ความคล้ายคลึงกันระหว่าง การบวกและเลขคณิตมอดุลาร์
การบวกและเลขคณิตมอดุลาร์ มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนเต็ม
จำนวนเต็ม
ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ การบวกและเลขคณิตมอดุลาร์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง การบวกและเลขคณิตมอดุลาร์
การเปรียบเทียบระหว่าง การบวกและเลขคณิตมอดุลาร์
การบวก มี 39 ความสัมพันธ์ขณะที่ เลขคณิตมอดุลาร์ มี 4 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 2.33% = 1 / (39 + 4)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง การบวกและเลขคณิตมอดุลาร์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: