เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

บทนิยามเวียนเกิด

ดัชนี บทนิยามเวียนเกิด

ทนิยามเวียนเกิด (recursive definition) หรือบทนิยามแบบอุปนัย (inductive definition) เป็นคณิตตรรกศาสตร์และวิทยาการคอมพิวเตอร์ที่ใช้นิยามสมาชิกในเซตหนึ่งในพจน์สมาชิกอื่นในเซต บทนิยามเวียนเกิดของฟังก์ชันนิยามค่าของฟังก์ชันสำหรับค่าป้อนเข้าบางค่าในพจน์ค่าของฟังก์ชันเดิมสำหรับค่าป้อนเข้าอื่น ตัวอย่างเช่น ฟังก์ชันแฟกทอเรียล n! นิยามด้วยกฎดังนี้ บทนิยามนี้สมเหตุสมผลสำหรับทุก n เพราะการเวียนกลับสุด้ายจะถึงกรณีฐาน 0 บทนิยามนี้อาจยังคิดได้เป็นการให้กระบวนงานอธิบายการสร้างฟังก์ชัน n! โดยเริ่มจาก n.

สารบัญ

  1. 5 ความสัมพันธ์: วิทยาการคอมพิวเตอร์จำนวนธรรมชาติคณิตตรรกศาสตร์แฟกทอเรียลเซต (คณิตศาสตร์)

  2. การเรียกซ้ำ
  3. คณิตตรรกศาสตร์
  4. วิทยาการคอมพิวเตอร์เชิงทฤษฎี

วิทยาการคอมพิวเตอร์

วิทยาการคอมพิวเตอร์ หรือ วิทยาศาสตร์คอมพิวเตอร์ (Computer science) เป็นศาสตร์เกี่ยวกับการศึกษาค้นคว้าทฤษฎีการคำนวณสำหรับคอมพิวเตอร์ และทฤษฎีการประมวลผลสารสนเทศ ทั้งด้านซอฟต์แวร์ ฮาร์ดแวร์ และ เครือข่าย ซึ่งวิทยาการคอมพิวเตอร์นั้นประกอบด้วยหลายหัวข้อที่เกี่ยวข้องกับคอมพิวเตอร์ ตั้งแต่ระดับนามธรรม หรือความคิดเชิงทฤษฎี เช่น การวิเคราะห์และสังเคราะห์ขั้นตอนวิธี ไปจนถึงระดับรูปธรรม เช่น ทฤษฎีภาษาโปรแกรม ทฤษฎีการพัฒนาซอฟต์แวร์ ทฤษฎีฮาร์ดแวร์คอมพิวเตอร์ และ ทฤษฎีเครือข่าย ในแง่ของศาสตร์เกี่ยวกับคอมพิวเตอร์นั้น วิทยาการคอมพิวเตอร์เป็นหนึ่งในห้าสาขาวิชาคอมพิวเตอร์ ซึ่งประกอบด้วย สาขาวิทยาการคอมพิวเตอร์ หรือวิทยาศาสตรคอมพิวเตอร์ สาขาวิศวกรรมคอมพิวเตอร์ สาขาวิศวกรรมซอฟต์แวร์ สาขาเทคโนโลยีสารสนเทศ หรือเทคโนโลยีสารสนเทศและการสือสาร และ สาขาคอมพิวเตอร์ธุรกิจ หรือ ระบบสารสนเทศทางธุรก.

ดู บทนิยามเวียนเกิดและวิทยาการคอมพิวเตอร์

จำนวนธรรมชาติ

ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.

ดู บทนิยามเวียนเกิดและจำนวนธรรมชาติ

คณิตตรรกศาสตร์

ณิตตรรกศาสตร์ (Mathematical logic) คือสาขาหนึ่งในคณิตศาสตร์ที่ศึกษาระบบรูปนัย และคุณลักษณะที่ระบบดังกล่าวจะสามารถใช้เพื่อแสดงมโนทัศน์ของบทพิสูจน์ และการคำนวณในส่วนที่เป็นรากฐานของคณิตศาสตร์ แม้ว่าคนทั่วไปมักมีความเข้าใจว่า คณิตตรรกศาสตร์คือ ตรรกศาสตร์ของคณิตศาสตร์ แต่ความจริงแล้วสาขานี้ใกล้เคียงกับ คณิตศาสตร์ของตรรกศาสตร์ มากกว่า เนื้อหาวิชาในสาขานี้ครอบคลุมส่วนของตรรกศาสตร์ที่สามารถโมเดลในรูปของคณิตศาสตร์ได้ เมื่อก่อนสาขานี้ถูกเรียกว่า ตรรกศาสตร์สัญลักษณ์ (ในลักษณะที่ตรงข้ามกับตรรกศาสตร์เชิงปรัชญา) และอภิคณิตศาสตร์ ซึ่งในปัจจุบันเป็นเพียงคำที่ใช้ในบางสาขาของทฤษฎีบทพิสูจน.

ดู บทนิยามเวียนเกิดและคณิตตรรกศาสตร์

แฟกทอเรียล

ในทางคณิตศาสตร์ แฟกทอเรียล (factorial) ของจำนวนเต็มไม่เป็นลบ n คือผลคูณของจำนวนเต็มบวกทั้งหมดที่น้อยกว่าหรือเท่ากับ n เขียนแทนด้วย n! (อ่านว่า n แฟกทอเรียล) ตัวอย่างเช่น สำหรับค่าของ 0! ถูกกำหนดให้เท่ากับ 1 ตามหลักการของผลคูณว่าง การดำเนินการแฟกทอเรียลพบได้ในคณิตศาสตร์สาขา ต่าง ๆ โดยเฉพาะอย่างยิ่งคณิตศาสตร์เชิงการจัด พีชคณิต และคณิตวิเคราะห์ การพบเห็นโดยพื้นฐานที่สุดคือข้อเท็จจริงที่ว่า การจัดลำดับวัตถุที่แตกต่างกัน n สิ่งสามารถทำได้ n! วิธี (การเรียงสับเปลี่ยนของเซตของวัตถุ) ข้อเท็จจริงนี้เป็นที่ทราบโดยนักวิชาการชาวอินเดียตั้งแต่ต้นคริสต์ศตวรรษที่ 12 เป็นอย่างน้อย นอกจากนี้ คริสเตียน แครมป์ (Christian Kramp) เป็นผู้แนะนำให้ใช้สัญกรณ์ n! เมื่อ ค.ศ.

ดู บทนิยามเวียนเกิดและแฟกทอเรียล

เซต (คณิตศาสตร์)

อินเตอร์เซกชันของเซตสองเซต คือเซตที่ประกอบด้วยสมาชิกที่อยู่ในเซตทั้งสองเซต ดังแสดงในแผนภาพเวนน์ เซต ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้.

ดู บทนิยามเวียนเกิดและเซต (คณิตศาสตร์)

ดูเพิ่มเติม

การเรียกซ้ำ

คณิตตรรกศาสตร์

วิทยาการคอมพิวเตอร์เชิงทฤษฎี

หรือที่รู้จักกันในชื่อ Inductive definitionRecursive definition