สารบัญ
39 ความสัมพันธ์: พาย (อาหาร)การยกกำลังการลบการหารการดำเนินการ (คณิตศาสตร์)การดำเนินการทวิภาคการดำเนินการเอกภาคการคูณการนับระบบการวัดรากที่ nลำดับการดำเนินการลูกคิดสมบัติการสลับที่สมบัติการเปลี่ยนหมู่สมัยฟื้นฟูศิลปวิทยาสมาชิกเอกลักษณ์สัญประกาศผลรวมจำนวนลบและจำนวนไม่เป็นลบจำนวนจริงจำนวนธรรมชาติจำนวนตรรกยะจำนวนเชิงซ้อนจำนวนเต็มคอมพิวเตอร์ประถมศึกษานิพจน์ (คณิตศาสตร์)เมทริกซ์เลขฐานสิบเลขคณิตมอดุลาร์เลขคณิตมูลฐานเวกเตอร์เศษส่วนเสมอภาคเอกลักษณ์การบวกเครื่องหมายบวกและลบ01
- สัญกรณ์คณิตศาสตร์
- เลขคณิตมูลฐาน
พาย (อาหาร)
ตรอเบอร์รี่ชีสพาย พาย (pie) คืออาหารชนิดหนึ่งที่ผ่านกระบวนการอบ โดยปกติพายจะบรรจุไส้ต่าง ๆ ไว้ด้านใน เช่น เนื้อปลา ผัก ผลไม้ ชีส ครีม ช็อกโกแลต คัสตาร์ด ถั่ว หรือของหวานอื่น ๆ พายจะมี 2 ลักษณะคือ แบบที่มีแป้งประกบทั้งสองด้าน เช่น พายไก่ หรือพายสับปะรด หรืออีกประเภทที่วางอยู่บนแป้งด้านหนึ่ง เช่นพายที่เป็นขนมหวาน โดยไส้ที่เป็นของหวานหรือผลไม้ จะวางบนแผ่นแป้งที่เรียกว่าครัสต์ พายประเภทที่เป็นของหวานมักจะผ่านกระบวนการอบเฉพาะส่วนของแป้งเท่านั้น ส่วนไส้ในจะมาใส่ภายหลัง.
การยกกำลัง
้าx+1ส่วนx.
การลบ
"5 - 2.
การหาร
การหาร (division) ในทางคณิตศาสตร์ คือ การดำเนินการเลขคณิตที่เป็นการดำเนินการผันกลับของการคูณ และบางครั้งอาจมองได้ว่าเป็นการทำซ้ำการลบ พูดง่าย ๆ คือการแบ่งออกหรือเอาเอาออกเท่า ๆ กัน จนกระทั่งตัวหารเหลือศูนย์ (หารลงตัว) ถ้า เมื่อ b ไม่เท่ากับ 0 แล้ว (อ่านว่า "c หารด้วย b") ตัวอย่างเช่น 6 ÷ 3.
การดำเนินการ (คณิตศาสตร์)
การดำเนินการ (Operation) ในทางคณิตศาสตร์และตรรกศาสตร์ หมายถึง การกระทำหรือลำดับขั้นตอนซึ่งสร้างค่าใหม่ขึ้นเป็นผลลัพธ์ โดยการรับค่าเข้าไปหนึ่งตัวหรือมากกว่า การดำเนินการสามารถแบ่งได้เป็นสองประเภทใหญ่ ๆ ได้แก่ การดำเนินการเอกภาคและการดำเนินการทวิภาค การดำเนินการเอกภาคจะใช้ค่าที่ป้อนเข้าไปเพียงหนึ่งค่าเช่น นิเสธ ฟังก์ชันตรีโกณมิติ ส่วนการดำเนินการทวิภาคจะใช้สองค่าเช่น การบวก การลบ การคูณ การหาร การยกกำลัง การดำเนินการสามารถเกี่ยวข้องกับวัตถุทางคณิตศาสตร์อย่างอื่นที่นอกเหนือจากจำนวนก็ได้ ตัวอย่างเช่น ค่าเชิงตรรกะ จริง และ เท็จ สามารถใช้กับตัวดำเนินการทางตรรกศาสตร์อย่าง and, or, not; เวกเตอร์สามารถบวกและลบกันได้; ฟังก์ชันประกอบสามารถใช้เป็นการหมุนของวัตถุหลาย ๆ ครั้งได้; การดำเนินการของเซตมีทั้งแบบทวิภาคคือยูเนียน อินเตอร์เซกชัน และแบบเอกภาคคือคอมพลีเมนต์ เป็นต้น การดำเนินการบางอย่างอาจไม่สามารถนิยามได้บนทุก ๆ ค่าที่เป็นไปได้ เช่น ในจำนวนจริง เราจะไม่สามารถหารด้วยศูนย์หรือถอดรากที่สองจากจำนวนลบ ค่าเริ่มต้นสำหรับการดำเนินการได้นิยามมาจากเซตเซตหนึ่งที่เรียกว่าโดเมน และเซตที่เป็นผลลัพธ์เรียกว่าโคโดเมน แต่ค่าที่แท้จริงที่เกิดจากการดำเนินการนั้นอาจออกมาเป็นเรนจ์ อาทิการถอดรากที่สองในจำนวนจริงจะให้ผลลัพธ์เพียงจำนวนที่ไม่เป็นลบ ดังนั้นโคโดเมนคือเซตของจำนวนจริง แต่เรนจ์คือเซตของจำนวนที่ไม่เป็นลบเท่านั้น การดำเนินการอาจเกี่ยวข้องกับวัตถุสองชนิดที่ต่างกันก็ได้ ตัวอย่างเช่น เราสามารถคูณเวกเตอร์ด้วยปริมาณสเกลาร์เพื่อเปลี่ยนขนาดของเวกเตอร์ และผลคูณภายใน (inner product) ของสองเวกเตอร์จะให้ผลลัพธ์ออกมาเป็นสเกลาร์ การดำเนินการหนึ่ง ๆ อาจจะมีหรือไม่มีสมบัติบางอย่าง เช่นสมบัติการเปลี่ยนกลุ่ม การสลับที่ และอื่น ๆ ค่าที่ใส่เข้ามาในการดำเนินการอาจเรียกว่า ตัวถูกดำเนินการ, อาร์กิวเมนต์, ค่ารับเข้า ส่วนค่าที่ได้ออกไปจากการดำเนินการเรียกว่า ค่า, ผลลัพธ์, ค่าส่งออก การดำเนินการสามารถมีตัวถูกดำเนินการหนึ่งค่า สองค่า หรือมากกว่าก็ได้ การดำเนินการนั้นคล้ายกับตัวดำเนินการแต่ต่างกันที่มุมมอง ตัวอย่างเช่น หากใครคนหนึ่งกล่าวว่า "การดำเนินการของการบวก" จะเป็นการเน้นจุดสนใจไปที่ตัวถูกดำเนินการและผลลัพธ์ ในขณะที่อีกคนหนึ่งกล่าวว่า "ตัวดำเนินการของการบวก" จะเป็นการมุ่งประเด็นไปที่กระบวนการที่จะทำให้เกิดผลลัพธ์ หรือหมายถึงฟังก์ชัน +: S × S → S ซึ่งเป็นมุมมองนามธรรม.
ดู การบวกและการดำเนินการ (คณิตศาสตร์)
การดำเนินการทวิภาค
ในทางคณิตศาสตร์ การดำเนินการทวิภาค หมายถึงการคำนวณที่ต้องเกี่ยวข้องกับตัวถูกดำเนินการสองค่า หรือกล่าวอีกนัยหนึ่ง หมายถึงการดำเนินการที่มีอาริตี้ (arity) เท่ากับสอง การดำเนินการทวิภาคสามารถคำนวณให้สำเร็จได้โดยใช้ฟังก์ชันทวิภาคหรือตัวดำเนินการทวิภาคอย่างใดอย่างหนึ่ง การดำเนินการทวิภาคบางครั้งถูกเรียกว่าเป็น dyadic operation ในภาษาอังกฤษเพื่อหลีกเลี่ยงความสับสนกับระบบเลขฐานสอง (binary numeral system) ตัวอย่างการดำเนินการทวิภาคที่คุ้นเคยเช่น การบวก การลบ การคูณ และการหาร เป็นต้น การดำเนินการทวิภาคบนเซต S คือความสัมพันธ์ f ที่จับคู่สมาชิกในผลคูณคาร์ทีเซียน S×S ไปยัง S ถ้าความสัมพันธ์ดังกล่าวไม่เป็นฟังก์ชัน แต่เป็นฟังก์ชันบางส่วน เราจะเรียกการดำเนินการนี้ว่า การดำเนินการ (ทวิภาค) บางส่วน ตัวอย่างเช่น การหารในจำนวนจริงถือว่าเป็นฟังก์ชันบางส่วน เพราะไม่นิยามการหารด้วยศูนย์ แต่บางครั้งในวิทยาการคอมพิวเตอร์ การดำเนินการทวิภาคอาจหมายถึงฟังก์ชันทวิภาคใดๆ ก็ได้ และถ้าความสัมพันธ์ f ให้ผลลัพธ์ออกมาเป็นสมาชิกในเซต S เหมือนกับตัวตั้ง จะเรียกได้ว่าการดำเนินการทวิภาคนั้นมีสมบัติการปิด (closure) การดำเนินการทวิภาคเป็นส่วนสำคัญในโครงสร้างเชิงพีชคณิตในการศึกษาพีชคณิตนามธรรม ซึ่งใช้สำหรับสร้างกรุป โมนอยด์ กึ่งกรุป ริง และอื่นๆ หรือกล่าวโดยทั่วไป เซตที่นิยามการดำเนินการทวิภาคใดๆ บนเซตนั้น เรียกว่า แม็กม่า (magma) การดำเนินการทวิภาคหลายอย่างในพีชคณิตและตรรกศาสตร์มีสมบัติการเปลี่ยนหมู่และสมบัติการสลับที่ และหลายอย่างก็มีสมาชิกเอกลักษณ์และสมาชิกผกผัน ตัวอย่างการดำเนินการที่มีคุณสมบัติทั้งหมดนี้เช่น การบวก (+) และการคูณ (*) บนจำนวนและเมทริกซ์ หรือการประกอบฟังก์ชัน (function composition) บนเซตเซตหนึ่ง ส่วนการดำเนินการที่ไม่มีสมบัติการเปลี่ยนหมู่ ยกตัวอย่างเช่น การลบ (−) และ การดำเนินการบางส่วน ที่ไม่มีสมบัตินี้เช่น การหาร (/) การยกกำลัง (^) และการยกกำลังซ้อน (tetration) (↑↑) การเขียนการดำเนินการทวิภาคส่วนมากใช้สัญกรณ์เติมกลาง (infix notation) เช่น a * b, a + b, หรือ a · b นอกจากนั้นก็เขียนอยู่ในรูปแบบของสัญกรณ์ฟังก์ชัน f (a, b) หรือแม้แต่การเขียนย่อด้วยวิธี juxtaposition เหลือเพียง ab ส่วนการยกกำลัง ปกติแล้วจะเขียนโดยไม่ใช้ตัวดำเนินการ แต่เขียนจำนวนที่สองด้วยตัวยก (superscript) แทน นั่นคือ ab บางครั้งอาจพบเห็นการใช้สัญกรณ์เติมหน้า (prefix notation) หรือสัญกรณ์เติมหลัง (postfix notation) ซึ่งอาจต้องใช้วงเล็บกำกั.
ดู การบวกและการดำเนินการทวิภาค
การดำเนินการเอกภาค
ในทางคณิตศาสตร์ การดำเนินการเอกภาค หมายถึงการดำเนินการที่ต้องใช้ตัวถูกดำเนินการหนึ่งค่า หรือเป็นฟังก์ชันที่ต้องการตัวแปรตัวเดียว โดยทั่วไปการเขียนการดำเนินการเอกภาคใช้สัญกรณ์เติมหน้า (prefix notation) สัญกรณ์เติมหลัง (postfix notation) หรือสัญกรณ์ฟังก์ชันเป็นหลัก.
ดู การบวกและการดำเนินการเอกภาค
การคูณ
3 × 4.
การนับ
ลหนึ่ง กำลังนับด้วยมือ การนับ คือ การกระทำทางคณิตศาสตร์โดยใช้การบวกหรือการลบด้วยหนึ่งซ้ำๆ กัน ซึ่งมักใช้ในการหาคำตอบว่ามีวัตถุอยู่เท่าใด หรือเพื่อกำหนดจำนวนวัตถุที่ต้องการ โดยเริ่มจากหนึ่งสำหรับวัตถุชิ้นแรก และกระทำต่อไปบนวัตถุที่เหลือในลักษณะฟังก์ชันหนึ่งต่อหนึ่ง (injective function) หรือใช้นับวัตถุในเซตอันดับดี (well-ordered object) หรือเพื่อหาจำนวนเชิงอันดับที่ (ordinal number) ของวัตถุ หรือเพื่อหาวัตถุบนจำนวนเชิงอันดับที่ การนับมักถูกใช้เป็นการสอนความรู้เกี่ยวกับชื่อจำนวนและระบบจำนวนให้กับเด็ก ในทางคณิตศาสตร์ การนับ และ การคณานับ สามารถหมายถึงการหาจำนวนของสมาชิกในเซตจำกัด (finite set) ในบางครั้งการนับก็เกี่ยวข้องกับตัวเลขอื่นที่ไม่ใช่หนึ่ง ตัวอย่างเช่น การนับจำนวนเงินหรือเงินทอน เราอาจนับทีละสอง (2, 4, 6, 8, 10, 12,...) หรือนับทีละห้า (5, 10, 15, 20, 25,...) ก็ได้ เป็นต้น มีหลักฐานทางโบราณคดีว่า มนุษย์เคยใช้การนับมาตั้งแต่เมื่อ 50,000 ปีก่อนเป็นอย่างน้อย มีการใช้งานเป็นหลักในอารยธรรมโบราณเพื่อติดตามและบันทึกข้อมูลทางเศรษฐกิจเช่น หนี้สินหรือเงินทุน (การบัญชี) พัฒนาการของการนับก่อให้เกิดสัญกรณ์ทางคณิตศาสตร์และระบบเลขต่าง.
ระบบการวัด
ระบบการวัด (อังกฤษ: systems of measurement) คือกลุ่มของหน่วยวัดที่สามารถใช้ระบุสิ่งใด ๆ ซึ่งสามารถวัดได้ และมีความสำคัญทางประวัติศาสตร์ มีการวางระเบียบและนิยามเพื่อการค้าและการพาณิชย์ ในทางวิทยาศาสตร์ ปริมาณบางชนิดที่ได้วิเคราะห์แล้วถูกกำหนดขึ้นให้เป็นหน่วยมูลฐาน ซึ่งหมายความว่าหน่วยอื่น ๆ ที่จำเป็นสามารถพัฒนาได้จากหน่วยมูลฐานเหล่านี้ ในขณะที่ยุคก่อนหน้า หน่วยวัดต่าง ๆ ถูกกำหนดขึ้นโดยคำสั่งจากการวินิจฉัยสิ่งเหล่านั้น (ดูเพิ่มที่กฎหมายลายลักษณ์อักษร) และไม่จำเป็นว่าจะต้องเกี่ยวข้องกับการใช้งานทางสากลหรือความสอดคล้องในหน่วยตัวเอง ระบบการวัดสำหรับประเทศไทยในปัจจุบัน ใช้ตาม พระราชบัญญัติมาตราชั่งตวงวัด (ฉบับที่ ๒)..
รากที่ n
ในทางคณิตศาสตร์ รากที่ n ของจำนวน x คือจำนวน r ที่ซึ่งเมื่อยกกำลัง n แล้วจะเท่ากับ x นั่นคือ ตัวแปร n คือจำนวนที่ใส่เข้าไปเป็นดีกรีของราก โดยทั่วไปรากของดีกรี n จะเรียกว่ารากที่ n เช่นรากของดีกรีสองเรียกว่ารากที่สอง รากของดีกรีสามเรียกว่ารากที่สาม เป็นอาทิ ตัวอย่างเช่น.
ลำดับการดำเนินการ
ในวิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลำดับการดำเนินการเป็นกฎใช้จัดลำดับการคิดคำนวณเครื่องหมายทางคณิตศาสตร์ในนิพจน์หรือสมการที่มีความกำกวมก่อนหลัง ตัวอย่างการดำเนินการทั่วไปในคณิตศาสตร์ที่ใช้ในการอธิบายลำดับความสำคัญได้แก่ เลขยกกำลัง(^n หรือ n) วงเล็บ(() หรือ)การหาร (÷) การคูณ (×) การลบ (−) และ การบวก (+) เป็นที่ตกลงกันโดยนักคณิตศาสตร์ทั่วโลกว่าลำดับของการดำเนินการต้องเป็นความเข้าใจที่ตรงกัน เพื่อให้การแก้ปัญหาทางคณิตศาสตร์ที่มีการดำเนินการมากกว่าหนึ่งครั้งเป็นไปอย่างถูกต้อง ไม่เช่นนั้นคำตอบที่ได้จะผิดเพี้ยนไป.
ลูกคิด
ลูกคิด (Abacus) เป็นเครื่องมือสำหรับใช้คำนวณ นับเป็นเครื่องคิดเลขยุคแรกๆ ของโลก ประกอบด้วยโครงสี่เหลี่ยม และมีแกนร้อยตัวลูกคิดกลมๆ สำหรับใช้นับเลข สามารถเลื่อนขึ้นลงได้ ลูกคิดแบบเชิงกลเช่นนี้มีด้วยกันหลายแบบ และหลายภูมิภาค เช่น บาบิโลน โรมัน จีน ญี่ปุ่น แต่ที่รู้จักกันดีคือลูกคิดแบบจีน ยังมีลูกคิดแบบที่ใช้ในจินตคณิต ซึ่งจะมีแถวบนเพียงลูกเดียวด้วย หรือเรียกว่าลูกคิดญี่ปุ่น วิธีการใช้ลูกคิด จะใช้การนับเม็ดลูกคิดผ่านหลักการนับที่เป็นสูตร ในการเพิ่มลดจำนวนช่ว.
สมบัติการสลับที่
ตัวอย่างแสดงสมบัติการสลับที่ของการบวก (3 + 2.
สมบัติการเปลี่ยนหมู่
ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (associativity) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใดๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative) ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้ ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร.
ดู การบวกและสมบัติการเปลี่ยนหมู่
สมัยฟื้นฟูศิลปวิทยา
รูปสลักเดวิด เมืองฟลอเรนซ์ ประเทศอิตาลี หนึ่งในประติมากรรมชิ้นเอกของยุคนี้ สมัยฟื้นฟูศิลปวิทยา (Renaissance; Rinascimento; แปลว่า เกิดใหม่ หรือคืนชีพ) หรือ เรอแนซ็องส์ เป็นช่วงเวลาที่เกิดการเปลี่ยนแปลงทางวัฒนธรรมในทวีปยุโรป ซึ่งเป็นจุดเริ่มต้นของวัฒนธรรมยุคใหม่ สมัยฟื้นฟูศิลปวิทยาเป็นการเคลื่อนไหวทางวัฒนธรรมที่กินเวลาตั้งแต่ราวคริสต์ศตวรรษที่ 14 ถึง 17 ประกอบด้วยการเปลี่ยนแปลงทางวรรณกรรม วิทยาศาสตร์ ศิลปะ ศาสนาและการเมือง การฟื้นฟูการศึกษาโดยอาศัยผลงานคลาสสิก การพัฒนาจิตรกรรม และการปฏิรูปการศึกษาอย่างค่อยเป็นค่อยไป ซึ่งการเปลี่ยนแปลงดังกล่าวได้อาศัยพลังของนักมนุษยนิยมและปัจเจกชนนิยมเป็นเครื่องจูงใจ เป็นที่ยอมรับกันโดยทั่วไปว่า สมัยฟื้นฟูศิลปวิทยาเกิดขึ้นในฟลอเรนซ์ แคว้นทัสกานี ในช่วงคริสต์ศตวรรษที่ 14.
ดู การบวกและสมัยฟื้นฟูศิลปวิทยา
สมาชิกเอกลักษณ์
ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.
สัญประกาศ
ัญประกาศ เป็นเครื่องหมายวรรคตอนชนิดหนึ่ง เป็นการขีดเส้นใต้ข้อความสำคัญหรือข้อความที่ควรสังเกตพิเศษ อาจจะมีหนึ่งเส้นหรือสองเส้น ตัวอย่างการใช้เช่น.
ผลรวม
ในทางคณิตศาสตร์ ผลรวม (summation) หมายถึงการบวกของเซตของจำนวน ซึ่งจะให้ผลลัพธ์เป็น ผลบวก (sum, total) จำนวนที่กล่าวถึงอาจเป็นจำนวนธรรมชาติ จำนวนเชิงซ้อน เมตริกซ์ หรือวัตถุอื่นที่ซับซ้อนกว่านั้น ผลรวมไม่จำกัดของลำดับเรียกว่าเป็นอนุกรม.
จำนวนลบและจำนวนไม่เป็นลบ
ำนวนลบ (negative number) คือ จำนวนที่น้อยกว่าศูนย์ เช่น −3.
ดู การบวกและจำนวนลบและจำนวนไม่เป็นลบ
จำนวนจริง
ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).
จำนวนธรรมชาติ
ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.
จำนวนตรรกยะ
ในทางคณิตศาสตร์ จำนวนตรรกยะ (หรือเศษส่วน) คืออัตราส่วนของจำนวนเต็มสองจำนวน มักเขียนอยู่ในรูปเศษส่วน a/b เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ จำนวนตรรกยะแต่ละจำนวนสามารถเขียนได้ในรูปแบบที่หลากหลาย ตัวอย่างเช่น 3/6.
จำนวนเชิงซ้อน
ำนวนเชิงซ้อน (อังกฤษ: complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i^2+1.
จำนวนเต็ม
ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.
คอมพิวเตอร์
อบีเอ็ม โรดรันเนอร์ - ซูเปอร์คอมพิวเตอร์ที่เร็วที่สุดในโลกผลิตโดยไอบีเอ็มและสถาบันวิจัยแห่งชาติลอสอะลาโมส (2551) http://www.cnn.com/2008/TECH/06/09/fastest.computer.ap/ Government unveils world's fastest computer จากซีเอ็นเอ็น คอมพิวเตอร์ (computer) หรือในภาษาไทยว่า คณิตกรณ์ เป็นเครื่องจักรแบบสั่งการได้ที่ออกแบบมาเพื่อดำเนินการกับลำดับตัวดำเนินการทางตรรกศาสตร์หรือคณิตศาสตร์ โดยอนุกรมนี้อาจเปลี่ยนแปลงได้เมื่อพร้อม ส่งผลให้คอมพิวเตอร์สามารถแก้ปัญหาได้มากมาย คอมพิวเตอร์ถูกประดิษฐ์ออกมาให้ประกอบไปด้วยความจำรูปแบบต่าง ๆ เพื่อเก็บข้อมูล อย่างน้อยหนึ่งส่วนที่มีหน้าที่ดำเนินการคำนวณเกี่ยวกับตัวดำเนินการทางตรรกศาสตร์ และตัวดำเนินการทางคณิตศาสตร์ และส่วนควบคุมที่ใช้เปลี่ยนแปลงลำดับของตัวดำเนินการโดยยึดสารสนเทศที่ถูกเก็บไว้เป็นหลัก อุปกรณ์เหล่านี้จะยอมให้นำเข้าข้อมูลจากแหล่งภายนอก และส่งผลจากการคำนวณตัวดำเนินการออกไป หน่วยประมวลผลของคอมพิวเตอร์มีหน้าที่ดำเนินการกับคำสั่งต่าง ๆ ที่คอยสั่งให้อ่าน ประมวล และเก็บข้อมูลไว้ คำสั่งต่าง ๆ ที่มีเงื่อนไขจะแปลงชุดคำสั่งให้ระบบและสิ่งแวดล้อมรอบ ๆ เป็นฟังก์ชันที่สถานะปัจจุบัน คอมพิวเตอร์อิเล็กทรอนิกส์เครื่องแรกถูกพัฒนาขึ้นในช่วงกลางคริสต์ศตวรรษที่ 20 (ค.ศ.
ประถมศึกษา
ประถมศึกษา (ย่อว่า ป.; elementary education; primary education) เป็นลำดับการศึกษาขั้นที่ 2 ถัดจากการศึกษาปฐมวัย และแบ่งเป็น 2 ช่วงชั้น คือ ช่วงประถมศึกษาปีที่ 1 ถึงประถมศึกษาปีที่ 3 เรียกว่าประถมศึกษาตอนต้น (มักเรียกโดยย่อว่า ป.ต้น) เทียบเท่ากับ grade 1-3 และช่วงประถมศึกษาปีที่ 4 ถึงประถมศึกษาปีที่ 6 เรียกว่าประถมศึกษาตอนปลาย (มักเรียกโดยว่า ป.ปลาย) เทียบเท่ากับ grade 4-6.
นิพจน์ (คณิตศาสตร์)
นิพจน์ ในทางคณิตศาสตร์ หมายถึงการผสมผสานสัญลักษณ์ต่าง ๆ เป็นจำนวนจำกัด ซึ่งจัดรูปแบบไว้อย่างดีโดยอิงตามกฎที่ขึ้นอยู่กับบริบท สัญลักษณ์ต่าง ๆ เหล่านี้สามารถเป็นจำนวน (ค่าคงตัว) ตัวแปร การดำเนินการ ฟังก์ชัน หรือสัญลักษณ์อื่น ๆ ทางคณิตศาสตร์ รวมทั้งเครื่องหมายวรรคตอน สัญลักษณ์สำหรับจัดกลุ่ม และสัญลักษณ์เชิงวากยสัมพันธ์ การใช้นิพจน์มีพิสัยตั้งแต่แบบเรียบง่ายเช่น ไปจนถึงแบบซับซ้อนมาก ๆ เช่น สายอักขระของสัญลักษณ์ที่ขัดต่อกฎวากยสัมพันธ์ ไม่ถือว่าจัดรูปแบบไว้อย่างดีและไม่ใช่นิพจน์ทางคณิตศาสตร์ที่ถูกต้อง ตัวอย่างเช่น กลุ่มของสัญลักษณ์นี้ไม่ถือว่าเป็นนิพจน์ทางคณิตศาสตร์ เป็นแค่สัญลักษณ์ที่ผสมปนเปอย่างไร้ความหม.
ดู การบวกและนิพจน์ (คณิตศาสตร์)
เมทริกซ์
มทริกซ์ เป็นคำทับศัพท์ภาษาอังกฤษ matrix บ้างก็อ่านว่า แมทริกซ์ สามารถหมายถึง.
เลขฐานสิบ
ลขฐานสิบ หรือ ทศนิยม (Decimal) หมายถึง ระบบตัวเลขที่มีตัวเลข 10 ตัว คือ 0 - 9.
เลขคณิตมอดุลาร์
ลขคณิตมอดุลาร์ (Modular arithmetic) เป็นระบบเลขคณิตที่มีรากฐานมาจากระบบจำนวนเต็มทั่วไป แต่จำนวนในระบบนี้จะมีการหมุนกลับในลักษณะเดียวกันกับเข็มนาฬิกาเมื่อมีค่าถึงค่าบางค่าที่กำหนดไว้ ซึ่งค่านี้จะเรียกว่า มอดุลัส กล่าวคือ, ตัวเลขที่มีค่าเกินค่าของมอดุลัส จะถูกปรับค่าให้เป็นเศษของจำนวนนั้นเมื่อหารด้วยมอดุลัส ยกตัวอย่างเช่น ภายใต้มอดุลัสที่เป็น 9 เลข 13 จะถูกปรับให้เหลือ 4 หรือ ผลบวกของ 4 กับ 7 ก็คือ 2.
เลขคณิตมูลฐาน
เลขคณิตมูลฐาน (Elementary arithmetic) คือแขนงความรู้ของคณิตศาสตร์ที่เป็นพื้นฐานที่สุด ประกอบด้วยการดำเนินการของการบวก การลบ การคูณ และการหาร บุคคลส่วนมากได้เรียนรู้เลขคณิตมูลฐานมาจากโรงเรียนประถมศึกษา เลขคณิตมูลฐานจะเริ่มต้นที่จำนวนธรรมชาติและเลขอารบิกที่ใช้แทนจำนวนนั้น และจำเป็นต้องจดจำตารางการบวกและตารางการคูณ (สูตรคูณ) เพื่อที่จะบวกและคูณตัวเลขในหลักใดๆ จนกระทั่งสามารถบวกและคูณเลขได้ในใจ ส่วนการลบและการหารนั้นจะใช้ขั้นตอนวิธีอย่างอื่นในการเรียนการสอน จากนั้นจึงขยายขอบเขตไปบนเศษส่วน ทศนิยม และจำนวนลบ ซึ่งสามารถนำเสนอได้บนเส้นจำนวน ทุกวันนี้ผู้คนต่างก็ใช้เครื่องคิดเลขหรือคอมพิวเตอร์เพื่อคำนวณเลขคณิตมูลฐาน ซึ่งก่อนหน้านั้นมีการใช้เครื่องมืออย่างอื่นช่วยคำนวณเช่น สไลด์รูล ตารางลอการิทึม โนโมแกรม หรือเครื่องคิดเลขเชิงกลอื่นๆ รวมทั้งลูกคิด หมวดหมู่:การศึกษาคณิตศาสตร์.
เวกเตอร์
แบบจำลองเวกเตอร์ในหลายทิศทาง เวกเตอร์ (vector) เป็นปริมาณในทางคณิตศาสตร์ ซึ่งมีลักษณะไม่เหมือนกับ สเกลาร์ ซึ่งเป็นจำนวนที่มีทิศทาง เวกเตอร์มีการใช้กันในหลายสาขานอกเหนือจากทางคณิตศาสตร์ โดยเฉพาะในทางวิทยาศาสตร์ฟิสิกส์ และเคมี เช่น การกระจั.
เศษส่วน
้กถูกตัดออกไปหนึ่งในสี่ส่วน เหลือเพียงสามในสี่ส่วน ในทางคณิตศาสตร์ เศษส่วน คือความสัมพันธ์ตามสัดส่วนระหว่างชิ้นส่วนของวัตถุหนึ่งเมื่อเทียบกับวัตถุทั้งหมด เศษส่วนประกอบด้วยตัวเศษ (numerator) หมายถึงจำนวนชิ้นส่วนของวัตถุที่มี และตัวส่วน (denominator) หมายถึงจำนวนชิ้นส่วนทั้งหมดของวัตถุนั้น ตัวอย่างเช่น อ่านว่า เศษสามส่วนสี่ หรือ สามในสี่ หมายความว่า วัตถุสามชิ้นส่วนจากวัตถุทั้งหมดที่แบ่งออกเป็นสี่ส่วนเท่าๆ กัน นอกจากนั้น การแบ่งวัตถุสิ่งหนึ่งออกเป็นศูนย์ส่วนเท่า ๆ กันนั้นเป็นไปไม่ได้ ดังนั้น 0 จึงไม่สามารถเป็นตัวส่วนของเศษส่วนได้ (ดูเพิ่มที่ การหารด้วยศูนย์) เศษส่วนเป็นตัวอย่างชนิดหนึ่งของอัตราส่วน ซึ่งเศษส่วนแสดงความสัมพันธ์ระหว่างชิ้นส่วนย่อยต่อชิ้นส่วนทั้งหมด ในขณะที่อัตราส่วนพิจารณาจากปริมาณของสองวัตถุที่แตกต่างกัน (ดังนั้น อาจไม่เท่ากับ 3: 4) และเศษส่วนนั้นอาจเรียกได้ว่าเป็นผลหาร (quotient) ของจำนวน ซึ่งปริมาณที่แท้จริงสามารถคำนวณได้จากการหารตัวเศษด้วยตัวส่วน ตัวอย่างเช่น คือการหารสามด้วยสี่ ได้ปริมาณเท่ากับ 0.7599999999999999999999999999999999999 ในทศนิยม หรือ 1000000000000000000000000000000000% ในอัตราร้อยละ การเขียนเศษส่วน ให้เขียนแยกออกจากกันด้วยเครื่องหมายทับหรือ ซอลิดัส (solidus) แล้ววางตัวเศษกับตัวส่วนในแนวเฉียง เช่น ¾ หรือคั่นด้วยเส้นแบ่งตามแนวนอนเรียกว่า วิงคิวลัม (vinculum) เช่น ในบางกรณีอาจพบเศษส่วนที่ไม่มีเครื่องหมายคั่น อาทิ 34 บนป้ายจราจรในบางประเท.
เสมอภาค
มอภาค, สมการ, สมพล หรือ เท่ากับ (.
เอกลักษณ์การบวก
ในทางคณิตศาสตร์ เอกลักษณ์การบวก ของเซตที่มีการดำเนินการของการบวก คือสมาชิกในเซตที่บวกกับสมาชิก x ใดๆ แล้วได้ x เอกลักษณ์การบวกตัวหนึ่งที่เป็นที่คุ้นเคยมากที่สุดคือจำนวน 0 จากคณิตศาสตร์มูลฐาน แต่เอกลักษณ์การบวกก็สามารถมีในโครงสร้างทางคณิตศาสตร์อื่นๆ ที่นิยามการบวกเอาไว้ เช่นในกรุปหรือริง.
เครื่องหมายบวกและลบ
รื่องหมายบวกและลบ (+'ลบ และ −) คือสัญลักษณ์คณิตศาสตร์ที่ใช้แสดงเครื่องหมายแสดงความเป็นบวกหรือลบ เช่นเดียวกับการดำเนินการบวกและล.
ดู การบวกและเครื่องหมายบวกและลบ
0
0 (ศูนย์) เป็นทั้งจำนวนและเลขโดดที่ใช้สำหรับนำเสนอจำนวนต่าง ๆ ในระบบเลข มีบทบาทเป็นตัวกลางในทางคณิตศาสตร์ คือเป็นเอกลักษณ์การบวกของจำนวนเต็ม จำนวนจริง และโครงสร้างเชิงพีชคณิตอื่น ๆ ศูนย์ในฐานะเลขโดดใช้เป็นตัววางหลักในระบบเลขเชิงตำแหน่ง.
ดู การบวกและ0
1
1 (หนึ่ง) เป็นจำนวน ตัวเลข และเป็นชื่อของสัญลักษณ์ภาพที่แทนจำนวนนั้น หนึ่งแทนสิ่งสิ่งเดียว หน่วยในการนับหรือการวัด ตัวอย่างเช่น ส่วนของเส้นตรงของ "ความยาวหนึ่งหน่วย" คือส่วนของเส้นตรงของความยาวเท่ากับ 1.
ดู การบวกและ1
ดูเพิ่มเติม
สัญกรณ์คณิตศาสตร์
- การคูณ
- การบวก
- กีปู
- จุดไข่ปลา
- ทรงสามสิบหน้ารอมบิกปลายตัด
- นขลิขิต
- ผลรวม
- ฟังก์ชันพื้นและฟังก์ชันเพดาน
- ระบบเลข
- สัญกรณ์คณิตศาสตร์
- สัญกรณ์บรา-เค็ท
- สัญกรณ์ลูกศรของคนูธ
- สัญกรณ์วิทยาศาสตร์
- สัญกรณ์โอใหญ่
- สูตร
- หลายสิ่งอันดับ
- อักษรไคดา
เลขคณิตมูลฐาน
- 0
- การคูณ
- การบวก
- การลบ
- การหาร
- จำนวนลบและจำนวนไม่เป็นลบ
- ตัวคูณร่วมน้อย
- ตัวทด
- ทศนิยมซ้ำ
- ภาวะคู่หรือคี่ (คณิตศาสตร์)
- ภาวะคู่หรือคี่ของ 0
- อัตราร้อยละ
- เครื่องหมายบวกและลบ
- เลขคณิตมูลฐาน
- เลขฐานสอง
- เลขฐานสิบ
- เศษส่วนอย่างต่ำ
หรือที่รู้จักกันในชื่อ บวก