เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

การบวกและสมาชิกเอกลักษณ์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง การบวกและสมาชิกเอกลักษณ์

การบวก vs. สมาชิกเอกลักษณ์

แอปเปิล3 + 2. ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.

ความคล้ายคลึงกันระหว่าง การบวกและสมาชิกเอกลักษณ์

การบวกและสมาชิกเอกลักษณ์ มี 7 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): การยกกำลังการดำเนินการทวิภาคการคูณจำนวนจริงเมทริกซ์เวกเตอร์เอกลักษณ์การบวก

การยกกำลัง

้าx+1ส่วนx.

การบวกและการยกกำลัง · การยกกำลังและสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

การดำเนินการทวิภาค

ในทางคณิตศาสตร์ การดำเนินการทวิภาค หมายถึงการคำนวณที่ต้องเกี่ยวข้องกับตัวถูกดำเนินการสองค่า หรือกล่าวอีกนัยหนึ่ง หมายถึงการดำเนินการที่มีอาริตี้ (arity) เท่ากับสอง การดำเนินการทวิภาคสามารถคำนวณให้สำเร็จได้โดยใช้ฟังก์ชันทวิภาคหรือตัวดำเนินการทวิภาคอย่างใดอย่างหนึ่ง การดำเนินการทวิภาคบางครั้งถูกเรียกว่าเป็น dyadic operation ในภาษาอังกฤษเพื่อหลีกเลี่ยงความสับสนกับระบบเลขฐานสอง (binary numeral system) ตัวอย่างการดำเนินการทวิภาคที่คุ้นเคยเช่น การบวก การลบ การคูณ และการหาร เป็นต้น การดำเนินการทวิภาคบนเซต S คือความสัมพันธ์ f ที่จับคู่สมาชิกในผลคูณคาร์ทีเซียน S×S ไปยัง S ถ้าความสัมพันธ์ดังกล่าวไม่เป็นฟังก์ชัน แต่เป็นฟังก์ชันบางส่วน เราจะเรียกการดำเนินการนี้ว่า การดำเนินการ (ทวิภาค) บางส่วน ตัวอย่างเช่น การหารในจำนวนจริงถือว่าเป็นฟังก์ชันบางส่วน เพราะไม่นิยามการหารด้วยศูนย์ แต่บางครั้งในวิทยาการคอมพิวเตอร์ การดำเนินการทวิภาคอาจหมายถึงฟังก์ชันทวิภาคใดๆ ก็ได้ และถ้าความสัมพันธ์ f ให้ผลลัพธ์ออกมาเป็นสมาชิกในเซต S เหมือนกับตัวตั้ง จะเรียกได้ว่าการดำเนินการทวิภาคนั้นมีสมบัติการปิด (closure) การดำเนินการทวิภาคเป็นส่วนสำคัญในโครงสร้างเชิงพีชคณิตในการศึกษาพีชคณิตนามธรรม ซึ่งใช้สำหรับสร้างกรุป โมนอยด์ กึ่งกรุป ริง และอื่นๆ หรือกล่าวโดยทั่วไป เซตที่นิยามการดำเนินการทวิภาคใดๆ บนเซตนั้น เรียกว่า แม็กม่า (magma) การดำเนินการทวิภาคหลายอย่างในพีชคณิตและตรรกศาสตร์มีสมบัติการเปลี่ยนหมู่และสมบัติการสลับที่ และหลายอย่างก็มีสมาชิกเอกลักษณ์และสมาชิกผกผัน ตัวอย่างการดำเนินการที่มีคุณสมบัติทั้งหมดนี้เช่น การบวก (+) และการคูณ (*) บนจำนวนและเมทริกซ์ หรือการประกอบฟังก์ชัน (function composition) บนเซตเซตหนึ่ง ส่วนการดำเนินการที่ไม่มีสมบัติการเปลี่ยนหมู่ ยกตัวอย่างเช่น การลบ (−) และ การดำเนินการบางส่วน ที่ไม่มีสมบัตินี้เช่น การหาร (/) การยกกำลัง (^) และการยกกำลังซ้อน (tetration) (↑↑) การเขียนการดำเนินการทวิภาคส่วนมากใช้สัญกรณ์เติมกลาง (infix notation) เช่น a * b, a + b, หรือ a · b นอกจากนั้นก็เขียนอยู่ในรูปแบบของสัญกรณ์ฟังก์ชัน f (a, b) หรือแม้แต่การเขียนย่อด้วยวิธี juxtaposition เหลือเพียง ab ส่วนการยกกำลัง ปกติแล้วจะเขียนโดยไม่ใช้ตัวดำเนินการ แต่เขียนจำนวนที่สองด้วยตัวยก (superscript) แทน นั่นคือ ab บางครั้งอาจพบเห็นการใช้สัญกรณ์เติมหน้า (prefix notation) หรือสัญกรณ์เติมหลัง (postfix notation) ซึ่งอาจต้องใช้วงเล็บกำกั.

การดำเนินการทวิภาคและการบวก · การดำเนินการทวิภาคและสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

การคูณ

3 × 4.

การคูณและการบวก · การคูณและสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

จำนวนจริง

ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).

การบวกและจำนวนจริง · จำนวนจริงและสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

เมทริกซ์

มทริกซ์ เป็นคำทับศัพท์ภาษาอังกฤษ matrix บ้างก็อ่านว่า แมทริกซ์ สามารถหมายถึง.

การบวกและเมทริกซ์ · สมาชิกเอกลักษณ์และเมทริกซ์ · ดูเพิ่มเติม »

เวกเตอร์

แบบจำลองเวกเตอร์ในหลายทิศทาง เวกเตอร์ (vector) เป็นปริมาณในทางคณิตศาสตร์ ซึ่งมีลักษณะไม่เหมือนกับ สเกลาร์ ซึ่งเป็นจำนวนที่มีทิศทาง เวกเตอร์มีการใช้กันในหลายสาขานอกเหนือจากทางคณิตศาสตร์ โดยเฉพาะในทางวิทยาศาสตร์ฟิสิกส์ และเคมี เช่น การกระจั.

การบวกและเวกเตอร์ · สมาชิกเอกลักษณ์และเวกเตอร์ · ดูเพิ่มเติม »

เอกลักษณ์การบวก

ในทางคณิตศาสตร์ เอกลักษณ์การบวก ของเซตที่มีการดำเนินการของการบวก คือสมาชิกในเซตที่บวกกับสมาชิก x ใดๆ แล้วได้ x เอกลักษณ์การบวกตัวหนึ่งที่เป็นที่คุ้นเคยมากที่สุดคือจำนวน 0 จากคณิตศาสตร์มูลฐาน แต่เอกลักษณ์การบวกก็สามารถมีในโครงสร้างทางคณิตศาสตร์อื่นๆ ที่นิยามการบวกเอาไว้ เช่นในกรุปหรือริง.

การบวกและเอกลักษณ์การบวก · สมาชิกเอกลักษณ์และเอกลักษณ์การบวก · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง การบวกและสมาชิกเอกลักษณ์

การบวก มี 39 ความสัมพันธ์ขณะที่ สมาชิกเอกลักษณ์ มี 33 ขณะที่พวกเขามีเหมือนกัน 7, ดัชนี Jaccard คือ 9.72% = 7 / (39 + 33)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง การบวกและสมาชิกเอกลักษณ์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: