ความคล้ายคลึงกันระหว่าง การบวกและสมาชิกเอกลักษณ์
การบวกและสมาชิกเอกลักษณ์ มี 7 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): การยกกำลังการดำเนินการทวิภาคการคูณจำนวนจริงเมทริกซ์เวกเตอร์เอกลักษณ์การบวก
การยกกำลัง
้าx+1ส่วนx.
การบวกและการยกกำลัง · การยกกำลังและสมาชิกเอกลักษณ์ ·
การดำเนินการทวิภาค
ในทางคณิตศาสตร์ การดำเนินการทวิภาค หมายถึงการคำนวณที่ต้องเกี่ยวข้องกับตัวถูกดำเนินการสองค่า หรือกล่าวอีกนัยหนึ่ง หมายถึงการดำเนินการที่มีอาริตี้ (arity) เท่ากับสอง การดำเนินการทวิภาคสามารถคำนวณให้สำเร็จได้โดยใช้ฟังก์ชันทวิภาคหรือตัวดำเนินการทวิภาคอย่างใดอย่างหนึ่ง การดำเนินการทวิภาคบางครั้งถูกเรียกว่าเป็น dyadic operation ในภาษาอังกฤษเพื่อหลีกเลี่ยงความสับสนกับระบบเลขฐานสอง (binary numeral system) ตัวอย่างการดำเนินการทวิภาคที่คุ้นเคยเช่น การบวก การลบ การคูณ และการหาร เป็นต้น การดำเนินการทวิภาคบนเซต S คือความสัมพันธ์ f ที่จับคู่สมาชิกในผลคูณคาร์ทีเซียน S×S ไปยัง S ถ้าความสัมพันธ์ดังกล่าวไม่เป็นฟังก์ชัน แต่เป็นฟังก์ชันบางส่วน เราจะเรียกการดำเนินการนี้ว่า การดำเนินการ (ทวิภาค) บางส่วน ตัวอย่างเช่น การหารในจำนวนจริงถือว่าเป็นฟังก์ชันบางส่วน เพราะไม่นิยามการหารด้วยศูนย์ แต่บางครั้งในวิทยาการคอมพิวเตอร์ การดำเนินการทวิภาคอาจหมายถึงฟังก์ชันทวิภาคใดๆ ก็ได้ และถ้าความสัมพันธ์ f ให้ผลลัพธ์ออกมาเป็นสมาชิกในเซต S เหมือนกับตัวตั้ง จะเรียกได้ว่าการดำเนินการทวิภาคนั้นมีสมบัติการปิด (closure) การดำเนินการทวิภาคเป็นส่วนสำคัญในโครงสร้างเชิงพีชคณิตในการศึกษาพีชคณิตนามธรรม ซึ่งใช้สำหรับสร้างกรุป โมนอยด์ กึ่งกรุป ริง และอื่นๆ หรือกล่าวโดยทั่วไป เซตที่นิยามการดำเนินการทวิภาคใดๆ บนเซตนั้น เรียกว่า แม็กม่า (magma) การดำเนินการทวิภาคหลายอย่างในพีชคณิตและตรรกศาสตร์มีสมบัติการเปลี่ยนหมู่และสมบัติการสลับที่ และหลายอย่างก็มีสมาชิกเอกลักษณ์และสมาชิกผกผัน ตัวอย่างการดำเนินการที่มีคุณสมบัติทั้งหมดนี้เช่น การบวก (+) และการคูณ (*) บนจำนวนและเมทริกซ์ หรือการประกอบฟังก์ชัน (function composition) บนเซตเซตหนึ่ง ส่วนการดำเนินการที่ไม่มีสมบัติการเปลี่ยนหมู่ ยกตัวอย่างเช่น การลบ (−) และ การดำเนินการบางส่วน ที่ไม่มีสมบัตินี้เช่น การหาร (/) การยกกำลัง (^) และการยกกำลังซ้อน (tetration) (↑↑) การเขียนการดำเนินการทวิภาคส่วนมากใช้สัญกรณ์เติมกลาง (infix notation) เช่น a * b, a + b, หรือ a · b นอกจากนั้นก็เขียนอยู่ในรูปแบบของสัญกรณ์ฟังก์ชัน f (a, b) หรือแม้แต่การเขียนย่อด้วยวิธี juxtaposition เหลือเพียง ab ส่วนการยกกำลัง ปกติแล้วจะเขียนโดยไม่ใช้ตัวดำเนินการ แต่เขียนจำนวนที่สองด้วยตัวยก (superscript) แทน นั่นคือ ab บางครั้งอาจพบเห็นการใช้สัญกรณ์เติมหน้า (prefix notation) หรือสัญกรณ์เติมหลัง (postfix notation) ซึ่งอาจต้องใช้วงเล็บกำกั.
การดำเนินการทวิภาคและการบวก · การดำเนินการทวิภาคและสมาชิกเอกลักษณ์ ·
การคูณ
3 × 4.
การคูณและการบวก · การคูณและสมาชิกเอกลักษณ์ ·
จำนวนจริง
ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).
การบวกและจำนวนจริง · จำนวนจริงและสมาชิกเอกลักษณ์ ·
เมทริกซ์
มทริกซ์ เป็นคำทับศัพท์ภาษาอังกฤษ matrix บ้างก็อ่านว่า แมทริกซ์ สามารถหมายถึง.
การบวกและเมทริกซ์ · สมาชิกเอกลักษณ์และเมทริกซ์ ·
เวกเตอร์
แบบจำลองเวกเตอร์ในหลายทิศทาง เวกเตอร์ (vector) เป็นปริมาณในทางคณิตศาสตร์ ซึ่งมีลักษณะไม่เหมือนกับ สเกลาร์ ซึ่งเป็นจำนวนที่มีทิศทาง เวกเตอร์มีการใช้กันในหลายสาขานอกเหนือจากทางคณิตศาสตร์ โดยเฉพาะในทางวิทยาศาสตร์ฟิสิกส์ และเคมี เช่น การกระจั.
การบวกและเวกเตอร์ · สมาชิกเอกลักษณ์และเวกเตอร์ ·
เอกลักษณ์การบวก
ในทางคณิตศาสตร์ เอกลักษณ์การบวก ของเซตที่มีการดำเนินการของการบวก คือสมาชิกในเซตที่บวกกับสมาชิก x ใดๆ แล้วได้ x เอกลักษณ์การบวกตัวหนึ่งที่เป็นที่คุ้นเคยมากที่สุดคือจำนวน 0 จากคณิตศาสตร์มูลฐาน แต่เอกลักษณ์การบวกก็สามารถมีในโครงสร้างทางคณิตศาสตร์อื่นๆ ที่นิยามการบวกเอาไว้ เช่นในกรุปหรือริง.
การบวกและเอกลักษณ์การบวก · สมาชิกเอกลักษณ์และเอกลักษณ์การบวก ·
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ การบวกและสมาชิกเอกลักษณ์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง การบวกและสมาชิกเอกลักษณ์
การเปรียบเทียบระหว่าง การบวกและสมาชิกเอกลักษณ์
การบวก มี 39 ความสัมพันธ์ขณะที่ สมาชิกเอกลักษณ์ มี 33 ขณะที่พวกเขามีเหมือนกัน 7, ดัชนี Jaccard คือ 9.72% = 7 / (39 + 33)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง การบวกและสมาชิกเอกลักษณ์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: