีพลังงานสูงมากจนสามารถสร้างอนุภาคกัมมันตรังสีขึ้นใหม่ภายในนิวเคลียสหรือโดยผ่านการแปลงภายในก็ได้ ระหว่างกระบวนการนี้เราจะเรียกว่านิวไคลด์กัมมันตรังสีนั้นกำลังเกิดการสลายให้กัมมันตรังสี ซึ่งทำให้เกิดการเปล่งรังสีแกมมา และ/หรือ อนุภาคย่อยของอะตอม เช่น อนุภาคอัลฟาหรืออนุภาคบีตา การเปล่งรังสีเช่นนี้สามารถเกิดจากการแผ่รังสีจากการแตกตัวเป็นไอออนก็ได้ นิวไคลด์กัมมันตรังสีสามารถเกิดขึ้นเองตามธรรมชาติ หรือถูกสร้างขึ้นได้เช่นกัน นักเคมีและนักฟิสิกส์มักเรียกนิวไคลด์กัมมันตรังสีว่า ไอโซโทปกัมมันตรังสี หรือ radioisotope ไอโซโทปกัมมันตรังสีที่มีครึ่งชีวิตที่เหมาะสมมีบทบาทสำคัญยิ่งในเทคโนโลยีหลายชนิด (เช่น การรักษาด้วยนิวเคลียร์ (nuclear medicine)) อย่างไรก็ดี นิวไคลด์กัมมันตรังสีอาจทำให้เกิดโทษมหันต์ต่อสุขภาพด้วยเช่นกัน.

ใหม่!!: อะตอมและนิวไคลด์กัมมันตรังสี · ดูเพิ่มเติม »

นิวเคลียส

นิวเคลียส (nucleus, พหูพจน์: nucleuses หรือ nuclei (นิวคลีไอ) มีความหมายว่า ใจกลาง หรือส่วนที่อยู่ตรงกลาง โดยอาจมีความหมายถึงสิ่งต่อไปนี้ โดยคำว่า นิวเคลียส (Nucleus) เป็นคำศัพท์ภาษาละตินใหม่ (New Latin) มาจากคำศัพท์เดิม nux หมายถึง ผลเปลือกแข็งเมล็ดเดียว (nut).

ใหม่!!: อะตอมและนิวเคลียส · ดูเพิ่มเติม »

นิวเคลียสของอะตอม

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'.

ใหม่!!: อะตอมและนิวเคลียสของอะตอม · ดูเพิ่มเติม »

นีลส์ บอร์

|นีลส์ โบร์ นีลส์ โบร์ กับ ไอน์สไตน์ นีลส์ โบร์ (Niels Hendrik David Bohr – 7 ตุลาคม พ.ศ. 2428-18 พฤศจิกายน พ.ศ. 2505) นักฟิสิกส์ชาวเยอรมัน เกิดที่กรุงโคเปนเฮเกน จบการศึกษาจากมหาวิทยาลัยโคเปนเฮเกนแล้วจึงได้ไปทำงานที่ประเทศอังกฤษ ที่เมืองเคมบริดจ์ และแมนเชสเตอร์ ต่อมาได้ดำรงตำแหน่งผู้อำนวยการสถาบันฟิสิกส์ทฤษฎีที่โคเปนเฮเกนตั้งแต่ปี พ.ศ. 2463 จนถึงแก่กรรม นีลส์ โบร์ ได้ขยายต่อยอดทฤษฎีโครงสร้างอะตอมให้ก้าวหน้าไปเป็นอันมาก จากการให้การอธิบายสเปกตรัมของไฮโดรเจน โดยวิธีสร้างแบบจำลองไฮโดรเจนและทฤษฎีควอนตัม (พ.ศ. 2456) ในช่วงสงครามโลกครั้งที่ 2 บอร์ได้ไปช่วยโครงการวิจัยที่ สหรัฐอเมริกาและกลับโคเปนเฮเกนเมื่อสิ้นสงครามในปี..

ใหม่!!: อะตอมและนีลส์ บอร์ · ดูเพิ่มเติม »

นีออน

นีออน (Neon) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ Ne และเลขอะตอม 10 นีออนเป็นก๊าซเฉื่อย เป็นสมาชิกหมู่ที่ 8 ของตารางธาตุ เป็นแก๊สอะตอมเดี่ยวที่ไม่มีสี ไม่มีกลิ่นและเกือบจะไม่เกิดปฏิกิริยาเคมีใดๆ และเกิดแสงเรืองสีแดงเมื่อใช้ในหลอดสุญญากาศ (vacuum discharge tube) กับไฟนีออน และพบในปริมาณเล็กน้อยในอากาศ (หนึ่งส่วนใน 55,000ส่วน) ได้จากการนำอากาศเหลวมากลั่นลำดับส่วนและเกือบจะไม่เกิดปฏิกิริยาเคมีใดๆ เลย จึงทำให้ไม่มีสารประกอบนีออนที่เรารู้จักเลย ซึ่งนีออนจะไม่เป็นอันตรายต่อคนโดยตรง.

ใหม่!!: อะตอมและนีออน · ดูเพิ่มเติม »

น้ำ

น้ำในสองสถานะ: ของเหลว (รวมทั้งก้อนเมฆซึ่งเป็นตัวอย่างของละอองลอย) และของแข็ง (น้ำแข็ง) น้ำเป็นสิ่งที่โปร่งใส ไม่มีรส ไม่มีกลิ่น และเกือบจะไม่มีสี ซึ่งเป็นสารเคมีที่เป็นองค์ประกอบหลักของลำธาร, แม่น้ำ, และมหาสมุทรในโลก เป็นต้น และยังเป็นของเหลวในสิ่งมีชีวิต มีสูตรเคมีคือ H2O โมเลกุลของน้ำประกอบด้วยออกซิเจน 1 อะตอมและไฮโดรเจน 2 อะตอมเชื่อมติดกันด้วยพันธะโควาเลนต์ น้ำเป็นของเหลวที่อุณหภูมิและความดันมาตรฐาน แต่พบบนโลกที่สถานะของแข็ง (น้ำแข็ง) และสถานะแก๊ส (ไอน้ำ) น้ำยังมีในสถานะของผลึกของเหลวที่บริเวณพื้นผิวที่ขอบน้ำ นอกจากนี้ยังสามารถเกิดขึ้นตามธรรมชาติ เช่น หิมะ, ธารน้ำแข็ง, และภูเขาน้ำแข็ง, ก้อนเมฆ, หมอก, น้ำค้าง, ชั้นหินอุ้มน้ำ และ ความชื้นในบรรยากาศ น้ำปกคลุม 71% บนพื้นผิวโลก และเป็นปัจจัยสำคัญต่อชีวิต น้ำบนโลก 96.5% พบในมหาสมุทร 1.7% ในน้ำใต้ดิน 1.7% ในธารน้ำแข็งและชั้นน้ำแข็งของทวีปแอนตาร์กติกาและเกาะกรีนแลนด์ ซึ่งเป็นเศษส่วนเล็กน้อยบนผิวน้ำขนาดใหญ่ และ 0.001% พบในอากาศเป็นไอน้ำ ก้อนเมฆ (ก่อตัวขึ้นจากอนุภาคน้ำในสถานะของแข็งและของเหลวแขวนลอยอยู่บนอากาศ) และหยาดน้ำฟ้า น้ำบนโลกเพียง 2.5% เป็นน้ำจืด และ 98.8% ของน้ำจำนวนนั้นพบในน้ำแข็งและน้ำใต้ดิน น้ำจืดน้อยกว่า 0.3% พบในแม่น้ำ ทะเลสาบ และชั้นบรรยากาศ และน้ำจืดบนโลกในปริมาณที่เล็กลงไปอีก (0.003%) พบในร่างกายของสิ่งมีชีวิตและผลิตภัณฑ์ น้ำบนโลกเคลื่อนที่ต่อเนื่องตามวัฏจักรของการระเหยเป็นไอและการคายน้ำ (การคายระเหย) การควบแน่น การตกตะกอน และการไหลผ่าน โดยปกติจะไปถึงทะเล การระเหยและการคายน้ำนำมาซึ่งการตกตะกอนลงสู่พื้นดิน น้ำดื่มสะอาดเป็นสิ่งจำเป็นสำหรับมนุษย์และสิ่งมีชีวิตอื่นๆ แม้ว่าน้ำจะไม่มีแคลอรีหรือสารอาหารที่เป็นสารประกอบอินทรีย์ใดๆ การเข้าถึงน้ำดื่มสะอาดได้เปลี่ยนแปลงไปในช่วงหลายศตวรรษที่ผ่านมาในเกือบทุกส่วนของโลก แต่ประชากรประมาณ 1 พันล้านคนยังคงขาดแคลนน้ำดื่มสะอาดและกว่า 2.5 พันล้านคนขาดแคลนสุขอนามัยที่เพียงพอ มีความเกี่ยวพันกันเรื่องน้ำสะอาดและค่า GDP ต่อคน อย่างไรก็ดี นักสังเกตบางคนประมาณไว้ว่าภายในปี..

ใหม่!!: อะตอมและน้ำ · ดูเพิ่มเติม »

แบบจำลองชั้นพลังงานของนิวเคลียส

ในการศึกษาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ แบบจำลองชั้นพลังงานของนิวเคลียส คือแบบจำลองของนิวเคลียสอะตอมที่อาศัยหลักการกีดกันของเพาลีเพื่ออธิบายโครงสร้างของนิวเคลียสในรูปของระดับพลังงาน แบบจำลองชั้นพลังงานชุดแรกเสนอขึ้นโดย ดมิทรี อิวาเนนโก (ร่วมกับ E.Gapon) เมื่อปี..

ใหม่!!: อะตอมและแบบจำลองชั้นพลังงานของนิวเคลียส · ดูเพิ่มเติม »

แบบจำลองมาตรฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ที่มีรุ่นตระกูลของสสารสามรุ่นโดยมี เกจโบซอน อยู่ในแถวที่สี่ และฮิกส์โบซอนอยู่ในแถวที่ห้า แบบจำลองมาตรฐาน (Standard Model) ของ ฟิสิกส์ของอนุภาค เป็นทฤษฎีหนึ่งที่เกี่ยวข้องกับปฏิสัมพันธ์ของนิวเคลียสที่เป็นแบบแม่เหล็กไฟฟ้า, ที่อ่อนแอ, และที่แข็งแกร่ง เช่นเดียวกับการแยกประเภทของอนุภาคย่อยของอะตอมที่เรารู้จักแล้วทั้งหมด มันถูกพัฒนาขึ้นในช่วงครึ่งหลังของศตวรรษที่ 20 ในฐานะที่เป็นความพยายามในความร่วมมือของนักวิทยาศาสตร์ทั่วโลก รูปแบบปัจจุบันได้รับการสรุปขั้นตอนสุดท้ายในช่วงกลางของทศวรรษที่ 1970 ภายใต้การยืนยันด้วยการทดลองของการดำรงอยุ่ของควาร์ก ตั้งแต่นั้นมา การค้นพบทอปควาร์ก (1995), เทานิวทริโน (2000), และเร็ว ๆ นี้ ฮิกส์โบซอน (2012), ได้เพิ่มเครดิตให้กับแบบจำลองพื้นฐาน เนื่องจากความสำเร็จของมันในการอธิบายความหลากหลายอย่างกว้างขวางของผลลัพธ์จากการทดลอง แบบจำลองพื้นฐานบางครั้งถูกพิจารณาว่าเป็น "ทฤษฏีของเกือบทุกสิ่ง" แม้ว่าแบบจำลองมาตรฐานจะถูกเชื่อว่าจะเป็นความสม่ำเสมอในทางทฤษฎีด้วยตัวมันเองก็ตาม และได้แสดงให้เห็นถึงความสำเร็จอย่างใหญ่หลวงและต่อเนื่องในการให้การคาดการณ์จากการทดลองที่ดี มันทิ้งปรากฏการณ์ที่อธิบายไม่ได้บางอย่างไว้ให้และมันให้ผลงานต่ำกว่าที่ประมาณการไว้ของการเป็นทฤษฎีที่สมบูรณ์แบบของการปฏิสัมพันธ์พื้นฐาน มันไม่ได้รวบรวมทฤษฎีที่สมบูรณ์ของแรงโน้มถ่วงSean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct.

ใหม่!!: อะตอมและแบบจำลองมาตรฐาน · ดูเพิ่มเติม »

แบบจำลองรัทเทอร์ฟอร์ด

แบบจำลองอะตอมของรัทเทอร์ฟอร์ด: อิเล็กตรอน (สีเขียว) และนิวเคลียส (สีแดง) แบบจำลองรัทเทอร์ฟอร์ด หรือ แบบจำลองอะตอมแบบดาวเคราะห์ (lang-en|Rutherford model) คือแบบจำลองที่คิดขึ้นโดย โดยแปลความจากในปี..

ใหม่!!: อะตอมและแบบจำลองรัทเทอร์ฟอร์ด · ดูเพิ่มเติม »

แบบจำลองอะตอมของทอมสัน

ำลองแนวคิดแบบจำลองอะตอมของทอมสัน ซึ่ง "คอร์พัสเคิล" (หรืออิเล็กตรอน ตามที่เรารู้จักกันในปัจจุบัน) กระจายตัวอยู่ทั่วไปภายในอะตอม แบบจำลองอะตอม หรือ แบบจำลองขนมปังลูกเกด (plum pudding model) ของ เจ. เจ. ทอมสัน ผู้ค้นพบอิเล็กตรอนเมื่อปี..

ใหม่!!: อะตอมและแบบจำลองอะตอมของทอมสัน · ดูเพิ่มเติม »

แบริโอเจเนซิส

ในการศึกษาจักรวาลวิทยา แบริโอเจเนซิส (Baryogenesis) เป็นศัพท์สามัญที่ใช้เรียกกระบวนการทางกายภาพตามสมมุติฐาน อันเป็นการทำให้เกิดความไม่สมดุลระหว่างแบริออนกับปฏิแบริออน ในช่วงเริ่มต้นของเอกภพ เป็นผลให้เกิดสสารต่างๆ อันเป็นส่วนประกอบของเอกภพในปัจจุบัน ทฤษฎีต่างๆ เกี่ยวกับแบริโอเจเนซิส ต้องอาศัยสาขาวิชาย่อยทางฟิสิกส์มาช่วยมากมาย เช่น ทฤษฎีสนามควอนตัม และฟิสิกส์เชิงสถิติ เพื่ออธิบายถึงกลไกที่เป็นไปได้ ความแตกต่างระหว่างทฤษฎีแบริโอเจเนซิสแบบต่างๆ เป็นเรื่องรายละเอียดของปฏิกิริยาระหว่างอนุภาคพื้นฐาน กระบวนการถัดจากแบริโอเจเนซิส ยังเป็นที่เข้าใจกันมากกว่า นั่นคือ บิกแบงนิวคลีโอซินทีสิส ซึ่งเกิดขึ้นในช่วงที่นิวเคลียสอะตอมของแสงเริ่มก่อตัวขึ้น.

ใหม่!!: อะตอมและแบริโอเจเนซิส · ดูเพิ่มเติม »

แบเรียม

แบเรียม (Barium) คือธาตุที่มีหมายเลขอะตอม 56 และสัญลักษณ์คือ Ba แบเรียมเป็นธาตุโลหะแอลคาไลน์เอิร์ทมีลักษณะเป็นสีเงินอ่อนนุ่มหลอมเหลวที่อุณหภูมิสูงมาก อ๊อกไซด์ของมันเรียกแบริตา (baryta) ตามธรรมชาติพบในแร่แบไรต์ไม่พบในสภาพบริสุทธิ์เพราะไวต่อปฏิกิริยาเคมีกับอาก.

ใหม่!!: อะตอมและแบเรียม · ดูเพิ่มเติม »

แกรไฟต์

แกรไฟต์ (graphite) เป็นอัญรูปหนึ่งของธาตุคาร์บอน ชื่อสามัญเรียกว่า พลัมเบโก (plumbago) หรือแร่ดินสอดำ มีลักษณะเป็นของแข็ง มีรูปผลึกเป็นแผ่นบาง ๆ ทึบแสง อ่อนนุ่ม สีเทาเข้มถึงดำ เนื้ออ่อน เป็นตัวนำความร้อนและไฟฟ้าได้ดี มักใช้ทำไส้ดินสอดำ เบ้าหลอมโลหะ น้ำมันหล่อลื่นบางชนิด ไส้ถ่านไฟฉาย ไส้ไฟอาร์ก ใช้เป็นตัวลดความเร็ว ช่วยควบคุมจำนวนอนุภาคนิวตรอนในเครื่องปฏิกรณ์นิวเคลียร์ ถูกนำมาใช้เมื่อ 4 พันปีก่อนคริสตกาล ในงานทาสีตกแต่งเครื่องเซรามิกในทางตะวันออกเฉียงใต้ของยุโรป ได้มีการค้นพบแหล่งสะสมตัวของแร่แกรไฟต์ขนาดใหญ่มากที่รัฐคัมเบรีย ประเทศอังกฤษ แร่ที่พบมีลักษณะบริสุทธิ์ ไม่แข็ง แตกหักง่าย และมีรูปแบบการสะสมตัวอัดแน่นกัน แกรไฟต์เป็นชื่อที่ตั้งโดย Abraham Gottlob Werner ในปี ค.ศ. 1789 โดยมาจากภาษากรีกว่า γραφειν หมายถึง "เพื่อวาด/เขียน" ซึ่งตั้งตามการใช้แกรไฟต์ในดินสอ แร่แกรไฟต์เป็นการจัดเรียงตัวรูปแบบหนึ่งของคาร์บอน ในภาษากรีกแปลว่า ใช้ขีดเขียนวาดภาพ มีคุณสมบัติเป็นตัวนำไฟฟ้าหรือกึ่งตัวนำไฟฟ้า แกรไฟต์มีการจัดเรียงตัวแบบเสถียรที่สภาวะมาตรฐาน แต่บางครั้งแร่แกรไฟต์เกิดจากถ่านหินเมื่อมีความร้อน ความดันสูงขึ้นระดับหนึ่งซึ่งพบอยู่บนแอนทราไซท์ (Anthracite) และเมตา-แอนทราไซท์ (Meta-anthracite) ซึ่งโดยปกติแล้ว มักไม่นำมาใช้เป็นเชื้อเพลิงเพราะติดไฟยาก.

ใหม่!!: อะตอมและแกรไฟต์ · ดูเพิ่มเติม »

แก๊ส

อนุภาคในสถานะแก๊ส (อะตอม โมเลกุล หรือไอออน) เคลื่อนที่ได้อย่างอิสระภายในสนามแม่เหล็ก แก๊ส หรือที่เรียกอีกอย่างหนึ่งว่า ก๊าซ (Gas) เป็นหนึ่งในสถานะพื้นฐานทั้งสี่ของสสาร (ที่เหลือ คือ ของแข็ง ของเหลวและพลาสมา) แก๊สบริสุทธิ์ประกอบไปด้วยอะตอมเดี่ยว เช่น แก๊สมีตระกูล ส่วนแก๊สที่เป็นธาตุเคมี จะอยู่ในรูปหลายอะตอม แต่เป็นชนิดเดียวกัน เช่น ออกซิเจน หรือเป็นโมเลกุลสารประกอบที่อยู่ในรูปหลายอะตอมและต่างชนิดกัน เช่น คาร์บอนไดออกไซด์ แก๊สผสม เป็นแก๊สที่เกิดจากแก๊สบริสุทธิ์หลายชนิดรวมกัน เช่น อากาศ สิ่งที่แตกต่างระหว่างแก๊สที่ในอุณหภูมิห้องเป็นของเหลวกับแก๊สที่ในอุณหภูมิห้องเป็นของแข็ง คือโมเลกุลของแก๊ส และการแยกนี้ทำให้มีแก๊สไม่มีสี ซึ่งทำให้เรามองไม่เห็น การทำงานร่วมกันของอนุภาคของแก๊สมีขึ้นในสนามแม่แหล็กและแรงโน้มถ่วง แก๊สประเภทหนึ่งที่รู้จักกันดีคือ ไอน้ำ แก๊สมีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยมากจะอยู่ห่างกันและแพร่กระจายอยู่ทั่วทั้งภาชนะที่บรรจุ ทำให้มีรูปร่างเปลี่ยนแปลงตามขนาดและรูปร่างของภาชนะ สมบัติของแก๊ส 1.แก๊สมีรูปร่างเป็นปริมาตรไม่แน่นอน เปลี่ยนแปลงไปตามภาชนะที่บรรจุ บรรจุในภาชนะใดก็จะมีรูปร่างเป็นปริมาตรตามภาชนะนั้น เช่น ถ้าบรรจุในภาชนะทรงกลมขนาด 1 ลิตร แก๊สจะมีรูปร่างเป็นทรงกลมมีปริมาตร 1 ลิตร เพราะแก๊สมีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยมากจึงทำให้อนุภาคของแก๊สสามารถเคลื่อนที่หรือแพร่กระจายเต็มภาชนะที่บรรจุ 2.ถ้าให้แก๊สอยู่ให้ภาชนะที่ได้ ปริมาตรของแก๊สจะขึ้นอยู่กับอุณหภูมิ ความดันและจำนวนโมลดังนั้นเมื่อบอกปริมาตรของแก๊สจะต้องบอกอุณหภูมิ ความดันและจำนวนโมล 3.สารที่อยู่ในสถานะแก๊สมีความหนาแน่นน้อยกว่าเมื่ออยู่ในสถานะของแข็งและของเหลวมาก 4.แก๊สสามารถแพร่ได้ และแพร่ได้เร็ว เพราะแก๊สมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยกว่าของเหลวและของแข็ง 5.แก๊สต่างๆ ตั้งแต่ 2 ชนิดขึ้นไปเมื่อนำมาใส่ในภาชนะเดียวกันแก๊สแต่ละชนิดจะแพร่ผสมกันอย่างสมบูรณ์ทุกส่วนนั้นคือส่วนผสมของแก๊สเป็นสารเดียวหรือเป็นสารละลาย 6.แก๊สส่วนใหญ่ไม่มีสีและโปร่งใสเช่นแก๊สออกซิเจน แก๊สไฮโดรเจน เป็นต้น.

ใหม่!!: อะตอมและแก๊ส · ดูเพิ่มเติม »

แก๊สมีตระกูล

แก๊สมีตระกูล (Noble gas) หมายถึง แก๊สที่ไม่ไวต่อการทำปฏิกิริยากับธาตุอื่น ไม่เกิดสารประกอบคลอไรด์ ออกไซด์และซัลไฟล์ กลุ่มธาตุเคมีที่มีสมบัติเหมือนกัน: ที่ภาวะมาตรฐาน ธาตุในหมู่นี้จะไม่มีกลิ่น ไม่มีสี เป็นแก๊สที่เฉื่อยต่อการเกิดปฏิกิริยา แก๊สมีตระกูลหกตัวที่ปรากฏในธรรมชาติ ได้แก่ ฮีเลียม (He), นีออน (Ne), อาร์กอน (Ar), คริปทอน (Kr), ซีนอน (Xe) และเรดอน (Rn) ซึ่งเป็นกัมมันตรังสี ธาตุพวกนี้เป็นธาตุโมเลกุลเดี่ยว (monoatomic molecule) แก๊สมีตระกูลมีคุณสมบัติดังนี้.

ใหม่!!: อะตอมและแก๊สมีตระกูล · ดูเพิ่มเติม »

แมสสเปกโตรเมทรี

แมสสเปกโตรเมทรี (Mass spectrometry หรือ MS) คือเทคนิคในการวิเคราะห์ผลการวัดสัดส่วนมวลต่อประจุ (mass-to-charge ratio) ของอนุภาคที่มีประจุ ใช้เพื่อระบุมวลของอนุภาค ส่วนประกอบของธาตุในสารประกอบตัวอย่างหรือในโมเลกุล และเพื่อแสดงถึงโครงสร้างทางเคมีของโมเลกุล เช่น เพปไทด์ และสารประกอบทางเคมีอื่นๆ การทำงานของ MS คือทำให้สารประกอบเคมีกลายเป็นประจุ (ionize) เพื่อสร้างโมเลกุลที่มีประจุขึ้นมาและวัดสัดส่วนมวลต่อประจุของมัน.

ใหม่!!: อะตอมและแมสสเปกโตรเมทรี · ดูเพิ่มเติม »

แรงนิวเคลียร์

แรงนิวเคลียร์ (Nuclear force) คือแรงระหว่างนิวคลีออนสองตัวหรือมากกว่านั้น เป็นเหตุของการยึดเหนี่ยวระหว่างโปรตอนกับนิวตรอนให้อยู่ด้วยกันเป็นนิวเคลียสอะตอมได้ พลังงานนิวเคลียร์ยึดเหนี่ยวที่ปลดปล่อยออกมาทำให้มวลของนิวเคลียสน้อยกว่ามวลรวมของโปรตอนและนิวตรอนรวมกัน แรงนี้เป็นแรงดูดที่มีกำลังแรงระหว่างนิวคลอนที่อยู่ห่างกันประมาณ 1 เฟมโตเมตร (fm) วัดจากจุดศูนย์กลาง แต่จะอ่อนกำลังลงอย่างรวดเร็วที่ระยะห่างมากกว่า 2.5 fm ที่ระยะใกล้กว่า 0.7 fm แรงนี้จะกลายเป็นแรงผลัก และเป็นตัวการสำหรับรูปร่างทางกายภาพของนิวเคลียส เพราะนิวคลีออนจะไม่สามารถเข้าใกล้กันมากกว่าที่แรงนี้ยอมให้เป็นไปได้ ปัจจุบันนี้เข้าใจกันว่า แรงนิวเคลียร์เป็นปรากฏการณ์ตกค้างจากแรงที่มีกำลังมากกว่า คืออันตรกิริยาอย่างเข้ม ซึ่งเป็นแรงดูดที่ยึดเหนี่ยวอนุภาคที่เรียกว่า ควาร์ก เอาไว้ด้วยกัน เพื่อก่อให้เกิดเป็นนิวคลีออน แรงซึ่งมีกำลังมากกว่านี้มีอนุภาคพาหะที่เรียกว่า กลูออน กลูออนยึดเหนี่ยวควาร์กเอาไว้ด้วยกันด้วยแรงเหมือนกับประจุไฟฟ้า แต่มีกำลังมากกว่า หลักการของแรงนิวเคลียร์เริ่มก่อสร้างขึ้นในปี 1934 ไม่นานหลังจากการค้นพบนิวตรอนซึ่งเผยให้เห็นว่า นิวเคลียสอะตอมประกอบขึ้นด้วยโปรตอนกับนิวตรอน ที่ยึดเหนี่ยวกันและกันเอาไว้ด้วยแรงดึงดูด เวลานั้นเชื่อกันว่าแรงนิวเคลียร์ถูกส่งผ่านด้วยอนุภาคที่เรียกว่า มีซอน ซึ่งเป็นอนุภาคที่ทำนายเอาไว้ในทฤษฎี ก่อนจะมีการค้นพบจริงในปี..

ใหม่!!: อะตอมและแรงนิวเคลียร์ · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

ใหม่!!: อะตอมและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

แวร์เนอร์ ไฮเซินแบร์ก

แวร์เนอร์ ไฮเซินแบร์ก (Werner Heisenberg; 5 ธันวาคม พ.ศ. 2444-1 กุมภาพันธ์ พ.ศ. 2519) เป็นนักฟิสิกส์ทฤษฎีชาวเยอรมันซึ่งเป็นหนึ่งในผู้วางหลักการพื้นฐานของกลศาสตร์ควอนตัม มีชื่อเสียงเป็นที่รู้จักในฐานะผู้คิดค้นหลักความไม่แน่นอนของทฤษฎีควอนตัม นอกจากนี้ยังเป็นผู้มีบทบาทสำคัญในสาขาวิชาฟิสิกส์นิวเคลียร์ ทฤษฎีสนามควอนตัม และฟิสิกส์อนุภาค ไฮเซินแบร์ก ร่วมกับมักซ์ บอร์น และ พาสควอล จอร์แดน ได้ร่วมกันวางหลักการของเมทริกซ์เพื่อใช้ในกลศาสตร์ควอนตัมในปี..

ใหม่!!: อะตอมและแวร์เนอร์ ไฮเซินแบร์ก · ดูเพิ่มเติม »

แสง

ปริซึมสามเหลี่ยมกระจายลำแสงขาว ลำที่ความยาวคลื่นมากกว่า (สีแดง) กับลำที่ความยาวคลื่นน้อยกว่า (สีม่วง) แยกจากกัน แสง (light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่าและมีคลื่นแคบกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นกว้างกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์ ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่) ^~^.

ใหม่!!: อะตอมและแสง · ดูเพิ่มเติม »

แอร์วิน ชเรอดิงเงอร์

แอร์วิน ชเรอดิงเงอร์ (Erwin Rudolf Josef Alexander Schrödinger; 12 สิงหาคม ค.ศ. 1887 - 4 มกราคม ค.ศ. 1961) เป็นนักฟิสิกส์ทฤษฎีชาวออสเตรีย มีชื่อเสียงในฐานะผู้วางรากฐานกลศาสตร์ควอนตัม โดยเฉพาะอย่างยิ่งสมการชเรอดิงเงอร์ ซึ่งทำให้เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: อะตอมและแอร์วิน ชเรอดิงเงอร์ · ดูเพิ่มเติม »

แอนติไฮโดรเจน

แอนติไฮโดรเจนประกอบด้วยโพสิตรอนและแอนติโปรตอน แอนติไฮโดรเจน หรือ แอนไทไฮโดรเจน (antihydrogen) เป็นปฏิสสารของไฮโดรเจน ในขณะที่อะตอมไฮโดรเจนประกอบด้วยอิเล็กตรอนและโปรตอนอย่างละหนึ่งอนุภาค อะตอมแอนติไฮโดรเจนจะประกอบด้วยโพสิตรอนและแอนติโปรตอน แอนติไฮโดรเจนเริ่มที่จะได้รับการผลิตโดยมนุษย์ในการทดลองเครื่องเร่งอนุภาคใน..

ใหม่!!: อะตอมและแอนติไฮโดรเจน · ดูเพิ่มเติม »

แขนงดาวยักษ์อะซิมโทติก

แขนงดาวยักษ์อะซิมโทติก (asymptotic giant branch; AGB) เป็นย่านหนึ่งในไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ซึ่งแสดงถึงดาวฤกษ์มวลต่ำถึงมวลปานกลางที่กำลังวิวัฒนาการ เป็นช่วงเวลาหนึ่งของวิวัฒนาการของดาวฤกษ์ที่เกิดขึ้นในช่วงปลายอายุของดาวฤกษ์ที่มีมวลต่ำถึงมวลปานกลาง (0.6-10 เท่าของมวลดวงอาทิตย์) ทุกดวง จากการสังเกตการณ์ ดาวฤกษ์ชนิดแขนงดาวยักษ์อะซิมโทติก (AGB) จะปรากฏในลักษณะดาวยักษ์แดง โครงสร้างภายในของมันประกอบด้วยแกนกลางอันเฉื่อยชาของคาร์บอนและออกซิเจน เปลือกเป็นฮีเลียมที่กำลังทำปฏิกิริยาฟิวชันเพื่อสร้างคาร์บอน (เรียกว่า การเผาตัวของฮีเลียม) เหลืออีกชั้นเป็นไฮโดรเจนที่กำลังทำปฏิกิริยาฟิวชันเพื่อสร้างฮีเลียม (เรียกว่า การเผาตัวของไฮโดรเจน) และมีเปลือกขนาดใหญ่ที่ประกอบด้วยสารประกอบคล้ายคลึงกับดาวฤกษ์ธรรมดาทั่วไป ช่วงเวลาของ AGB แบ่งออกเป็น 2 ระยะ คือ AGB ระยะต้น (E-AGB) กับระยะ thermally pulsing AGB (TP-AGB) ในระหว่างระยะ E-AGB แหล่งกำเนิดพลังงานหลักมาจากฟิวชันของฮีเลียมในชั้นเปลือกดาวรอบแกนกลางที่มีคาร์บอนกับออกซิเจนเป็นส่วนใหญ่ ระหว่างระยะนี้ ดาวฤกษ์จะขยายตัวออกไปมากจนกลายเป็นดาวยักษ์แดงอีกครั้งหนึ่ง รัศมีของดาวฤกษ์อาจใหญ่มากถึงหนึ่งหน่วยดาราศาสตร์ หลังจากที่ชั้นเปลือกฮีเลียมใช้เชื้อเพลิงไปจนหมด ก็จะเริ่มเข้าสู่ระยะ TP-AGB ในระยะนี้ ดาวฤกษ์จะใช้พลังงานจากฟิวชั่นของไฮโดรเจนในชั้นเปลือกบางๆ ซึ่งห่อหุ้มชั้นเหลือฮีเลียมที่หมดพลังงานไปแล้ว อย่างไรก็ดี เมื่อเวลาผ่านไป 10,000 ถึง 100,000 ปี ชั้นเปลือกฮีเลียมอาจจุดติดขึ้นมาอีก ส่วนชั้นเปลือกไฮโดรเจนก็ดับไป กระบวนการนี้เรียกว่า helium shell flash หรือ "thermal pulse" นั่นเอง โดยทั่วไป ดาวฤกษ์ชนิด AGB จะเป็นดาวแปรแสงคาบยาว และต้องสูญเสียมวลจำนวนมหาศาลไปในรูปของลมดาวฤกษ์ ดาวฤกษ์อาจสูญเสียมวลถึง 50-70% ไปในระหว่างระยะ AGB นี้.

ใหม่!!: อะตอมและแขนงดาวยักษ์อะซิมโทติก · ดูเพิ่มเติม »

โบรอน

รอน (Boron) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ B และเลขอะตอม 5 เป็นธาตุที่มี วาเลนซ์ 3 และเป็นกึ่งโลหะ โบรอนปรากฏมากในแร่บอแรกซ์ โบรอนมี 2 อัญรูปโดยที่ amorphous boron เป็นผงสีน้ำตาล และ metallic boron มีสีดำ รูปแบบที่เป็นโลหะมีความแข็งมาก (9.3 บนมาตราของโมห์ส) แต่นำไฟฟ้าไม่ดีที่อุณหภูมิห้อง "โบรอนนำไฟฟ้าได้น้อยแต่เมื่อทำให้อุณหภูมิสูงขึ้นจะสามารถนำไฟฟ้าได้ดีขึ้น", รองศาสตราจารย์ ดร.พินิติ รตะนานุกูล และคณ.

ใหม่!!: อะตอมและโบรอน · ดูเพิ่มเติม »

โบซอน

ในฟิสิกส์เชิงอนุภาค, โบซอน (boson) หมายถึง อนุภาคที่เป็นไปตาม สถิติแบบโพส-ไอน์สไตน์ มีสปินเป็นจำนวนเต็ม สามารถมีโบซอนหลายๆ ตัวอยู่ในสถานะควอนตัมเดียวกันได้ คำว่า "โบซอน" มาจากชื่อของนักวิทยาศาสตร์ชาวอินเดีย คือ สัตเยนทระ นาถ โพส โบซอนมีลักษณะตรงกันข้ามกับเฟอร์มิออน ที่เป็นไปตาม สถิติแบบแฟร์มี-ดิแรก เฟอร์มิออนตั้งแต่สองตัวหรือมากกว่านั้นจะไม่สามารถอยู่ในสถานะควอนตัมเดียวกันได้ โบซอนเป็นได้ทั้งอนุภาคมูลฐาน เช่น โฟตอน หรือเป็นอนุภาคประกอบ เช่น มีซอน โดยโบซอนส่วนมากจะเป็นอนุภาคแบบประกอบ โดยตาม "แบบจำลองมาตรฐานของฟิสิกส์เชิงอนุภาค" มีโบซอน 6 ชนิดที่เป็นอนุภาคมูลฐาน คือ.

ใหม่!!: อะตอมและโบซอน · ดูเพิ่มเติม »

โฟตอน

ฟตอน (Photon) หรือ อนุภาคของแสง เป็นการพิจารณาแสงในลักษณะของอนุภาค เนื่องจากในทางฟิสิกส์นั้น คลื่นสามารถประพฤติตัวเหมือนอนุภาคเมื่ออยู่ในสภาวะใดสภาวะหนึ่ง ซึ่งในทางตรงกันข้ามอนุภาคก็แสดงสมบัติของคลื่นได้เช่นกัน เรียกว่าเป็นคุณสมบัติทวิภาคของคลื่น-อนุภาค (wave–particle duality) ดังนั้นเมื่อพิจารณาแสงหรือคลื่นแม่เหล็กไฟฟ้าในลักษณะอนุภาค อนุภาคนั้นถูกเรียกว่า โฟตอน ทั้งนี้การพิจารณาดังกล่าวเกิดจากการศึกษาปรากฏการณ์โฟโตอิเล็กทริก ซึ่งเป็นปรากฏการณ์ที่โลหะปลดปล่อยอิเล็กตรอนออกมาเมื่อถูกฉายด้วยคลื่นแม่เหล็กไฟฟ้า อย่างเช่น รังสีเอกซ์ (X-ray) อิเล็กตรอนที่ถูกปล่อยออกมาถูกเรียกว่า โฟโตอิเล็กตรอน (photoelectron) ปรากฏการณ์ดังกล่าวถูกเรียกอีกอย่างหนึ่งว่า Hertz Effect ตามชื่อของผู้ค้นพบ คือ นาย ไฮน์ริช เฮิร์ตซ์ โฟตอนมีปฏิยานุภาค คือ ปฏิโฟตอน (Anti-Photon) ซึ่งมีสปินเหมือนอนุภาคต้นแบบทุกประการ โฟตอนจึงเป็นปฏิยานุภาคของตัวมันเอง.

ใหม่!!: อะตอมและโฟตอน · ดูเพิ่มเติม »

โพรมีเทียม

โพรมีเทียม (Promethium) ธาตุ มีเลขอะตอม 61 และสัญลักษณ์ Pm เป็นธาตุสังเคราะห์ในกลุ่มแลนทาไนด์ โพรมีเทียมไม่มีไอโซโทปที่เสถียร ซึ่งแผ่รังสีเบต้า แต่ไม่แผ่รังสีแกมม่า โพรมีเทียมที่บริสุทธิ์มี 2 อัญรูป (allotropic forms) เกลือของโพรมีเทียมเรืองแสงสีน้ำเงินหรือสีเขียวในที่มืดได้ เนื่องจากมีกัมมันตภาพรังสีสูง พโรมีทเอียม พโรมีทเอียม.

ใหม่!!: อะตอมและโพรมีเทียม · ดูเพิ่มเติม »

โพซิตรอน

ซิตรอน (positron) หรือ แอนติอิเล็กตรอน (antielectron) เป็นปฏิยานุภาคหรือปฏิสสารของอิเล็กตรอน โพซิตรอนมีประจุไฟฟ้าเป็น +1 มีสปินเป็น 1/2 และมีมวลเท่ากับอิเล็กตรอน ถ้าโพซิตรอนพลังงานต่ำชนกับอิเล็กตรอนพลังงานต่ำจะเกิดการประลัย (annihilation) คือมีการเกิดโฟตอนรังสีแกมมา 2 โฟตอนหรือมากกว่า โพซิตรอนอาจจะเกิดจากการสลายตัวของการปลดปล่อยโพซิตรอนกัมมันตรังสี (ผ่านอันตรกิริยาอย่างอ่อน) หรือโดยการผลิตคู่จากโฟตอนที่มีพลังงานเพียงพอ.

ใหม่!!: อะตอมและโพซิตรอน · ดูเพิ่มเติม »

โมล

มล (สัญลักษณ์: mol) เป็นหน่วยฐานสำหรับวัดปริมาณสารในหน่วยเอสไอ เป็นปริมาณที่ไม่มีมิติ หนึ่งโมลคือปริมาณของสารที่มีหน่วยย่อยเท่ากับจำนวนอะตอมของคาร์บอน-12 ที่มีมวล 12 กรัม เมื่ออะตอมของคาร์บอน-12 ไม่ถูกยึดและอยู่นิ่งในสถานะฐาน จำนวนอะตอมดังกล่าวเรียกว่าเลขอาโวกาโดรซึ่งมีค่าประมาณ 6.0221415 x 1023 เนื่องด้วยความสัมพันธ์ระหว่างหน่วยมวลอะตอมกับเลขอาโวกาโดร วิธีในทางปฏิบัติที่จะระบุปริมาณสารหนึ่งโมลคือใช้มวลของสารเท่ากับน้ำหนักอะตอมของสารนั้น เป็นหน่วยกรัม ยกตัวอย่างเช่น เหล็กมีน้ำหนักอะตอมเป็น 55.845 ดังนั้นหนึ่งโมลของเหล็กจะมีมวล 55.845 กรัม หมวดหมู่:หน่วยเอสไอ หมวดหมู่:หน่วยฐานเอสไอ.

ใหม่!!: อะตอมและโมล · ดูเพิ่มเติม »

โมเมนตัม

ฟล์:HahnEcho GWM.gif| โมเมนตัม หมายถึง ความสามารถในการเคลื่อนที่ของวัตถุ ซึ่งมีค่าเท่ากับผลคูณระหว่างมวลและความเร็วของวัตถุ มวลเป็นปริมาณสเกลาร์ แต่ความเร็วเป็นปริมาณเวกเตอร์ เมื่อนำปริมาณทั้งสองเข้าคูณด้วยกัน ถือว่าปริมาณใหม่เป็นปริมาณเวกเตอร์เสมอ ฉะนั้นโมเมนตัมจึงเป็นปริมาณเวกเตอร์ คือมีทั้งขนาดและทิศทาง.

ใหม่!!: อะตอมและโมเมนตัม · ดูเพิ่มเติม »

โมเมนตัมเชิงมุม

วามสัมพันธ์ระหว่างแรง (F) แรงบิด (τ) และเวกเตอร์โมเมนตัม (p และ L) ในระบบหมุนแห่งหนึ่ง ในทางฟิสิกส์ โมเมนตัมเชิงมุมของวัตถุรอบจุดกำเนิด (Angular Momentum) คือปริมาณเวกเตอร์ที่แสดงถึงการหมุนของวัตถุ มีค่าเท่ากับมวลของวัตถุคูณกับผลคูณเชิงเวกเตอร์ของเวกเตอร์ตำแหน่งและเวกเตอร์ความเร็ว (หรือผลคูณระหว่างโมเมนต์ความเฉื่อยกับความเร็วเชิงมุม) โมเมนตัมเชิงมุมเป็นปริมาณอนุรักษ์ กล่าวคือมันจะมีค่าคงที่เสมอจนกว่าจะมีแรงบิดภายนอกมากระทำ คุณลักษณะการอนุรักษ์ของโมเมนตัมเชิงมุมช่วยอธิบายปรากฏการณ์ทางธรรมชาติหลายประการ โมเมนตัมเชิงมุมนั้นเป็นผลระหว่างระยะห่างของวัตถุหรืออนุภาคกับแกนหมุน (r) คูณกับ โมเมนตัมเชิงเส้น (p).

ใหม่!!: อะตอมและโมเมนตัมเชิงมุม · ดูเพิ่มเติม »

โมเลกุล

โครงสร้างสามมิติ (ซ้ายและกลาง) และโครงสร้างสองมิติ (ขวา) ของโมเลกุลเทอร์พีนอย โมเลกุล (molecule) เป็นส่วนที่เล็กที่สุดของสสารซึ่งสามารถดำรงอยู่ได้ตามลำพังและยังคงความเป็นสารดังกล่าวไว้ได้ โมเลกุลประกอบด้วยอะตอมของธาตุมาเกิดพันธะเคมีกันกลายเป็นสารประกอบชนิดต่าง ๆ ใน 1 โมเลกุล อาจจะประกอบด้วยอะตอมของธาตุทางเคมีตัวเดียว เช่น ออกซิเจน (O2) หรืออาจจะมีหลายธาตุก็ได้ เช่น น้ำ (H2O) ซึ่งเป็นการประกอบร่วมกันของ ไฮโดรเจน 2 อะตอมกับ ออกซิเจน 1 อะตอม หากโมเลกุลหลายโมเลกุลมาเกิดพันธะเคมีต่อกัน ก็จะทำให้เกิดสสารขนาดใหญ่ขึ้นมาได้ เช่น (H2O) รวมกันหลายโมเลกุล เป็นน้ำ มโลเกุล มโลเกุล หมวดหมู่:โมเลกุล.

ใหม่!!: อะตอมและโมเลกุล · ดูเพิ่มเติม »

โรเบิร์ต บราวน์ (นักพฤกษศาสตร์)

รเบิร์ต บราวน์ (Robert Brown; FRS; 21 ธันวาคม ค.ศ. 1773 - 10 มิถุนายน ค.ศ. 1858) เป็นนักพฤกษศาสตร์ชาวสก๊อตผู้มีบทบาทสำคัญในวิชาพฤกษศาสตร์อันเนื่องมาจากงานบุกเบิกในการใช้งานกล้องจุลทรรศน์ ผลงานของเขารวมไปถึงการค้นพบนิวเคลียสของเซลล์ และ cytoplasmic streaming, การค้นพบการเคลื่อนที่ของบราวน์ และเป็นผู้แรกที่ตระหนักถึงความแตกต่างในระดับพื้นฐานระหว่าง gymnosperms กับ angiosperms เขายังมีส่วนสำคัญในการกำหนดพฤกษอนุกรมวิธาน รวมถึงชื่อตระกูลของพืชจำนวนมากซึ่งยังคงใช้กันอยู่ในปัจจุบัน.

ใหม่!!: อะตอมและโรเบิร์ต บราวน์ (นักพฤกษศาสตร์) · ดูเพิ่มเติม »

โรเบิร์ต บอยล์

รเบิร์ต บอยล์ (Robert Boyle; FRS; 25 มกราคม ค.ศ. 1627 – 31 ธันวาคม ค.ศ. 1691) นักวิทยาศาสตร์ชั้นนำของอังกฤษในฐานะผู้คิดค้นกฎของบอยล์ และนักประดิษฐ์ในช่วงคริสต์ศตวรรษที่ 17 ผลงานที่โดดเด่นของบอยล์คือ เป็นผู้คิดค้นกฎของบอยล์ ซึงกฎของบอยล์ กล่าวว่า ในกรณี ที่อุณหภูมิของแก๊สไม่เปลี่ยนแปลง ผลคูณระหว่าง ความดันของแก๊ส (P) กับปริมาตรของแก๊ส (V) มีค่าคงตัว (C) เขียนสมการได้ว่า PV.

ใหม่!!: อะตอมและโรเบิร์ต บอยล์ · ดูเพิ่มเติม »

โลก

"เดอะบลูมาร์เบิล" ภาพถ่ายดาวเคราะห์โลกจากยาน ''อพอลโล 17'' โลก (loka; world) มีความหมายโดยปริยายหมายถึงหมู่มนุษย์ รวมทั้งอารยธรรมมนุษย์โดยรวมทั้งหมด โดยเฉพาะในด้านประสบการณ์ ประวัติศาสตร์ หรือสภาพของมนุษย์โดยทั่ว ๆ ไป ทั้งนี้ คำว่า ทั่วโลก หมายถึงสถานที่ใด ๆ บนดาวเคราะห์โลก ในทางปรัชญามองโลกอยู่ 2 แบบ คือ.

ใหม่!!: อะตอมและโลก · ดูเพิ่มเติม »

โลหะ

ลหะ คือ วัสดุที่ประกอบด้วยธาตุโลหะที่มีอิเล็กตรอนอิสระอยู่มากมาย นั่นคืออิเล็กตรอนเหล่านี้ไม่ได้เป็นของอะตอมใดอะตอมหนึ่งโดยเฉพาะ ทำให้มีคุณสมบัติพิเศษหลายประการ เช่น.

ใหม่!!: อะตอมและโลหะ · ดูเพิ่มเติม »

โอกาเนสซอน

อกาเนสซอน (Oganesson) เป็นชื่อที่ตั้งโดยสหภาพเคมีบริสุทธิ์และเคมีประยุกต์ระหว่างประเทศ สำหรับธาตุหลังแอกทิไนด์ที่มีเลขอะตอมเท่ากับ 118 และมีสัญลักษณ์คือ Og โอกาเนสซอนยังรู้จักกันในชื่อว่า เอคา-เรดอน หรือ ธาตุ 118 และบนตารางธาตุ มันถูกจัดให้อยู่ในบล็อก-p และเป็นธาตุตัวสุดท้ายบนคาบที่ 7 ปัจจุบัน โอกาเนสซอนเป็นธาตุสังเคราะห์เพียงตัวเดียวของธาตุหมู่ 18 มันยังเป็นธาตุที่มีเลขอะตอมและมวลอะตอมมากที่สุดเท่าที่ค้นพบในปัจจุบัน อะตอมกัมมันตรังสีของโอกาเนสซอนมีความไม่เสถียรสูงมาก เนื่องด้วยค่ามวลที่สูง และนับตั้งแต..

ใหม่!!: อะตอมและโอกาเนสซอน · ดูเพิ่มเติม »

โครงสร้างผลึก

''Rose des Sables'' (กุหลาบทราย), ผลึกยิปซัม โครงสร้างผลึก (structure cristalline; Kristallstruktur; crystal structure) ในทางวิทยาแร่และผลิกศาสตร์ (crystallography) คือการจัดเรียงกันของอะตอมเป็นการเฉพาะตัวใน ผลึก โครงสร้างผลึกประกอบด้วย หน่วยเซลล์ (unit cell) ซึ่งเป็นกลุ่มของ อะตอม ที่จัดเรียงกันในทางเฉพาะเป็นโครงสร้างสามมิติ แบบ แลตทิซ โดยที่ว่างระหว่างหน่วยเซลล์ในทิศทางต่างๆ จะถูกเรียกว่า แลตทิซ พารามิเตอร์ (lattice parameters) คุณสมบัติความสมมาตร (symmetry) ของผลึกจะปรากฏในกรุปปริภูมิ (space group) ของมัน โครงสร้างของผลึกและความสมมาตรจะแสดงหน้าที่ของมันในการหาคุณสมบัติหลายๆ อย่าง เช่น การแตกร้าว, แถบโครงสร้าง (band structure) ทางอิเล็คทรอนิกส์ และคุณสมบัติทางแสง (crystal optics) ของผลึก.

ใหม่!!: อะตอมและโครงสร้างผลึก · ดูเพิ่มเติม »

โครงแบบอิเล็กตรอน

ออร์บิทัลของอิเล็กตรอนและการจัดเรียงระดับพลังงาน การจัดเรียงอิเล็กตรอน หมายถึง อิเล็กตรอนในแต่ละอะตอมจะมีการจัดเรียงตามระดับพลังงานหลักและระดับพลังงานย่อย โดยมีการแบ่งชั้นที่แน่นอน เรียงไปเรื่อย ๆ ตามเลขอะตอม.

ใหม่!!: อะตอมและโครงแบบอิเล็กตรอน · ดูเพิ่มเติม »

โซเดียมคลอไรด์

ซเดียมคลอไรด์ (Sodium chloride, สูตรเคมี: NaCl) มีชื่อที่เรียกทั่วไปดังนี้ เกลือแกง หรือ ฮาไลต์ เป็นสารประกอบเคมี โซเดียมคลอไรด์เป็นเกลือที่มีบทบาทต่อความเค็มของมหาสมุทร และของเหลวภายนอกเซลล์ของสิ่งมีชีวิตหลายเซลล์ เป็นส่วนประกอบหลักในเกลือที่กินได้ มันถูกใช้อย่างกว้างขวางในการเป็นเครื่องปรุงรส และใช้ในการถนอมอาหาร.

ใหม่!!: อะตอมและโซเดียมคลอไรด์ · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: อะตอมและโปรตอน · ดูเพิ่มเติม »

ไฟฟ้าสถิต

นามไฟฟ้าสถิตที่เกิดจากการกระจายตัวของประจุ (+) ส่วนเกิน ไฟฟ้าสถิต (Static electricity) คือความไม่สมดุลย์ของประจุไฟฟ้าภายในหรือบนพื้นผิวของวัสดุหนึ่ง ประจุยังคงอยู่กับที่จนกระทั่งมันสามารถจะเคลื่อนที่โดยอาศัยการไหลของอิเล็กตรอน (กระแสไฟฟ้า) หรือมีการปลดปล่อยประจุ (electrical discharge) ไฟฟ้าสถิตมีชื่อที่ขัดกับไฟฟ้ากระแสที่ไหลผ่านเส้นลวดหรือตัวนำอื่นและนำส่งพลังงาน ประจุไฟฟ้าสถิตสามารถสร้างขึ้นได้เมื่อไรก็ตามที่สองพื้นผิวสัมผัสกันและแยกจากกัน และอย่างน้อยหนึ่งในพื้นผิวนั้นมีความต้านทานสูงต่อกระแสไฟฟ้า (และดังนั้นมันจึงเป็นฉนวนไฟฟ้า) ผลกระทบทั้งหลายจากไฟฟ้าสถิตจะคุ้นเคยกับคนส่วนใหญ่เพราะผู้คนสามารถรู้สึก, ได้ยิน, และแม้แต่ได้เห็นประกายไฟเมื่อประจุส่วนเกินจะถูกทำให้เป็นกลางเมื่อถูกนำเข้ามาใกล้กับตัวนำไฟฟ้าขนาดใหญ่ (เช่นเส้นทางที่ไปลงดิน) หรือภูมิภาคที่มีประจุส่วนเกินที่มีขั้วตรงข้าม (บวกหรือลบ) ปรากฏการณ์ที่คุ้นเคยของช็อกจากไฟฟ้าสถิต หรือที่เจาะจงมากขึ้นคือการปลดปล่อยไฟฟ้าสถิต (electrostatic discharge) จะเกิดจากการเป็นกลางของประจุ ประจุไฟฟ้าเป็นปริมาณทางไฟฟ้าปริมาณหนึ่งที่กำหนดขึ้นธรรมชาติ ของสสารจะประกอบด้วยหน่วยย่อยๆ  ที่มีลักษณะและ มีสมบัติเหมือนกันที่เรียกว่า อะตอม(atom)ภายในอะตอม จะประกอบด้วยอนุภาคมูลฐาน3ชนิดได้แก่  โปรตอน (proton)  นิวตรอน (neutron) และ อิเล็กตรอน (electron)โดยที่โปรตอนมีประจุไฟฟ้าบวกกับนิวตรอนที่เป็นกลางทางไฟฟ้ารวมกันอยู่เป็นแกนกลางเรียกว่านิวเคลียส (nucleus) ส่วนอิเล็กตรอน มี ประจุ ไฟฟ้าลบ จะอยู่รอบๆนิวเคลี.

ใหม่!!: อะตอมและไฟฟ้าสถิต · ดูเพิ่มเติม »

ไวเศษิกะ

วเศษิกะ (Vaisheshika; वैशेषिक) เป็นปรัชญาหนึ่งในศาสนาฮินดู เกิดขึ้นหลังพุทธกาล ผู้สถาปนาลัทธินี้คือฤๅษีกรณาทะ ผู้แต่งไวเศษิกสูตร คำนี้มาจากภาษาสันสกฤตหมายถึงความแตกต่างหรือคุณลักษณะเฉพาะ เป็นแนวคิดแบบพหุสัจนิยม เชื่อว่าส่วนที่เล็กที่สุดของสสารคือปรมาณูมีจำนวนมาก แบ่งแยกไม่ได้และเป็นองค์ประกอบพื้นฐานของโลก พระเจ้าสูงสุดคือพระมเหศวรเป็นผู้สร้างโลก โดยเจตจำนงของพระองค์ จะกระตุ้นให้ปรมาณูมารวมตัวกัน จนเกิดเป็นสิ่งต่างๆและเป็นโลกในที่สุด เมื่อพระมเหศวรมีเจตจำนงที่จะทำลายโลก ปรมาณูแยกตัวออก โลกก็จะสลายไป เป้าหมายในการดำรงชีวิตคือโมกษะ ซึ่งเป็นภูมิของผู้ไม่มีกิเลส เมื่อชีวาตมันหลุดพ้นจากกิเลส ก็เข้าถึงโมกษะ โดยทั่วไป ลัทธินี้มีแนวคิดคล้ายลัทธินยายะ ต่างกันที่รายละเอียด เช่น แหล่งความรู้ นยายะมี 4 แหล่ง ไวเศษิกะมี 2 แหล่ง ความรู้ประเภทประจักษ์ประมาณ นยายะถือว่าเกิดจากประสาทสัมผัสทั้งห้า แต่ไวเศษิกะถือว่าเกิดจากตาเท่านั้น เป็นต้น.

ใหม่!!: อะตอมและไวเศษิกะ · ดูเพิ่มเติม »

ไอออน

แผนภาพประจุอิเล็กตรอนของไนเตรตไอออน ไอออน คือ อะตอม หรือกลุ่มอะตอม ที่มีประจุสุทธิทางไฟฟ้าเป็นบวก หรือเป็นไอออนที่มีประจุลบ gaaจะมีอิเล็กตรอนในชั้นอิเล็กตรอน (electron shell) มากกว่าที่มันมีโปรตอนในนิวเคลียส เราเรียกไอออนชนิดนี้ว่า แอนไอออน (anion) เพราะมันถูกดูดเข้าหาขั้วแอโนด (anode) ส่วนไอออนที่มีประจุบวก จะมีอิเล็กตรอนน้อยกว่าโปรตอน เราเรียกว่า แคทไอออน (cation) เพราะมันถูกดูดเข้าหาขั้วแคโทด (cathode) กระบวนการแปลงเป็นไอออน และสภาพของการถูกทำให้เป็นไอออน เรียกว่า การแตกตัวเป็นไอออน (ionization) ส่วนกระบวนการจับตัวระหว่างไอออนและอิเล็กตรอนเข้าด้วยกัน จนเกิดเป็นอะตอมที่ดุลประจุแล้วมีความเป็นกลางทางไฟฟ้า เรียกว่า recombination แอนไอออนแบบโพลีอะตอมิก ซึ่งมีออกซิเจนประกอบอยู่ บางครั้งก็เรียกว่า "ออกซีแอนไอออน" (oxyanion) ไอออนแบบอะตอมเดียวและหลายอะตอม จะเขียนระบุด้วยเครื่องหมายประจุรวมทางไฟฟ้า และจำนวนอิเล็กตรอนที่สูญไปหรือได้รับมา (หากมีมากกว่า 1 อะตอม) ตัวอย่างเช่น H+, SO32- กลุ่มไอออนที่ไม่แตกตัวในน้ำ หรือแม้แต่ก๊าซ ที่มีส่วนของอนุภาคที่มีประจุ จะเรียกว่า พลาสมา (plasma) ซึ่งถือเป็น สถานะที่ 4 ของสสาร เพราะคุณสมบัติของมันนั้น แตกต่างไปจากของแข็ง ของเหลว หรือก๊าซ.

ใหม่!!: อะตอมและไอออน · ดูเพิ่มเติม »

ไอแซก นิวตัน

ซอร์ไอแซก นิวตัน (Isaac Newton) (25 ธันวาคม ค.ศ. 1641 – 20 มีนาคม ค.ศ. 1725 ตามปฏิทินจูเลียน) นักฟิสิกส์ นักคณิตศาสตร์ นักดาราศาสตร์ นักปรัชญา นักเล่นแร่แปรธาตุ และนักเทววิทยาชาวอังกฤษ งานเขียนในปี..

ใหม่!!: อะตอมและไอแซก นิวตัน · ดูเพิ่มเติม »

ไอโซโทป

แสดงไอโซโทปของไฮโดรเจนที่เกิดในธรรมชาติทั้งสามตัว ความจริงที่ว่าแต่ละไอโซโทปมีโปรตอนเพียงหนึ่งตัว ทำให้พวกมันทั้งหมดเป็นไฮโดรเจนที่แตกต่างกัน นั่นคือ ตัวตนของไอโซโทปถูกกำหนดโดยจำนวนของนิวตรอน จากซ้ายไปขวา ไอโซโทปเป็นโปรเทียม (1H) ที่มีนิวตรอนเท่ากับศูนย์, ดิวเทอเรียม (2H) ที่มีนิวตรอนหนึ่งตัว, และ ทริเทียม (3H) ที่มีสองนิวตรอน ไอโซโทป (isotope) เป็นความแตกต่างขององค์ประกอบทางเคมีที่เฉพาะเจาะจงของธาตุนั้นซึ่งจะแตกต่างกันในจำนวนของนิวตรอน นั่นคืออะตอมทั้งหลายของธาตุชนิดเดียวกัน จะมีจำนวนโปรตอนหรือเลขอะตอมเท่ากัน แต่มีจำนวนนิวตรอนต่างกัน ส่งผลให้เลขมวล(โปรตอน+นิวตรอน)ต่างกันด้วย และเรียกเป็นไอโซโทปของธาตุนั้น.

ใหม่!!: อะตอมและไอโซโทป · ดูเพิ่มเติม »

ไอโซโทปของไฮโดรเจน

A''.

ใหม่!!: อะตอมและไอโซโทปของไฮโดรเจน · ดูเพิ่มเติม »

ไอโซโทปเสถียร

ไอโซโทปเสถียร (stable isotope) คือ ไอโซโทปของธาตุที่ไม่มีการสลายต่อไป ธาตุหนึ่งอาจมีทั้งที่ไม่เสถียรคือมีการสลายต่อไป ที่เรียกว่า ไอโซโทปกัมมันตรังสี (radioisotopes) และไอโซโทปเสถียร เช่น ไอโซโทปของตะกั่วมี 5 ชนิด ซึ่งแบ่งออกเป็น ไอโซโทปกัมมันตรังสี 2 ชนิด คือ ตะกั่ว -210 และตะกั่ว -214 และไอโซโทปเสถียร 3 ชนิด คือ ตะกั่ว -206 ตะกั่ว -207 และตะกั่ว -208 สำหรับธาตุบางธาตุอาจมีไอโซโทปกัมมันตรังสีก็ได้ เมื่อพิจารณาอนุกรมการสลายของธาตุกัมมันตรังสีจะพบว่ามีนิวเคลียสบางกลุ่ม ที่มีเลขอะตอมเท่ากัน แต่มีเลขมวลต่างกัน เช่น กลุ่มของยูเรเนียม ซึ่งประกอบด้วยยูเรเนียม -234 ยูเรเนียม -235 และยูเรเนียม -238 นิวเคลียสต่างๆ ในกลุ่มนี้มีเลขอะตอมเท่ากัน คือ 92 แต่มีเลขมวลต่างกัน นั่นคือ นิวเคลียสเหล่านี้มีจำนวนโปรตอนเท่ากัน แต่จำนวนนิวตรอนต่างกัน เราเรียกนิวเคลียสที่มีจำนวนโปรตอนเท่ากัน แต่มีจำนวนนิวตรอนต่างกันนี้ว่า เป็น ไอโซโทป (isotopes) ของธาตุเดียวกัน เนื่องจากไอโซโทปของธาตุเดียวกันมีเลขอะตอมเท่ากันแต่เลขมวลต่างกัน จึงมีสมบัติทางเคมีเหมือนกัน แต่สมบัติทางกายภาพต่างกัน ดังนั้นการวิเคราะห์ไอโซโทปของธาตุชนิดหนึ่ง จึงไม่สามารถกระทำได้โดยอาศัยปฏิกิริยาเคมี แต่ด้วยเหตุที่ไอโซโทปเหล่านี้มีสมบัติทางกายภาพต่างกัน เช่น มีมวลต่างกัน การวิเคราะห์ไอโซโทปเหล่านี้ จึงทำได้โดยจำแนกมวล เพราะเหตุว่ามวลของไอโซโทปของธาตุชนิดเดียวกันจะแตกต่างกันน้อยมาก ดังนั้นการวิเคราะห์ ไอโซโทปจึงต้องใช้เครื่องมือ ที่วัดมวลได้ละเอียดมาก เครื่องมือประเภทนี้ได้แก่ แมสสเปกโทรมิเตอร์ (mass spectrometer) หมวดหมู่:ไอโซโทป อไอโซโทปเสถียร de:Isotop#Stabile Isotope sv:Stabil isotop.

ใหม่!!: อะตอมและไอโซโทปเสถียร · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ใหม่!!: อะตอมและไฮโดรเจน · ดูเพิ่มเติม »

ไนโตรเจน

นโตรเจน (Nitrogen) เป็นธาตุเคมีในตารางธาตุที่มีสัญลักษณ์ N และเลขอะตอม 7 เป็นอโลหะที่มีสถานะเป็นแก๊สที่มีอยู่ทั่วไป โดยปกติไม่มีสี กลิ่น หรือรส แต่ละโมเลกุลมี 2 อะตอม ไนโตรเจนเป็นส่วนประกอบของบรรยากาศ ของโลกถึง 78 เปอร์เซ็นต์ และเป็นส่วนประกอบของเนื้อเยื่อในสิ่งมีชีวิต นอกจากนี้ไนโตรเจนยังเป็นส่วนประกอบในสารประกอบที่สำคัญหลายชนิด เช่น กรดอะมิโน แอมโมเนีย กรดไนตริก และสารจำพวกไซยาไน.

ใหม่!!: อะตอมและไนโตรเจน · ดูเพิ่มเติม »

เบริลเลียม

ริลเลียม (Beryllium) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ Be และเลขอะตอม 4 เป็นธาตุไบวาเลนต์ที่มีพิษ น้ำหนักอะตอม 9.0122 amu จุดหลอมเหลว 1287°C จุดเดือด (โดยประมาณ) 2970°C ความหนาแน่น (จากการคำนวณ) 1.85 g/cc ที่ 4ํc เลขออกซิเดชันสามัญ + 2 เบริลเลียมเป็นโลหะแอลคาไลน์เอิร์ธ มีสีเทาเหมือนเหล็ก แข็งแรง น้ำหนักเบา แต่เปราะ ซึ่งส่วนใหญ่ใช้เป็นตัวที่ทำให้โลหะผสมแข็งขึ้น (โดยเฉพาะทองแดงเบริลเลียม).

ใหม่!!: อะตอมและเบริลเลียม · ดูเพิ่มเติม »

เฟรเดอริก ซอดดี

ฟรเดอริค ซอดดี (Frederick Soddy; 2 กันยายน ค.ศ. 1877 – 22 กันยายน ค.ศ. 1956) เป็นนักเคมีชาวอังกฤษ และนักเศรษฐศาสตร์การเงินที่ทำงานร่วมกับเออร์เนสต์ รัทเทอร์ฟอร์ด ในการอธิบายว่า การสลายตัวของสารกัมมันตรังสีนั้นเป็นผลมาจากการแปรนิวเคลียสของธาตุ ซึ่งปัจจุบันเรารู้จักกันในฐานะปฏิกิริยานิวเคลียร์ เขายังพิสูจน์ถึงการมีอยู่ของไอโซโทปของธาตุกัมมันตรังสีจำนวนหนึ่ง ซอดดีได้รับรางวัลโนเบลสาขาเคมีในปี..

ใหม่!!: อะตอมและเฟรเดอริก ซอดดี · ดูเพิ่มเติม »

เฟอร์มิออน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน เฟอร์มิออนปรากฏอยู่ในสามหมู่แรก เฟอร์มิออน ในฟิสิกส์อนุภาคหมายถึงอนุภาคประเภทหนึ่งที่เป็นไปตามการกระจายตัวแบบแฟร์มี-ดิแรก เฟอร์มิออนจะมีเลขสปินเป็นจำนวนครึ่งเท่า และเฟอร์มิออนสองตัวจะมีสถานะเชิงควอนตัมเดียวกันไม่ได้ตามกฎการกีดกันของเพาลี เฟอร์มิออนมีความหมายตรงข้ามกับโบซอน โบซอนจะมีเลขสปินเป็นจำนวนเต็มเท่า และโบซอนมากกว่าสองตัวสามารถมีสถานะเชิงควอนตัมเดียวกันได้ เฟอร์มิออนสามารถเป็นได้ทั้งอนุภาคมูลฐาน เช่นอิเล็กตรอน หรือเป็นอนุภาคประกอบ เช่นโปรตอน เฟอร์มิออนที่เป็นอนุภาคมูลฐานในแบบจำลองมาตรฐาน มีทั้งหมด 24 ตัวแบ่งเป็น ควาร์ก 6 ตัวและเลปตอน 6 ตัว รวมกับปฏิยานุภาคของมันเป็น 24 ตัว เฟอร์มิออนประกอบเช่น โปรตอน นิวตรอน เป็นองค์ประกอบสำคัญในอะตอมของสสาร ต่างจากโบซอนที่มักเป็นพาหะของแรง แต่เฟอร์มิออนอันตรกิริยาแบบอ่อน (Weakly interacting fermion) สามารถมีพฤติกรรมแบบโบซอนภายใต้เงื่อนไขพิเศษ เช่นการสร้างตัวนำยิ่งยวด คำว่า เฟอร์มิออน มาจากชื่อนักฟิสิกส์อนุภาค เอนรีโก แฟร์มี.

ใหม่!!: อะตอมและเฟอร์มิออน · ดูเพิ่มเติม »

เพชร

รดิบ เพชร เป็นอัญมณีรูปแบบหนึ่งของคาร์บอน จัดเรียงตัวเป็นทรงแปดหน้า เป็นแร่ที่แข็งที่สุดตามสเกลของโมส์ (Moh's scale) มีค่าความแข็งเท่ากับ 10 เพชรมีหลายสี สีที่นิยมที่สุดคือสีขาวบริสุทธิ์ สีที่หายากคือสีแดง ฟ้า เขียว ส้ม ชมพู เรียก "แฟนซีไดมอนด์" มีราคาสูงมาก การเจียระไนเป็น 52 เหลี่ยมนับว่าสวยที่สุด เพชรเป็นสัญลักษณ์ของอำนาจ ความแข็งแกร่ง แหล่งของเพชรมีอยู่ทั่วโลก ส่วนมากพบที่บราซิลและแอฟริกาใต้.

ใหม่!!: อะตอมและเพชร · ดูเพิ่มเติม »

เกลือ

กลือ เกลือ เป็นแร่ธาตุส่วนใหญ่ประกอบด้วยโซเดียมคลอไรด์ (NaCl) สารประกอบในระดับสูงกว่าเกลือชนิดต่าง ๆ เกลือในธรรมชาติก่อตัวเป็นแร่ผลึกรู้จักกันว่า เกลือหิน หรือแฮไลต์ เกลือพบได้ในปริมาณมหาศาลในทะเลซึ่งเป็นองค์ประกอบของแร่ที่สำคัญ ในมหาสมุทรมีแร่ธาตุ 35 กรัมต่อลิตร ความเค็ม 3.5% เกลือเป็นสิ่งจำเป็นต่อชีวิตสัตว์ ความเค็มเป็นรสชาติพื้นฐานของมนุษย์ เนื้อเยื่อสัตว์บรรจุเกลือปริมาณมากกว่าเนื้อเยื่อพืช ดังนั้นอาหารของชนเผ่าเร่ร่อนที่ดำรงชีวิตในฝูงต้องการเกลือเพียงเล็กน้อย หรือไม่ต้องการเกลือเลย ขณะอาหารประเภทซีเรียลจำเป็นต้องเพิ่มเกลือ เกลือเป็นหนึ่งในเครื่องปรุงรสที่เก่าแก่ที่สุดและหาได้ง่ายที่สุด และการดองเค็มก็เป็นวิธีการถนอมอาหารที่สำคัญวิธีหนึ่ง หลักฐานการทำเกลือยุคแรกที่สุดย้อนไปถึง 6,000 ปีที่แล้ว เมื่อคนที่อาศัยในประเทศโรมาเนียต้มน้ำเพื่อสกัดเกลือ การทำนาเกลือในจีนก็เกิดขึ้นในเวลาไล่เลี่ยกัน เกลือถูกชาวฮีบรู กรีก โรมัน ไบแซนไทน์ ฮิไทต์ และอียิปต์ ตีราคาสูง เกลือกลายเป็นวัตถุสำคัญและขนส่งทางเรือผ่านทะเลเมดิเตอร์เรเนียน ผ่านทางทางเกลือที่สร้างขึ้นเฉพาะ และผ่านทะเลทรายซาฮาราในคาราวานอูฐ ความขาดแคลนและความต้องการเกลือทั่วโลกนำไปสู่สงครามชิงเกลือ และใช้เกลือเพื่อเพิ่มภาษีเงินได้ เกลือยังถูกใช้ในพิธีทางศาสนา และวัฒนธรรมต่าง ๆ ด้วย เกลือผลิตจากเหมืองเกลือ หรือจากการระเหยน้ำทะเล หรือน้ำซับที่อุดมไปด้วยแร่ธาตุในบ่อตื้น ผลิตภัณฑ์อุตสาหกรรมหลักของเกลือคือโซดาไฟ และคลอรีน และใช้ในกระบวนการทางอุตสาหกรรมและในการผลิตโพลีไวนิลคลอไรด์ พลาสติก เยื่อกระดาษ และผลิตภัณฑ์อื่น ๆ จากการผลิตเกลือปริมาณสองล้านตันต่อปี มีเพียง 6% ที่ให้มนุษย์บริโภค ส่วนอื่น ๆ ใช้ในการปรับสภาวะของน้ำ กำจัดน้ำแข็งบนถนน และใช้ในการเกษตร เกลือที่กินได้มีขายในหลายรูปแบบ เช่น เกลือสมุทรและเกลือโต๊ะปกติจะบรรจุสารป้องกันการรวมตัวเป็นก้อน และอาจเสริมไอโอดีนเพื่อป้องกันภาวะพร่องไอโอดีน นอกจากจะใช้ปรุงอาหารและวางบนโต๊ะแล้ว เกลือยังพบได้ในอาหารแปรรูปจำนวนมาก อาหารที่มีโซเดียมมากเกินไปทำให้ความดันโลหิตสูง และอาจเพิ่มความเสี่ยงของกล้ามเนื้อหัวใจตายเหตุขาดเลือด และโรคหลอดเลือดสมอง องค์การอนามัยโลกแนะนำว่าผู้ใหญ่ควรบริโภคโซเดียมน้อยกว่า 2,000 มิลลิกรัม หรือเทียบเท่ากับเกลือ 5 กรัมต่อวัน.

ใหม่!!: อะตอมและเกลือ · ดูเพิ่มเติม »

เกจโบซอน

กจโบซอน (Gauge boson) คืออนุภาคโบซอนที่ทำหน้าที่เป็นอนุภาคนำพาแรงพื้นฐานในธรรมชาติ กล่าวให้เจาะจงคือ เป็นอนุภาคมูลฐานที่อธิบายอันตรกิริยาได้ด้วยทฤษฎีเกจ กล่าวคือ แรงที่กระทำต่อกันและกันเกิดขึ้นโดยการแลกเปลี่ยนเกจโบซอนกัน โดยปกติเป็นอนุภาคเสมือน.

ใหม่!!: อะตอมและเกจโบซอน · ดูเพิ่มเติม »

เมฆโมเลกุล

กลุ่มเมฆในเนบิวลากระดูกงูเรือซึ่งถูกแสงดาวเป็นเวลาหลายล้านปีจนมีอุณหภูมิสูงมากและแตกตัวออกจากเนบิวลา ใกล้ ๆ กันจะเห็นดาวฤกษ์สว่างอยู่ ภาพของเมฆกลายเป็นสีแดงเพราะกระบวนการขจัดแสงน้ำเงินเพื่อลดความฟุ้งของฝุ่นในภาพ ภาพนี้ถ่ายโดยกล้องโทรทรรศน์อวกาศฮับเบิลในปี พ.ศ. 2542 เมฆโมเลกุล (Molecular Cloud) คือเมฆระหว่างดวงดาวชนิดหนึ่งที่มีความหนาแน่นมากและมีขนาดใหญ่พอจะทำให้เกิดการก่อตัวของโมเลกุลได้ โดยมากจะเป็นโมเลกุลของไฮโดรเจน (H2) บางครั้งก็เรียกว่า "อนุบาลดาวฤกษ์" (Stellar nursery) ในกรณีที่มีการก่อตัวของดาวฤกษ์อยู่ภายใน การตรวจจับโมเลกุลไฮโดรเจนโดยการสังเกตการณ์อินฟราเรดหรือการสังเกตการณ์คลื่นวิทยุจะทำได้ยากมาก ดังนั้นการตรวจจับมักใช้การสำรวจความมีอยู่ของ H2 โดยอาศัย CO (คาร์บอนมอนอกไซด์) โดยถือว่าสัดส่วนระหว่างการสะท้อนแสงของ CO กับมวล H2 เป็นค่าคงที่ แม้ว่าหลักการของสมมุติฐานนี้จะยังเป็นที่สงสัยอยู่ในการสังเกตการณ์ดาราจักรแห่งอื่น.

ใหม่!!: อะตอมและเมฆโมเลกุล · ดูเพิ่มเติม »

เมตร

มตร อักษรย่อ ม. (mètre → metre meter The Metric Conversion Act of 1975 gives the Secretary of Commerce of the US the responsibility of interpreting or modifying the SI for use in the US., m) เป็นหน่วยฐานเอสไอของความยาวในหน่วยเอสไอ แต่เดิมนิยามว่าหนึ่งเมตรเท่ากับ 1/10,000,000 ของระยะทางจากเส้นศูนย์สูตรของโลกไปยังขั้วโลกเหนือวัดจากเส้นรอบวงที่ผ่านเมืองปารีส แต่เนื่องจากความแม่นยำทางมาตรวิทยา ที่มีมากขึ้น ตั้งแต่ปีพ.ศ. 2526 ความยาวหนึ่งเมตรจึงถูกนิยามไว้ให้เท่ากับความยาวที่แสงเดินทางได้ในสุญญากาศ ในช่วงเวลา วินาที.

ใหม่!!: อะตอมและเมตร · ดูเพิ่มเติม »

เลขมวล

ลขมวล (mass number, A), หรือ เลขมวลอะตอม หรือ เลขนิวคลีออน เป็นผลรวมของจำนวนโปรตอนและนิวตรอน (โปรตอนและนิวตรอมเรียกรวมกันว่านิวคลีออน) ในนิวเคลียสอะตอม เพราะโปรตอนและนิวตรอนต่างก็เป็นแบริออน เลขมวล A ก็คือเลขแบริออน B ของนิวเคลียสของอะตอมหรือไอออน เลขมวลจะต่างกันถ้าเป็นไอโซโทปที่ต่างกันของธาตุเคมี เลขมวลไม่เหมือนกับเลขอะตอม (Z) ที่แสดงถึงจำนวนโปรตอนในนิวเคลียสและสามารถใช้ระบุบธาตุได้ ดังนั้นค่าที่ต่างกันระหว่างเลขมวลและเลขอะตอมจะบ่งบอกถึงจำนวนนิวตรอน (N) ในนิวเคลียส: N.

ใหม่!!: อะตอมและเลขมวล · ดูเพิ่มเติม »

เลขอะตอม

เลขอะตอม (atomic number) หมายถึงจำนวนโปรตอนในนิวเคลียสของธาตุนั้นๆ หรือหมายถึงจำนวนอิเล็กตรอนที่วิ่งวนรอบนิวเคลียสของอะตอมที่เป็นกลาง เช่น ไฮโดรเจน (H) มีเลขอะตอมเท่ากับ 1 เลขอะตอม เดิมใช้หมายถึงลำดับของธาตุในตารางธาตุ เมื่อ ดมิทรี อีวาโนวิช เมนเดลีเยฟ (Dmitry Ivanovich Mendeleev) ทำการจัดกลุ่มของธาตุตามคุณสมบัติร่วมทางเคมีนั้น เขาได้สังเกตเห็นว่าเมื่อเรียงตามเลขมวลนั้น จะเกิดความไม่ลงรอยกันของคุณสมบัติ เช่น ไอโอดีน (Iodine) และเทลลูเรียม (Tellurium) นั้น เมื่อเรียกตามเลขมวล จะดูเหมือนอยู่ผิดตำแหน่งกัน ซึ่งเมื่อสลับที่กันจะดูเหมาะสมกว่า ดังนั้นเมื่อเรียงธาตุในตารางธาตุตามเลขอะตอม ตารางจะเรียงตามคุณสมบัติทางเคมีของธาตุ เลขอะตอมนี้ถึงแม้โดยประมาณ แล้วจะแปรผันตรงกับมวลของอะตอม แต่ในรายละเอียดแล้วเลขอะตอมนี้จะสะท้อนถึงคุณสมบัติของธาตุ เฮนรี โมสลีย์ (Henry Moseley) ได้ค้นพบความสัมพันธ์ระหว่างการกระเจิงของ สเปกตรัมของรังสีเอ็กซ์ (x-ray) ของธาตุ และตำแหน่งที่ถูกต้องบนตารางธาตุ ในปี ค.ศ. 1913 ซึ่งต่อมาได้ถูกอธิบายด้วยเลขอะตอม ซึ่งอธิบายถึงปริมาณประจุในนิวเคลียส หรือ จำนวนโปรตอนนั่นเอง ซึ่งจำนวนของโปรตอนนี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ หมวดหมู่:อะตอม ลเขอะตอม ลเขอะตอม.

ใหม่!!: อะตอมและเลขอะตอม · ดูเพิ่มเติม »

เลขอาโวกาโดร

อาเมเดโอ อาโวกาโดร เลขอาโวกาโดร (Avogadro's number) หรือ ค่าคงตัวอาโวกาโดร (Avogadro's constant) คือ จำนวนของอะตอมของธาตุคาร์บอนในไอโซโทปคาร์บอน-12 จำนวน 12 กรัมเท่ากับ (6.02214179±0.00000030) ×1023 มวลสัมพัทธ์อะตอมของธาตุใด ๆ ก็ตามที่มีหน่วยใด ๆ ก็ตามจะมีจำนวนอะตอมเท่านี้ เลขอาโวกาโดรเป็นชื่อที่ตั้งตามชื่อของอาเมเดโอ อาโวกาโดร นักวิทยาศาสตร์ชาวอิตาลี ซึ่งได้ตั้งสมมุติฐานไว้เมื่อ พ.ศ. 2354 หมวดหมู่:ค่าคงตัวทางฟิสิกส์ หมวดหมู่:เคมี.

ใหม่!!: อะตอมและเลขอาโวกาโดร · ดูเพิ่มเติม »

เลขนิวตรอน

ลขนิวตรอน (neutron number) ใช้สัญลักษณ์ N คือจำนวนของนิวตรอนที่อยู่ในนิวไคลด์หนึ่งๆ เลขอะตอม (หรือเลขโปรตอน) บวกกับเลขนิวตรอน แล้ว จะได้เท่ากับเลขมวล: Z+N.

ใหม่!!: อะตอมและเลขนิวตรอน · ดูเพิ่มเติม »

เลขโคออร์ดิเนชัน

ในวิชาเคมีและผลิกศาสตร์ เลขโคออร์ดิเนชัน (coordination number) ของอะตอมศูนย์กลางในโมเลกุลหรือในผลึกหนึ่ง หมายถึง จำนวนของอะตอมเพื่อนบ้านที่อยู่ใกล้ชิดอะตอมนั้นที่สุด วิธีการหาเลขโคออร์ดิเนชันสำหรับโมเลกุลและสำหรับผลึกไม่เหมือนกันเสียทีเดียว ในทางเคมี สิ่งที่พิจารณาคือพันธะเคมีเป็นหลัก เลขโคออร์ดิเนชันของอะตอมหนึ่งได้จากการนับจำนวนอะตอมอื่นที่ตัวมันยึดเหนี่ยวอยู่ (ไม่ว่าจะยึดด้วยพันธะเดี่ยว พันธะคู่ หรือพันธะสาม ก็นับแต่จำนวนอะตอมเท่านั้น) เช่น 1- มี Cr3+ ที่อยู่ตรงกลางมีเลขโคออร์ดิเนชันเป็น 6.

ใหม่!!: อะตอมและเลขโคออร์ดิเนชัน · ดูเพิ่มเติม »

เลปตอน

อนุภาคต่างๆ ใน แบบจำลองมาตรฐาน เลปตอน (Lepton) เป็นอนุภาคมูลฐานชนิดหนึ่งที่มีสปิน (ฟิสิกส์)ครึ่งจำนวนเต็ม (สปิน) และไม่ประสพกับอันตรกิริยาอย่างเข้ม เลปตอนแบ่งออกเป็นสองชั้นหลัก ได้แก่ เลปตอนที่มีประจุไฟฟ้า (หรือที่เรียกว่า เลปตอนที่เหมือนอิเล็กตรอน) และเล็ปตอนนิวทรัล (เล็ปตอนเป็นกลาง) (หรือที่เรียกว่า นิวทรืโน) เลปตอนที่มีประจุสามารถรวมกับอนุภาคอื่นกลายเป็น อนุภาคผสมหลายอย่าง เช่นอะตอมและโพซิโทรเนียม ในขณะที่นิวทริโนยากที่จะปฏิสัมพันธ์กับผู้อื่น ดังนั้นมันจึงยากที่จะถูกพบเห็น พวกเลปตอนที่รู้จักกันดีคือ อิเล็กตรอน มีเลปตอนอยู่ทั้งสิ้น 6 ชนิด (flavour) แยกเป็น 3 ชั่วรุ่น (generation) ชั่วรุ่นที่หนึ่งเรียกว่า เลปตอนอิเล็กตรอน ประกอบด้วยอิเล็กตรอน (e-) และอิเล็กตรอนนิวตริโน (Ve) ชั่วรุ่นที่สองคือ เลปตอนมิวออน ประกอบด้วย มิวออน (μ-) และ มิวออนนิวตริโน (Vμ) ชั่วรุ่นที่สามคือ เลปตอนเทา ประกอบด้วย เทา (อนุภาค) (T-) และ เทานิวตริโน (VT) อิเล็กตรอนมีมวลน้อยที่สุดในหมู่เลปตอนที่มีประจุทั้งหมด มิวออนและเทาที่หนักที่สุดจะเปลี่ยนอย่างรวดเร็วไปเป็นอิเล็กตรอนผ่านทางกระบวนการของการสลายอนุภาค ซึ่งเป็นการแปลงจากสถานะมวลมากไปเป็นสถานะมวลน้อย ดังนั้นอิเล็กตรอนจึงเสถียรและเป็นเลปตอนแบบมีประจุที่พบมากที่สุดในจักรวาล ในขณะที่มิวออนและเทาสามารถถูกสร้างขึ้นมาได้เพียงแต่ในการชนกันที่พลังงานฟิสิกส์ที่สูงเท่านั้น (เช่นพวกที่เกี่ยวกับรังสีคอสมิกและพวกที่เกิดขึ้นในเครื่องเร่งอนุภาค เลปตอนมีคุณสมบัติที่เป็นเนื้อแท้หลายอย่าง รวมทั้ง ประจุไฟฟ้า สปิน และ มวล อย่างไรก็ตาม มันแตกต่างจากควาร์ก เพราะไม่อยู่ภายใต้ อันตรกิริยาอย่างเข้ม แต่อาจอยู่ภายใต้อันตรกิริยาพื้นฐานอื่นอีกสามอย่าง ซึ่งได้แก่ แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า (ไม่รวมพวกนิวทริโนซึ่งเป็นกลางทางไฟฟ้า) และ อันตรกิริยาอย่างอ่อน สำหรับทุกเฟลเวอร์ของเลปตอน พวกมันมี ปฏิยานุภาค เรียกว่า ปฏิเลปตอน ที่แตกต่างกันเฉพาะบางส่วนของคุณสมบัติ ซึ่งปฏิเลปตอนจะมี 'ขนาดเท่ากันแต่เครื่องหมายตรงข้าม' และบางทฤษฎีกล่าวว่านิวทริโนอาจเป็นตัวปฏิปักษ์ของมันเอง ซึ่งปัจจุบันยังไม่มีใครรู้ว่าเป็นเช่นนั้นจริงหรือไม่ เลปตอนที่มีประจุตัวแรกคือ อิเล็กตรอน ถูกตั้งทฤษฎีในกลางศตวรรษที่ 19 โดยนักวิทยาศาสตร์หลายคน และถูกค้นพบในปี 1897 โดย J. J. Thomson. เลปตอนตัวต่อมาที่ถูกค้นพบคือมิวออน โดย Carl D. Anderson ในปี 1936 ซึ่งในขณะนั้นถูกระบุว่าเป็นมีซอน การศึกษาต่อมาพบว่า มิวออนไม่มีคุณสมบัติของมีซอนอย่างที่คาดไว้ แต่ประพฤฒิตัวเหมือนอิเล็กตรอน เพียงแต่มีมวลมากกว่า ต้องใช้เวลาถึงปี 1947 เพื่อให้ได้หลักการของ "เลปตอน" ว่าเป็นครอบครัวหนึ่งของอนุภาคที่จะถูกนำเสนอ นิวทริโน และ อิเล็กตรอนนิวทริโน ถูกนำเสนอโดย Wolfgang Pauli ในปี 1930 เพื่ออธิบายลักษณะที่แน่นอนของ การสลายให้อนุภาคบีตา มันถูกสังเกตเห็นในการทดลองของ Cowan–Reines ที่ดำเนินการโดย Clyde Cowan และ Frederick Reines ในปี 1956. มิวออนนิวทริโน ถูกค้นพบในปี 1962 โดย Leon M. Lederman, Melvin Schwartz และ Jack Steinberger, และ เทา ถูกค้นพบระหว่างปี 1974 ถีงปี 1977 โดย Martin Lewis Perl และเพื่อนร่วมงานจาก Stanford Linear Accelerator Center และ Lawrence Berkeley National Laboratory. ขณะที่ เทานิวทริโน เพิ่งถูกประกาศการค้นพบ เมื่อ กรกฎาคม 2000 โดย DONUT collaboration จาก Fermilab เลปตอนเป็นชิ้นส่วนสำคัญใน แบบจำลองมาตรฐาน อิเล็กตรอนเป็นองค์ประกอบของอะตอม เคียงข้างกับ โปรตอน และ นิวตรอน ขณะที่ อะตอมแปลก ซึ่งมีมิวออนและเทา แทนที่จะเป็นอิเล็กตรอน สามารถถูกสังเคราะห์ขึ้นได้ เช่นเดียวกับอนุภาค เลปตอน-ปฏิเลปตอน เช่น โพซิโทรเนียม.

ใหม่!!: อะตอมและเลปตอน · ดูเพิ่มเติม »

เลเซอร์

ลเซอร์สีแดง (635 นาโนเมตร), สีเขียว (532 นาโนเมตร) และสีม่วง-น้ำเงิน (445 นาโนเมตร) เลเซอร์ (ย่อมาจากคำว่า light amplification by stimulated emission of radiation) ในทางฟิสิกส์ คือ อุปกรณ์ที่ให้กำเนิดลำแสง ที่มีลักษณะเฉพาะ ซึ่งเป็นเทคโนโลยีที่รวมกันระหว่างกลศาสตร์ควอนตัมกับอุณหพลศาสตร์ ซึ่งพลังงานแสงเลเซอร์ สามารถมีคุณสมบัติได้หลากหลาย ขึ้นอยู่กับจุดประสงค์ในการออกแบบ เลเซอร์ส่วนมากจะเป็นลำแสงที่มีขนาดเล็ก มีการเบี่ยงเบนน้อย (low-divergence beam) และสามารถระบุความยาวคลื่นได้ง่าย โดยดูจากสีของเลเซอร์ ถ้าอยู่ในสเป็กตรัมที่สามารถมองเห็นได้ด้วยตาเปล่า (visible spectrum) ซึ่งเลเซอร์นี้อาจกล่าวได้ว่า เป็นการรวมพลังงานแสงที่ส่งออกมาจากหลายความยาวคลื่นเข้าด้วยกัน เลเซอร์ จะหมายรวมไปถึงการให้พลังงานผ่านทางสื่อนำแสง ซึ่งสื่อนำแสงอาจเป็นได้ทั้งของแข็ง ของเหลว ก๊าซ หรืออิเล็กตรอนอิสระที่มีคุณสมบัติสามารถนำแสงได้ ในรูปแบบที่ง่ายที่สุด ออบติคอล คาวิตี้ (Optical cavity) จะประกอบไปด้วยกระจก 2 อัน ที่จะจัดเรียงแสงเข้าด้วยกันครั้งแล้วครั้งเล่า โดยที่แต่ละครั้งจะผ่านสื่อนำแสง โดนหนึ่งในกระจกนั้น (Output coupler) จะส่งลำแสงออกมา ลำแสงเลเซอร์ ที่ผ่านทางสื่อนำแสงจะมีความยาวคลื่นเฉพาะ และมีพลังงานเพิ่ม ซึ่งกระจกนี้จะพยายามทำให้แสงส่วนมาก สามารถผ่านทางสื่อนำแสงให้ได้ และออกมาเป็นลำแสงเลเซอร์ กระบวนการเหนี่ยวนำลำแสงเพื่อเพิ่มพลังงานนี้ จะใช้พลังงานไฟฟ้าหรือแแสงในหลายความยาวคลื่น ซึ่งในการทดลองแต่ละครั้ง ความยาวคลื่นของแสงในแต่ละความยาวคลื่น จะส่งผลโดยตรงต่อคุณสมบัติ รูปร่าง และความยาวคลื่นของลำแสงเลเซอร์ที่สร้างออกมา การค้นคว้าวิจัยเกี่ยวกับเลเซอร์ เกิดขึ้นครั้งแรกเมื่อเดือนพฤษภาคม ปี 1960 โดย ทีโอดอร์ ไมแมน (Theodore Maiman) ที่สถาบันวิจัย ฮิวจ์ (Hughes Research Laboratories) ทุกวันนี้เลเซอร์กลายเป็นอุตสาหกรรมที่ทำรายได้หลายพันล้านดอนล่าร์ ผลผลิตจากงานวิจัยเลเซอร์ และกลายเป็นอุปกรณ์ที่มีใช้กันอย่างแพร่หลาย มีให้เห็นอย่างเช่น แผ่นดีวีดี แผ่นซีดี เครื่องเล่นดีวีดี เครื่องอ่านบาร์โค้ด อุปกรณ์ตัดโลหะด้วยเลเซอร์ ฯลฯ จะเห็นได้ว่าเลเซอร์มีการใช้กันอย่างกว้างขวาง ไม่ว่าจะเป็นด้านวิทยาศาสตร์ ด้านอุตสาหกรรม ด้านการแพทย์ หรือแม้กระทั่งด้านการทหาร ก็เพราะว่าเลเซอร์สามารถควบคุมความยาวคลื่นตามที่ต้องการได้.

ใหม่!!: อะตอมและเลเซอร์ · ดูเพิ่มเติม »

เส้นสเปกตรัม

ปกตรัมต่อเนื่อง สเปกตรัมแบบเส้นสว่าง หรือเส้นการแผ่ (emission line) สเปกตรัมแบบเส้นมืด หรือเส้นการดูดกลืน (absorption line) เส้นสเปกตรัม คือแสงที่เป็นเส้นหรือแถบที่แสดงออกมาเป็นสี โดยการแผ่รังสีที่เป็นคลื่นแม่เหล็กไฟฟ้าผ่านปริซึม แผ่นเกรตติ้ง หรือสเปกโตรสโคป เห็นเป็นสีได้ 7 สี ซึ่งไม่มีความต่อเนื่องกัน มีการเว้นช่วงความถี่และมีความยาวคลื่นแตกต่างกันจนเกิดเป็นแถบ ๆ เรียงกันไป คำว่า สเปกตรัม มาจากภาษาละตินมีความหมายว่า “Ghost” เพราะแสงพวกนี้ปรากฏแสงเป็นแบบ “Gostlike” จากแสงของจริงที่เป็นแสงสีขาว ไม่มีสีสันอย่างสเปกตรัมนั่นเอง เส้นสเปกตรัมเป็นหนึ่งในประเภทของสเปกตรัมจาก 2 ประเภท ได้แก่ สเปกตรัมไม่ต่อเนื่อง (Continuous spectrum) และสเปกตรัมต่อเนื่อง (Continuous spectrum) ซึ่งสเปกตรัมต่อเนื่องนั้นจะมีแถบสีที่เกิดขึ้นต่อเนื่องกันไป เช่น สเปกตรัมจากวัตถุดำ ซึ่งหมายถึงวัตถุที่มีคุณสมบัติดูดกลืนแสง ไม่สามารถสะท้อนได้ ทึบตัน สามารถหมายถึงดาวฤกษ์ ซึ่งก็คือดวงอาทิตย์ และยังหมายถึงไส้หลอดไฟต่าง ๆ เป็นต้น ส่วนเส้นสเปกตรัมถือเป็นสเปกตรัมไม่ต่อเนื่องที่มีการแผ่รังสีเป็นแถบ ๆ เส้น ๆ เว้นระยะไปและมีความถี่และความยาวคลื่นบางครั้ง ไม่มีความต่อเนื่องกันเลย เช่น สเปคตรัมของอะตอมไฮโดรเจน.

ใหม่!!: อะตอมและเส้นสเปกตรัม · ดูเพิ่มเติม »

เส้นผ่านศูนย์กลาง

เส้นผ่านศูนย์กลาง (Diameter) เส้นผ่านศูนย์กลาง (อังกฤษ: diameter) คือเส้นตรงซึ่งลากผ่านจุดศูนย์กลางของรูปวงกลมไปบรรจบกับเส้นรอบวงทั้งสองข้าง ซึ่งรูปวงกลมนั้นอาจมาจากหน้าตัดของทรงกระบอก ทรงกรวย หรือทรงกลมก็ได้ เส้นผ่านศูนย์กลางมีความยาวเป็นสองเท่าของเส้นรัศมี เป็นคอร์ดที่ยาวที่สุดในรูปวงกลม และแบ่งรูปวงกลมออกเป็นรูปครึ่งวงกลมสองส่วนเท่าๆ กัน และสามารถเปลี่ยนไปได้ทุกทิศทางไม่กำหนด เส้นผ่านศูนย์กลางจะสร้างมารถคำนวณได้โดยหาค่ารัศมีแล้วคูณสอง เพราะว่าความยาวของรัศมีหนึ่งเส้นเท่ากับครึ่งหนึ่งของเส้นผ่าศูนย์กลาง ในทางวิศวกรรมศาสตร์ เส้นผ่านศูนย์กลางสามารถเขียนแทนได้ด้วยสัญลักษณ์ ⌀ (ยูนิโคด: U+8960) ซึ่งมีลักษณะเป็นรูปวงกลมเล็กๆ ขีดทับด้วยเส้นตรงเอียงลงทางซ้าย มีประโยชน์ในการบ่งบอกขนาดของรูปวงกลม หมวดหมู่:เรขาคณิตมูลฐาน หมวดหมู่:ความยาว.

ใหม่!!: อะตอมและเส้นผ่านศูนย์กลาง · ดูเพิ่มเติม »

เหล็ก

หล็ก (Iron ออกเสียงว่า ไอเอิร์น /ˈaɪ.ərn/) เป็นธาตุเคมีในตารางธาตุ มีสัญลักษณ์ธาตุ Fe และหมายเลขอะตอม 26 เหล็กเป็นธาตุโลหะทรานซิชันหมู่ 8 และคาบ 4 สัญลักษณ์ Fe ย่อมาจาก ferrum ในภาษาละติน.

ใหม่!!: อะตอมและเหล็ก · ดูเพิ่มเติม »

เอกภพที่สังเกตได้

มุมกว้างของท้องฟ้าถ่ายด้วยเทคนิค near-infrared แสดงให้เห็นการกระจายตัวของกาแล็กซีต่างๆ นอกเหนือจากทางช้างเผือก มีจำนวนทั้งสิ้นมากกว่า 1.5 ล้านกาแล็กซี ตามทฤษฎีบิกแบง เอกภพที่สังเกตได้ (Observable Universe) คือขอบเขตห้วงอวกาศในกรอบทรงกลมที่มีจุดศูนย์กลางที่ผู้สังเกตการณ์ ที่มีขนาดเล็กพอที่เราจะสังเกตวัตถุต่างๆ ภายในได้ เช่น ระยะเวลาที่นานพอสำหรับการแพร่สัญญาณจากวัตถุ ณ เวลาใดๆ หลังเหตุการณ์บิกแบง มีการเคลื่อนที่เท่าความเร็วแสง และเดินทางมาถึงผู้สังเกตการณ์ ณ เวลาปัจจุบัน ทุกๆ ตำแหน่งมีเอกภพที่สังเกตได้ของจุดนั้นๆ ซึ่งอาจพอดีหรือเหลื่อมกันกับเอกภพที่สังเกตได้จากโลก ในทางทฤษฎีเอกภพที่สังเกตได้อาจมีขนาดเล็กกว่าหรือใหญ่กว่าขนาดของเอกภพจริง.

ใหม่!!: อะตอมและเอกภพที่สังเกตได้ · ดูเพิ่มเติม »

เออร์เนสต์ มาร์สเดน

ซอร์เออร์เนสต์ มาร์สเดน (Sir Ernest Marsden; 19 กุมภาพันธ์ ค.ศ. 1889 – 15 ธันวาคม ค.ศ. 1970) เป็นนักฟิสิกส์ชาวอังกฤษ-นิวซีแลนด์ เกิดที่อีสต์แลงคาเชอร์ เข้าศึกษาที่ Queen Elizabeth's Grammar School เมืองแบล็กเบิร์น เขาได้พบกับเออร์เนสต์ รัทเทอร์ฟอร์ด ขณะศึกษาอยู่ที่มหาวิทยาลัยแมนเชสเตอร์ เมื่อยังเป็นนักศึกษา เขาได้ทำการทดลองอันมีชื่อเสียงคือ การทดลองไกเกอร์-มาร์สเดน (Geiger-Marsden experiment) หรือการทดลองแผ่นฟอยล์ทองคำร่วมกับฮันส์ ไกเกอร์ เมื่อปี..

ใหม่!!: อะตอมและเออร์เนสต์ มาร์สเดน · ดูเพิ่มเติม »

เออร์เนสต์ รัทเทอร์ฟอร์ด

ออร์เนสต์ รัทเทอร์ฟอร์ด บารอนรัทเทอร์ฟอร์ดแห่งเนลสันที่ 1 เออร์เนสต์ รัทเทอร์ฟอร์ด (Ernest Rutherford, 30 สิงหาคม พ.ศ. 2414 - 19 ตุลาคม พ.ศ. 2480) หรือในชื่อที่เป็นที่รู้จักกันทั่วไปว่า ลอร์ด รัทเทอร์ฟอร์ด ได้รับการยกย่องให้เป็น "บิดา" แห่งฟิสิกส์นิวเคลียร์ เขาเป็นผู้บุกเบิกทฤษฎีการโคจรของอะตอม ชื่อของเขาได้นำไปใช้เป็นชื่อธาตุที่ 104 คือ รัทเทอร์ฟอร์เดียม.

ใหม่!!: อะตอมและเออร์เนสต์ รัทเทอร์ฟอร์ด · ดูเพิ่มเติม »

เจ. เจ. ทอมสัน

ซอร์ โจเซฟ จอห์น.

ใหม่!!: อะตอมและเจ. เจ. ทอมสัน · ดูเพิ่มเติม »

เจนีวา

นีวา (Geneva) หรือออกเสียงในภาษาท้องถิ่นว่า เฌอแนฟว์ (Genève) เป็นเมืองใหญ่อันดับสองของประเทศสวิตเซอร์แลนด์ (รองจากซือริช) ถือเป็นเมืองที่มีประชากรมากที่สุดในภาครอม็องดีอันเป็นภูมิภาคที่ใช้ภาษาฝรั่งเศสเป็นหลักในสวิตเซอร์แลนด์ นครเจนีวาตั้งอยู่บริเวณต้นแม่น้ำโรนซึ่งไหลออกจากทะเลสาบเจนีวา เจนีวามีสถานะเป็นเมืองหลวงของสาธารณรัฐแห่งรัฐเจนีวา เจนีวาถือเป็นหนึ่งในเมืองศูนย์กลางของโลก โดยเป็นศูนย์กลางทางการเงิน, ศูนย์กลางทางการทูต เจนีวาถือเป็นเมืองที่มีองค์กรระหว่างประเทศตั้งอยู่มากที่สุดในโลก ในบรรดาองค์กรเหล่านี้อาทิ หน่วยงานของสหประชาชาติและกาชาดสากล เป็นต้น ในปี 2017 เจนีวาได้รับการจัดอันดับโดย Global Financial Centres Index ให้เป็นเมืองศูนย์กลางทางการเงินอันดับ 15 ของโลก และเป็นที่ 5 ของทวีปยุโรป รองจากลอนดอน, ซือริช, แฟรงเฟิร์ต และลักเซมเบิร์ก และยังได้รับการจัดอันดับโดย Mercer's Quality of Living index ให้เป็นเมืองที่น่าอยู่ที่สุดเป็นอันดับ 8 ของโลกในปีเดียวกัน.

ใหม่!!: อะตอมและเจนีวา · ดูเพิ่มเติม »

เทคนีเชียม

|- | Electron affinity || -53 kJ/mol เทคนีเชียม (Technetium) คือธาตุที่มีหมายเลขอะตอม 43 และสัญลักษณ์คือ Tc เทคนีเชียมเป็นโลหะทรานซิชันมีสีเทาเงิน Tc-99m เป็นไอโซโทป อายุสั้นใช้ตรวจวินิจฉัยทางการแพทย์ได้มากมาย ที่พบบนโลกเกิดจากผลพลอยได้ของปฏิกิริยานิวเคลียร์ฟิสซั่นของยูเรเนียม-235 และตามธรรมชาติพบในแร่ยูเรเนียม หมวดหมู่:วัสดุศาสตร์ หมวดหมู่:ธาตุเคมี หมวดหมู่:โลหะมีสกุล.

ใหม่!!: อะตอมและเทคนีเชียม · ดูเพิ่มเติม »

เคมี

มี (chemistry) เป็นวิทยาศาสตร์สาขาหนึ่งที่ศึกษาในเรื่องของสสาร โดยไม่เพียงแต่ศึกษาเฉพาะในเรื่องของปฏิกิริยาเคมี แต่ยังรวมถึงองค์ประกอบ โครงสร้างและคุณสมบัติของสสารอีกด้วย การศึกษาทางด้านเคมีเน้นไปที่อะตอมและปฏิสัมพันธ์ระหว่างอะตอมกับอะตอม และโดยเฉพาะอย่างยิ่งคุณสมบัติของพันธะเคมี บางครั้ง เคมีถูกเรียกว่าเป็นวิทยาศาสตร์ศูนย์กลาง เพราะเป็นวิชาช่วยที่เชื่อมโยงฟิสิกส์เข้ากับวิทยาศาสตร์ธรรมชาติสาขาอื่น เช่น ธรณีวิทยาหรือชีววิทยา ถึงแม้ว่าเคมีจะถือเป็นสาขาหนึ่งของวิทยาศาสตร์กายภาพแต่ก็มีความแตกต่างจากวิชาฟิสิกส์ค่อนข้างมาก มีการถกเถียงกันอย่างมากมายถึงต้นกำเนิดของเคมี สันนิษฐานว่าเคมีน่าจะมีต้นกำเนิดมาจากการเล่นแร่แปรธาตุซึ่งเป็นที่นิยมกันมาอย่างยาวนานหลายสหัสวรรษในหลายส่วนของโลก โดยเฉพาะอย่างยิ่งในตะวันออกกลาง.

ใหม่!!: อะตอมและเคมี · ดูเพิ่มเติม »

เครื่องตรวจจับอนุภาค

Compact Muon Solenoid (CMS) คือตัวอย่างหนึ่งของเครื่องตรวจจับอนุภาคขนาดใหญ่ สังเกตเปรียบเทียบขนาดกับมนุษย์ ในการศึกษาฟิสิกส์อนุภาค, ฟิสิกส์นิวเคลียร์ และวิศวกรรมนิวเคลียร์ทั้งในเชิงทดลองและประยุกต์ เครื่องตรวจจับอนุภาค (particle detector; หรือรู้จักในชื่อ เครื่องตรวจจับการแผ่รังสี (radiation detector)) คือเครื่องมือที่ใช้สำหรับตรวจจับ ติดตาม หรือแยกแยะอนุภาคพลังงานสูง เช่นอนุภาคที่เกิดจากการสลายตัวของสารกัมมันตรังสี การแผ่รังสีคอสมิก หรือปฏิกิริยาที่เกิดในเครื่องเร่งอนุภาค เป็นต้น เครื่องตรวจจับสมัยใหม่ยังสามารถใช้เป็นแคลอรีมิเตอร์เพื่อตรวจวัดพลังงานของรังสีที่ตรวจจับได้ ทั้งยังอาจใช้เพื่อตรวจวัดคุณสมบัติอื่นๆ ของอนุภาคด้วย เช่น โมเมนตัม สปิน ประจุ ฯลฯ.

ใหม่!!: อะตอมและเครื่องตรวจจับอนุภาค · ดูเพิ่มเติม »

เครื่องเร่งอนุภาค

รื่องเร่งอนุภาคเชิงเส้น Van de Graaff แบบ single stage 2 MeV ในช่วงทศวรรษ 1960s กำลังอยู่ระหว่างซ่อมบำรุง ภาพสเก็ตช์ของเครื่องเร่งไฟฟ้าสถิตย์แบบแวนเดอกราฟ เครื่องเร่งอนุภาค (particle accelerator) คือเครื่องมือชนิดหนึ่งที่อาศัยสนามแม่เหล็กไฟฟ้าในการเร่งให้อนุภาคที่มีประจุเคลื่อนที่ไปจนกระทั่งมีความเร็วสูง โดยให้เคลื่อนที่อยู่ภายในท่อที่เตรียมเอาไว้ โทรทัศน์แบบ CRT เป็นตัวอย่างแบบง่ายๆ อย่างหนึ่งของเครื่องเร่งอนุภาค มีเครื่องเร่งอนุภาคพื้นฐานอยู่ 2 แบบคือ เครื่องเร่งอนุภาคแบบ electrostatic และแบบ oscillating field.

ใหม่!!: อะตอมและเครื่องเร่งอนุภาค · ดูเพิ่มเติม »

เปลือกอิเล็กตรอน

ตารางธาตุกับชั้นพลังงานของอิเล็กตรอน ในสาขาวิชาเคมีและฟิสิกส์ของอะตอม เปลือกอิเล็กตรอน (electron shell) หรือ ระดับพลังงานหลัก (principal energy level) อาจเข้าใจได้ว่าเป็นวงโคจรของอิเล็กตรอนที่หมุนวนอยู่รอบนิวเคลียสของอะตอม เปลือกที่ใกล้นิวเคลียสที่สุดเรียกว่าเป็น เปลือกชั้นที่ 1 (หรือเปลือก K) ต่อมาจึงเป็น เปลือกชั้นที่ 2 (หรือเปลือก L), เปลือกชั้นที่ 3 (หรือเปลือก M) ไกลออกมาเรื่อย ๆ จากนิวเคลียส เปลือกเหล่านั้นจะสอดคล้องกับเลขควอนตัมหลัก (n.

ใหม่!!: อะตอมและเปลือกอิเล็กตรอน · ดูเพิ่มเติม »

เนบิวลา

อ็นจีซี 604 (NGC 604) เป็นเนบิวลาที่อยู่ภายในแขนของดาราจักรเอ็ม 33 (M33) ในกลุ่มดาวสามเหลี่ยม อยู่ห่างจากโลก 2.7 ล้านปีแสง เนบิวลานี้เป็นบริเวณก่อตัวของดาวฤกษ์ดวงใหม่ เนบิวลานาฬิกาทราย (MyCn18) เป็นเนบิวลาดาวเคราะห์อายุน้อย อยู่ห่างจากโลกประมาณ 8,000 ปีแสง ภาพนี้ถ่ายด้วยกล้องถ่ายภาพที่ติดตั้งบนกล้องโทรทรรศน์อวกาศฮับเบิลขององค์การนาซา เนบิวลา (Nebula - มาจากภาษาละติน nebula (พหูพจน์ nebulae) หมายถึง "หมอก") เป็นกลุ่มเมฆหมอกของฝุ่น แก๊ส และพลาสมาในอวกาศ เดิมคำว่า "เนบิวลา" เป็นชื่อสามัญ ใช้เรียกวัตถุทางดาราศาสตร์ที่เป็นปื้นบนท้องฟ้าซึ่งรวมถึงดาราจักรที่อยู่ห่างไกลออกไปจากทางช้างเผือก (ตัวอย่างเช่น ในอดีตเคยเรียกดาราจักรแอนดรอเมดาว่าเนบิวลาแอนดรอเมดา).

ใหม่!!: อะตอมและเนบิวลา · ดูเพิ่มเติม »

เนปทูเนียม

นปทูเนียม (Neptunium)เป็นธาตุกลุ่มแอคติไนต์ธาตุที่มีหมายเลขอะตอม 93 สัญลักษณ์ Np เป็นธาตุโลหะหนัก กัมมันตภาพรังสี อยู่ในกลุ่มแอกทิไนด์ (actinide group) และเป็นธาตุทรานซูแรนิค (transuranic element) เป็นธาตุกัมมันตรังสีที่ไม่ปรากฏในธรรมชาติที่นักวิทยาศาสตร์สร้างขึ้น ซึ่งชนิดแรกที่ได้จากการสังเคราะห์เป็นผลพลอยได้จากเตาปฏิกรปรมณูและการผลิตพลูโทเนียมไอโซโทปที่เสถียรที่สุดคือ Np-237 ในธรรมชาติพบปริมาณเล็กน้อยในสินแร่ยูเรเนียมธาตุเนปทูเนียมมีสมบัติเป็นโลหะหนักเป็นของแข็งสีเงินเป็นมันวาว มีความบริสุทธิ์สูงมีประโยชน์อย่างมากในการนำมาใช้ผลิตธาตุที่เป็นแหล่งกำเนิดพลังงานนิวเคลียร์ สามารถใช้ทำระเบิดนิวเคลียร์ได้.

ใหม่!!: อะตอมและเนปทูเนียม · ดูเพิ่มเติม »

เนเจอร์ (วารสาร)

วารสาร''เนเจอร์''ฉบับแรก วันที่ 4 พฤศจิกายน ค.ศ. 1869 เนเจอร์ เป็นวารสารวิชาการทางวิทยาศาสตร์ ตีพิมพ์ครั้งแรกเมื่อวันที่ 4 พฤศจิกายน..

ใหม่!!: อะตอมและเนเจอร์ (วารสาร) · ดูเพิ่มเติม »

Inductively coupled plasma

Inductively coupled plasma (ICP) คือพลาสมาชนิดหนึ่งที่ได้รับพลังงานจากกระแสไฟฟ้า ซึ่งสร้างขึ้นจากการเหนี่ยวนำแม่เหล็กไฟฟ้า อุณหภูมิของพลาสมาอาจมีค่าตั้งแต่ 6 000 K จนถึง 10 000 K ซึ่งเทียบเท่ากับอุณหภูมิพื้นผิวของดวงอาทิตย์ ICP ที่ปลดปล่อยออกมาจึงมีความหนาแน่นอิเล็กตรอนสูงมาก ในระดับ 1015 cm−3 เราสามารถนำ ICP ไปประยุกต์ใช้ได้หลายแบบในงานที่ต้องใช้พลาสมาความหนาแน่นสูง.

ใหม่!!: อะตอมและInductively coupled plasma · ดูเพิ่มเติม »

R-process

R-process คือกระบวนการสังเคราะห์นิวเคลียสที่เกิดขึ้นในการยุบตัวในแกนกลางของมหานวดารา (ดูเพิ่มใน การสังเคราะห์นิวเคลียสของซูเปอร์โนวา) และในการระเบิดของอาวุธนิวเคลียร์ ซึ่งเป็นตัวการทำให้เกิดนิวเคลียสอะตอมของธาตุโลหะหนักชนิดที่มีนิวตรอนมากเป็นจำนวนมากกว่าครึ่งหนึ่งของทั้งเอกภพ คุณลักษณะของกระบวนการนี้คือการจับตัวของนิวตรอนอย่าง "รวดเร็ว" (rapid - เป็นที่มาของชื่อ r-process) ใน seed nucleus ซึ่งโดยมากจะเป็น Ni-56 กลไกการสร้างโลหะหนักที่สำคัญอีกกระบวนการหนึ่งคือ S-process ซึ่งการสังเคราะห์นิวเคลียสจะเป็นการจับตัวนิวตรอน "อย่างช้า" มักเกิดขึ้นในดาวฤกษ์ประเภท AGB กระบวนการทั้งสองนี้เป็นกระบวนการสำคัญในวิวัฒนาการทางเคมีของดาราจักรในการสร้างธาตุที่หนักกว่าเหล็ก.

ใหม่!!: อะตอมและR-process · ดูเพิ่มเติม »

S-process

S-process หรือ กระบวนการจับตัวของนิวตรอนแบบช้า (slow-neutron-capture-process) คือกระบวนการสังเคราะห์นิวเคลียสที่เกิดขึ้นภายใต้สภาวะความหนาแน่นนิวตรอนต่ำและอุณหภูมิดาวฤกษ์ปานกลาง ภายใต้สภาวะนี้ อัตราการจับตัวของนิวตรอนโดยนิวเคลียสอะตอมจะต่ำมากเมื่อเทียบกับอัตราการสลายให้อนุภาคบีตาของสารกัมมันตรังสี ในกระบวนการ S-process ไอโซโทปที่เสถียรหนึ่งตัวจะจับกับนิวตรอนหนึ่งตัว แต่ไอโซโทปของสารกัมมันตรังสีที่เกิดขึ้นทำให้ตัวลูกที่เสถียรเกิดการสลายตัวก่อนที่นิวตรอนตัวถัดไปจะถูกจับตัวได้ ประมาณการว่า กระบวนการ S-process นี้สร้างไอโซโทปของธาตุที่หนักกว่าเหล็กประมาณครึ่งหนึ่งของไอโซโทปที่มีในเอกภพ ดังนั้นจึงมีบทบาทสำคัญยิ่งในวิวัฒนาการทางเคมีของดาราจักร S-process แตกต่างกับ R-process อันเป็นกระบวนการจับตัวของนิวตรอนที่รวดเร็วกว่า หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:นิวตรอน หมวดหมู่:ฟิสิกส์ดาราศาสตร์ หมวดหมู่:การสังเคราะห์นิวเคลียส.

ใหม่!!: อะตอมและS-process · ดูเพิ่มเติม »

The Sceptical Chymist

The Sceptical Chymist: หรือ Chymico-Physical Doubts & Paradoxes เป็นชื่อหนังสืออันเป็นงานเขียนเชิงวิทยาศาสตร์ชิ้นเอกของโรเบิร์ต บอยล์ ตีพิมพ์เผยแพร่ในลอนดอนเมื่อปี..

ใหม่!!: อะตอมและThe Sceptical Chymist · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

แบบจำลองอะตอม

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »