โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

การถ่ายโอนสัญญาณ

ดัชนี การถ่ายโอนสัญญาณ

วิถีการถ่ายโอนสัญญาณหลัก ๆ (แบบทำให้ง่าย) ในสัตว์เลี้ยงลูกด้วยนม ในเซลล์ การถ่ายโอนสัญญาณ หรือ การแปรสัญญาณ (signal transduction) เป็นกระบวนการทางเคมีหรือทางกายภาพโดยเป็นลำดับการทำงาน/ลำดับเหตุการณ์ในระดับโมเลกุล ที่โมเลกุลส่งสัญญาณ (ปกติฮอร์โมนหรือสารสื่อประสาท) จะเริ่มการทำงาน/ก่อสภาพกัมมันต์ของหน่วยรับ ซึ่งในที่สุดมีผลให้เซลล์ตอบสนองหรือเปลี่ยนการทำงาน โปรตีนที่ตรวจจับสิ่งเร้าโดยทั่วไปจะเรียกว่า หน่วยรับ (receptor) แม้ในบางที่ก็จะใช้คำว่า sensor ด้วย ความเปลี่ยนแปลงที่เกิดจากการจับของลิแกนด์กับหน่วยรับ (คือการพบสัญญาณ) จะก่อลำดับการส่งสัญญาณ (signaling cascade) ซึ่งเป็นลำดับเหตุการณ์ทางเคมีชีวภาพตามวิถีการส่งสัญญาณ (signaling pathway) เมื่อวิถีการส่งสัญญาณมากกว่าหนึ่งมีปฏิสัมพันธ์กับกันและกัน นี่ก็จะกลายเป็นเครือข่าย เป็นการประสานการตอบสนองของเซลล์ บ่อยครั้งโดยเป็นการส่งสัญญาณแบบร่วมกัน ในระดับโมเลกุล การตอบสนองเช่นนี้รวม.

141 ความสัมพันธ์: ชีวเคมีช่องไอออนฟอสโฟลิพิดฟอสเฟตฟิสิกส์พันธะโคเวเลนต์พิชญพิจารณ์พืชกรดนิวคลีอิกกลศาสตร์กลูคากอนกลูโคสกล้ามเนื้อการกลายพันธุ์การรับรู้รสการรับรู้อากัปกิริยาการลดขั้วการอักเสบการถอดรหัส (พันธุศาสตร์)การทบทวนวรรณกรรมการดื้อยาการติดเชื้อการแบ่งเซลล์การแพร่การแสดงออกของยีนการแข็งตัวขององคชาตการแปลรหัส (พันธุศาสตร์)การได้ยินการเปลี่ยนโครงรูปภาวะธำรงดุลมะเร็งม้ามยูแคริโอตยีสต์ระบบภูมิคุ้มกันระบบรับความรู้สึกทางกายระบบประสาทระบบประสาทกลางรางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์รูปแบบเอกสารใช้ได้หลายระบบร่างแหเอนโดพลาซึมลำดับสงวนลิพิดลิแกนด์วิวัฒนาการวิถีเมแทบอลิซึมวิตามินดีวิตามินเอวงศ์ผักกาดศักยะงาน...ศักย์ไฟฟ้าสรีรวิทยาสวิตช์โมเลกุลสัตว์เลี้ยงลูกด้วยน้ำนมสารกึ่งตัวนำสารละลายสารสื่อประสาทสารเคลือบเซลล์สิ่งมีชีวิตหลายเซลล์สเตอรอยด์หนูหน่วยรับที่จับคู่กับจีโปรตีนหน่วยรับความรู้สึกออกซิเจนออร์แกเนลล์ออสโมซิสอะพอพโทซิสอะดีโนซีนไตรฟอสเฟตอาร์จินีนอินซูลินอนุมูลอิสระฮอร์โมนจอตาจุดประสานประสาทจีโปรตีนจีโนมมนุษย์ดัชนีดีเอ็นเอความเข้มข้นคอลลาเจนคาร์บอนมอนอกไซด์ตับตัวกระตุ้นตัวทำละลายต่อมหมวกไตต่อมไร้ท่อต่อมไทรอยด์ซีเลียปฏิกิริยาฟอสโฟรีเลชันประสาทวิทยาประสาทสัมผัสปริมาตรนิวเคลียสแบคทีเรียแสงแอลคาลอยด์แคลเซียมโพรสตาแกลนดินโพรทิสต์โพรแคริโอตโพแทสเซียมโมเลกุลโมเลกุลส่งสัญญาณที่สองโรคหลอดเลือดสมองโรคอารมณ์สองขั้วโดพามีนโปรตีนไมโทคอนเดรียไอออนไฮโดรเจนซัลไฟด์ไฮโดรเจนเพอร์ออกไซด์ไดกลีเซอไรด์ไซโทพลาซึมไซโตซอลไนตริกออกไซด์เพปไทด์เกล็ดเลือดเมแทบอลิซึมเม็ดเลือดขาวเยื่อหุ้มเซลล์เสียงรบกวนเห็ดราเอพิเนฟรีนเอนไซม์เอ็มบริโอเอ็มอาร์เอ็นเอเอ็นดอร์ฟินเทสโทสเตอโรนเดนไดรติก สไปน์เคมีเคลดเซลล์เซลล์รับแสงเซลล์รูปกรวยเซลล์รูปแท่งเซลล์ประสาทเซลล์ประสาทรับความรู้สึกเนื้องอกเนื้อเยื่อเนื้อเยื่อบุผิวNon-coding RNA ขยายดัชนี (91 มากกว่า) »

ชีวเคมี

ชีวเคมี (biochemistry) หรือเรียกว่า เคมีเป็นพื้นฐานของสิ่งมีชีวิต เป็นวิชาที่ศึกษากระบวนการเคมีในสิ่งมีชีวิต ตลอดจนการควบคุมในระดับต่าง ๆ อย่างเช่นที่เกี่ยวกับการแปรรูปสารอาหารไปเป็นพลังงาน, การสร้างและเปลี่ยนแปลงสารชีวโมเลกุลภายในเซลล์ที่เรียกว่า กระบวนการ เมแทบอลิซึม การทำงานของเอนไซม์และโคเอนไซม์, ระบบของพลังงานในสิ่งมีชีวิต, การสลายและการสังเคราะห์สารชีวโมเลกุลต่าง ๆ ชื่อนี้มาจากภาษาเยอรมันว่า บิโอเคมี (Biochemie) ซึ่งแรกตั้งโดย ฮอปเปอ-ซีเลอร์ (Hoppe-Sieler) ในปี พ.ศ. 2420 (ค.ศ. 1877) โดยเขาให้คำจำกัดความไว้เป็นอย่างดีว่า เป็นเนื้อหาวิชาซึ่งครอบคลุมการเข้าศึกษาชีววิทยาในเชิงโมเลกุลทุกๆ ด้าน หมวดหมู่:เทคโนโลยีชีวภาพ หมวดหมู่:เคมี หมวดหมู่:ชีวเคมี.

ใหม่!!: การถ่ายโอนสัญญาณและชีวเคมี · ดูเพิ่มเติม »

ช่องไอออน

ไอออนแชนเนล (Ion channel) เป็นโปรตีนผิวเซลล์อย่างหนึ่งซึ่งประกอบตัวเป็นท่อที่สามารถนำสารผ่านเข้าออก ทำหน้าที่เป็นทางผ่านและควบคุมการไหลเข้าออกเซลล์ของสารประจุความต่างศักย์บนผิวเซลล์ ทำให้เกิดการเปลี่ยนแปลงของประจุ หมวดหมู่:สรีรวิทยาไฟฟ้า หมวดหมู่:ไอออนแชนเนล.

ใหม่!!: การถ่ายโอนสัญญาณและช่องไอออน · ดูเพิ่มเติม »

ฟอสโฟลิพิด

Two schematic representations of a phospholipid. ฟอสโฟลิพิด (อังกฤษ:Phospholipids) เป็นโมเลกุลที่เกิดจาก 4 ส่วนประกอบ คือ.

ใหม่!!: การถ่ายโอนสัญญาณและฟอสโฟลิพิด · ดูเพิ่มเติม »

ฟอสเฟต

ฟอสเฟต (phosphate) คือ หินชนิดหนึ่ง แร่ที่สำคัญของฟอสเฟต คือ อะพาไทต์ เกิดจากการสะสมตัวจากฟอสเฟต ส่วนใหญ่มักจะใช้ในอุตสาหกรรมปุ๋ยเคมี ไฟล์:3-phosphoric-acid-3D-balls.png| ไฟล์:2-dihydrogenphosphate-3D-balls.png| ไฟล์:1-hydrogenphosphate-3D-balls.png| ไฟล์:0-phosphate-3D-balls.png|.

ใหม่!!: การถ่ายโอนสัญญาณและฟอสเฟต · ดูเพิ่มเติม »

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ใหม่!!: การถ่ายโอนสัญญาณและฟิสิกส์ · ดูเพิ่มเติม »

พันธะโคเวเลนต์

ในโมเลกุลของฟลูออรีน อะตอมของธาตุฟลูออรีนสองอะตอมสร้างพันธะโคเวเลนต์กัน พันธะโคเวเลนต์ (Covalent bond) คือพันธะเคมี ภายในโมเลกุลลักษณะหนึ่ง พันธะโคเวเลนต์เกิดจากอะตอมสองอะตอมใช้เวเลนซ์อิเล็กตรอนหนึ่งคู่หรือมากกว่าร่วมกัน ทำให้เกิดแรงดึงดูดที่รวมอะตอมเป็นโมเลกุลขึ้น อะตอมมักสร้างพันธะโคเวเลนต์เพื่อเติมวงโคจรอิเล็กตรอนรอบนอกสุดให้เต็ม ดังนั้น อะตอมที่สร้างพันธะโคเวเลนต์จึงมักมีเวเลนซ์อิเล็กตรอนอยู่มาก เช่น ธาตุหมู่ VI และหมู่ VII เป็นต้น พันธะโคเวเลนต์แข็งแรงกว่าพันธะไฮโดรเจนและมีความแข็งแรงพอ ๆ กับพันธะไอออนิก พันธะโคเวเลนต์มักเกิดขึ้นระหว่างอะตอมที่มีค่าอิเล็กโตรเนกาทิวิตีใกล้เคียงกัน ธาตุอโลหะมีแนวโน้มที่จะสร้างพันธะโคเวเลนต์มากกว่าธาตุโลหะซึ่งมักสร้างพันธะโลหะ เนื่องจากอิเล็กตรอนของธาตุโลหะสามารถเคลื่อนอย่างอิสระ ในทางกลับกัน อิเล็กตรอนของธาตุอโลหะไม่สามารถเคลื่อนที่ได้อย่างอิสระนัก การใช้อิเล็กตรอนร่วมกันจึงเป็นทางเลือกเดียวในการสร้างพันธะกับธาตุที่มีสมบัติคล้าย ๆ กัน อย่างไรก็ดี พันธะโคเวเลนต์ที่มีโลหะนั้นมีความสำคัญอย่างยิ่งในการเร่งปฏิกิริยา ตัวอย่างเช่น พันธะโคเวเลนต์ระหว่างสารอินทรีย์กับโลหะเป็นเครื่องมือสำคัญของกระบวนการสร้างพอลิเมอร์หลายๆ กระบวนการ เป็นต้น(cr.ดร.วัชราฃรณ์ ลาบา).

ใหม่!!: การถ่ายโอนสัญญาณและพันธะโคเวเลนต์ · ดูเพิ่มเติม »

พิชญพิจารณ์

ผู้ประเมินที่สถาบันสุขภาพแห่งชาติอเมริกันกำลังพิจารณาคำร้องขอทุนงานวิจัย พิชญพิจารณ์, การทบทวนระดับเดียวกัน หรือ การทบทวนโดยผู้รู้เสมอกัน (peer review) เป็นการประเมินงานโดยบุคคลหรือกลุ่มบุคคลที่มีความชำนาญคล้ายกับผู้ผลิตผลงานนั้น เป็นระบบควบคุมกันเองโดยสมาชิกวิชาชีพที่มีคุณสมบัติความสามารถในสาขาที่เข้าประเด็นกัน เป็นวิธีที่ใช้เพื่อรักษามาตรฐานทางคุณภาพ เพื่อเพิ่มคุณภาพ และเพื่อให้เกิดความเชื่อถือในงานภายในกลุ่มนักวิชาการ เป็นวิธีการกำหนดว่า งานวิชาการนั้นสมควรจะตีพิมพ์หรือไม่ เป็นเรื่องที่จัดหมวดหมู่ได้ตามชนิดของงานหรือตามอาชีพ เช่น พิชญพิจารณ์ทางการแพทย์ (medical peer review).

ใหม่!!: การถ่ายโอนสัญญาณและพิชญพิจารณ์ · ดูเพิ่มเติม »

พืช

ืช เป็นสิ่งมีชีวิตกลุ่มใหญ่ประเภทหนึ่ง (มีประมาณ 350,000 สปีชีส์ ถูกระบุแล้ว 287,655 สปีชีส์ เป็นพืชดอก 258,650 ชนิด และพืชไม่มีท่อลำเลียง 18,000 ชนิด) อยู่ในอาณาจักรพืช (Kingdom Plantea) ประกอบด้วย ไม้ยืนต้น ไม้ดอก พืชล้มลุก และเฟิร์น พบได้ทั้งบนบกและในน้ำ เป็นสิ่งมีชีวิตที่เนื้อเยื่อส่วนใหญ่ประกอบด้วยหลายเซลล์ นิวเคลียสมีผนังเซลล์ ห่อหุ้ม เคลื่อนที่ไม่ได้ ได้แค่เอียงตัว จะสามารถเห็นได้ชัดเจน.เมื่อมีแดดส่อง พืชจะเอียงตัวไปที่แดด ไม่มีอวัยวะเกี่ยวกับความรู้สึก มีคลอโรฟิลล์ซึ่งเป็นสารสีเขียว ช่วยในการสังเคราะห์และเจริญเติบโต.

ใหม่!!: การถ่ายโอนสัญญาณและพืช · ดูเพิ่มเติม »

กรดนิวคลีอิก

รงสร้างของดีเอ็นเอเป็นเกลียวคู่ กรดนิวคลีอิก (nucleic acid) เป็นพอลิเมอร์ของนิวคลีโอไทด์ ที่ต่อกันด้วยพันธะฟอสโฟไดเอสเทอร์ (phosphodiester bond) โดยที่หมู่ของฟอสเฟตที่เป็นส่วนประกอบของพันธะจะเชื่อมโยงระหว่างหมู่ ไฮดรอกซิลที่ตำแหน่ง 5' ของนิวคลีโอไทด์โมเลกุลหนึ่งกับหมู่ไฮดรอกซิลที่ตำแหน่ง 3' ในโมเลกุลถัดไป จึงทำให้นิวคลีโอไทด์มีโครงสร้างของสันหลัง (backbone) เป็นฟอสเฟตกับน้ำตาลและมีแขนงข้างเป็นเบส อาจจำแนกได้เป็น DNA และ RNA.

ใหม่!!: การถ่ายโอนสัญญาณและกรดนิวคลีอิก · ดูเพิ่มเติม »

กลศาสตร์

Branches of mechanics กลศาสตร์ (กรีก: μηχανική) เป็นสาขาหนึ่งของวิทยาศาสตร์ที่ว่าด้วยพฤติกรรมของวัตถุทางกายภาพเมื่อถูกแรงกระทำหรือเมื่อมีการกระจัด กลศาสตร์มีรากฐานมาจากอารยธรรมกรีซโบราณ งานเขียนของอาริสโตเติล และอาร์คิมิดีส นักวิทยาศาสตร์ในสมัยใหม่ตอนต้น เช่น โอมาร์ คัยยาม, กาลิเลโอ กาลิเลอี, โยฮันเนส เคปเลอร์, และโดยเฉพาะ ไอแซก นิวตัน เป็นผู้วางรากฐานกลศาสตร์ดั้งเดิม กลศาสตร์เป็นสาขาหนึ่งของฟิสิกส์ดั้งเดิมที่เกี่ยวข้องอนุภาคทั้งที่หยุดนิ่งและที่กำลังเคลื่อนที่ ด้วยความเร็วที่น้อยกว่าความเร็วแสง และเป็นสาขาหนึ่งของวิทยาศาสตร์ที่เกี่ยวข้องกับการเคลื่อนที่ของวัตถุและแรงที่กระทำต่อวัต.

ใหม่!!: การถ่ายโอนสัญญาณและกลศาสตร์ · ดูเพิ่มเติม »

กลูคากอน

PDB rendering based on 1d0r กลูคากอน (Glucagon) คือฮอร์โมนสำคัญที่เกี่ยวข้องกับการเผาผลาญคาร์โบไฮเดรต กลูคากอนผลิตโดยตับอ่อนและจะถูกปล่อยเมื่อระดับน้ำตาลในกระแสเลือดลดระดับต่ำกว่าปกติ เป็นผลให้ตับเปลี่ยนไกลโคเจนที่สะสมไว้เป็นกลูโคสและปล่อยเข้าสู่กระแสเลือด เพื่อเพิ่มระดับน้ำตาลในกระแสเลือด ป้องกันร่างกายจากภาวะน้ำตาลในเส้นเลือดต่ำ (hypoglycemia) การปล่อยกลูคากอนจึงตรงข้ามกับอินซูลินที่บอกให้เซลล์ในร่างกายดึงกลูโคสจากเลือด แต่กลูคากอนสามารถกระตุ้นการปล่อยอินซูลินได้ด้วย ดังนั้นกลูโคสใสกระแสเลือดจึงสามารถถูกดึงไปใช้โดยเนื้อเยื่อที่ต้องพึ่งอินซูลิน หมวดหมู่:เมแทบอลิซึม หมวดหมู่:วิทยาตับ.

ใหม่!!: การถ่ายโอนสัญญาณและกลูคากอน · ดูเพิ่มเติม »

กลูโคส

กลูโคส (อังกฤษ: Glucose; ย่อ: Glc) เป็นน้ำตาลประเภทโมโนแซคคาไรด์ (monosaccharide) มีความสำคัญที่สุดในกลุ่มคาร์โบไฮเดรตด้วยกัน เซลล์ของสิ่งมีชีวิติทุกชนิดใช้กลูโคสเป็นแหล่งพลังงาน และสารเผาผลาญขั้นกลาง (metabolic intermediate) กลูโคสเป็นหนึ่งในผลผลิตหลักของการสังเคราะห์แสง (photosynthesis) และเป็นแหล่งพลังงานสำหรับการหายใจของเซลล์ (cellular respiration) โครงสร้างโมเลกุลตามธรรมชาติของมัน (D-glucose) จะอยู่ในรูปที่เรียกว่า เดกซ์โตรส (dextrose) โดยเฉพาะอย่างยิ่งในอุตสาหกรรมอาหาร.

ใหม่!!: การถ่ายโอนสัญญาณและกลูโคส · ดูเพิ่มเติม »

กล้ามเนื้อ

การจัดลำดับของกล้ามเนื้อโครงสร้าง กล้ามเนื้อ (muscle; มาจากภาษาละติน musculus "หนูตัวเล็ก") เป็นเนื้อเยื่อที่หดตัวได้ในร่างกาย เปลี่ยนแปลงมาจากเมโซเดิร์ม (mesoderm) ของชั้นเนื้อเยื่อในตัวอ่อน และเป็นระบบหนึ่งของร่างกายที่สำคัญต่อการเคลื่อนไหวทั้งหมดของร่างกาย แบ่งออกเป็นกล้ามเนื้อโครงร่าง (skeletal muscle), กล้ามเนื้อเรียบ (smooth muscle), และกล้ามเนื้อหัวใจ (cardiac muscle) ทำหน้าที่หดตัวเพื่อให้เกิดแรงและทำให้เกิดการเคลื่อนที่ (motion) รวมถึงการเคลื่อนที่และการหดตัวของอวัยวะภายใน กล้ามเนื้อจำนวนมากหดตัวได้นอกอำนาจจิตใจ และจำเป็นต่อการดำรงชีวิต เช่น การบีบตัวของหัวใจ หรือการบีบรูด (peristalsis) ทำให้เกิดการผลักดันอาหารเข้าไปภายในทางเดินอาหาร การหดตัวของกล้ามเนื้อที่อยู่ใต้อำนาจจิตใจมีประโยชน์ในการเคลื่อนที่ของร่างกาย และสามารถควบคุมการหดตัวได้ เช่นการกลอกตา หรือการหดตัวของกล้ามเนื้อควอดริเซ็บ (quadriceps muscle) ที่ต้นขา ใยกล้ามเนื้อ (muscle fiber) ที่อยู่ใต้อำนาจจิตใจแบ่งกว้างๆ ได้เป็น 2 ประเภทคือ กล้ามเนื้อ fast twitch และกล้ามเนื้อ slow twitch กล้ามเนื้อ slow twitch สามารถหดตัวได้เป็นระยะเวลานานแต่ให้แรงน้อย ในขณะที่กล้ามเนื้อ fast twitch สามารถหดตัวได้รวดเร็วและให้แรงมาก แต่ล้าได้ง.

ใหม่!!: การถ่ายโอนสัญญาณและกล้ามเนื้อ · ดูเพิ่มเติม »

การกลายพันธุ์

การกลายพันธุ์ (mutation) หมายถึงการเปลี่ยนแปลงสภาพของสิ่งมีชีวิต โดยเฉพาะอย่างยิ่ง การเปลี่ยนแปลงของยีน ทำให้สิ่งมีชีวิตเกิดขึ้นมาใหม่มีลักษณะแตกต่างจากกลุ่มปกติ, วันที่สืบค้น 25 พฤษภาคม 2559 จาก www.thaibiotech.info.

ใหม่!!: การถ่ายโอนสัญญาณและการกลายพันธุ์ · ดูเพิ่มเติม »

การรับรู้รส

ตุ่มรับรส (Taste bud) รส หรือ รสชาติ (Taste, gustatory perception, gustation) เป็นเรื่องเกี่ยวกับประสาทสัมผัสหนึ่งในห้า (นับตามโบราณ) โดยเป็นความรู้สึกที่ได้จากระบบรู้รส (gustatory system) รสเป็นความรู้สึกที่ได้เมื่อสารในปากก่อปฏิกิริยาเคมีกับเซลล์รับรส (taste receptor cell) ที่อยู่ในตุ่มรับรส (taste bud) ในช่องปากโดยมากที่ลิ้น รสพร้อม ๆ กับกลิ่น และการกระตุ้นที่ประสาทไทรเจมินัล (ซึ่งทำให้รู้เนื้ออาหาร ความเจ็บปวด และอุณหภูมิ) จะเป็นตัวกำหนดความอร่อยของอาหารหรือสารอื่น ๆ กล่าวอีกอย่างก็คือ ระบบรู้รสจะตรวจจับโมเลกุลอาหารและเครื่องดื่มเป็นต้น โดยมากที่ละลายในน้ำหรือไขมันได้ ซึ่งเมื่อรวมกับข้อมูลจากระบบรู้กลิ่นและระบบรับความรู้สึกทางกาย จะให้ข้อมูลเกี่ยวกับคุณภาพของสารอาหาร ปริมาณ และความปลอดภัยของสิ่งที่เข้ามาในปาก มีรสชาติหลัก ๆ 5 อย่างคือ หวาน เปรี้ยว เค็ม ขม และอุมะมิ ซึ่งรู้ผ่านวิถีประสาทที่แยกจากกัน ส่วนการรับรู้รสแบบผสมอาจเกิดขึ้นที่เปลือกสมองส่วนการรู้รสโดยประมวลข้อมูลที่ได้ในเบื้องต้นจากหน่วยรับรสหลัก ๆ การรับรู้รสจะเริ่มตั้งแต่สารที่มีรสทำปฏิกิริยากับน้ำลายซึ่งท่วมตุ่มรับรสที่อยู่บนโครงสร้างต่าง ๆ เช่นปุ่มลิ้น ทำให้โมเลกุลรสมีโอกาสทำปฏิกิริยากับหน่วยรับรสที่อยู่บนเยื่อหุ้มเซลล์ของเซลล์รับรสซึ่งอยู่รวมตัวกันที่ตุ่มรับรส รสหวาน อุมะมิ และขม จะเริ่มจากการจับกันของโมเลกุลกับ G protein-coupled receptors ที่เยื่อหุ้มเซลล์ของเซลล์รับรส ส่วนความเค็มและความหวานจะรู้ได้เมื่อโลหะแอลคาไลหรือไอออนไฮโดรเจน (ตามลำดับ) ไหลเข้าไปในเซลล์รับรส ในที่สุดเซลล์รับรสก็จะลดขั้วแล้วส่งสัญญาณกลิ่นผ่านใยประสาทรับความรู้สึกไปยังระบบประสาทกลาง สมองก็จะประมวลผลข้อมูลรสซึ่งในที่สุดก็ทำให้รู้รส รสพื้นฐานจะมีส่วนต่อความรู้สึกอร่อยของอาหารในปาก ปัจจัยอื่น ๆ รวมทั้งกลิ่น ที่ตรวจจับโดยเยื่อบุผิวรับกลิ่นในจมูก, เนื้ออาหาร ที่ตรวจจับโดยตัวรับแรงกล และประสาทกล้ามเนื้อต่าง ๆ เป็นต้น, อุณหภูมิที่ตรวจจับโดยปลายประสาทรับร้อน, ความเย็น (เช่นที่ได้จากเมนทอล) กับรสเผ็สที่ได้จากตัวรับรู้สารเคมี, รูปลักษณ์ที่ปรากฏของอาหาร ที่เห็นได้ผ่านเซลล์รับแสงในจอตา, และสภาพทางจิตใจเอง เพราะเรารู้ทั้งรสที่เป็นอันตรายและมีประโยชน์ รสพื้นฐานทั้งหมดสามารถจัดเป็นไม่น่าพอใจ (aversive) หรือทำให้อยากอาหาร (appetitive) ความขมช่วยเตือนว่าอาจมีพิษ ในขณะที่ความหวานช่วยระบุอาหารที่สมบูรณ์ด้วยพลังงาน สำหรับมนุษย์ การรู้รสจะเริ่มลดลงราว ๆ อายุ 50 ปี เพราะการเสียปุ่มลิ้นและการผลิตน้ำลายที่น้อยลง ทำให้ผู้สูงอายุมักทานรสจัดขึ้นเทียบกับเด็ก เช่น ต้องเติมเกลือ เติมพริกเป็นต้น ซึ่งอาจเป็นปัญหาต่อผู้มีความดันโลหิตสูงหรือมีปัญหาธำรงดุลอิเล็กโทรไลต์ในร่างกาย มนุษย์สามารถรู้รสแบบผิดปกติเพราะเป็นโรค dysgeusia สัตว์เลี้ยงลูกด้วยนมทั้งหมดไม่ได้รู้รสได้เหมือน ๆ กัน สัตว์ฟันแทะบางชนิดสามารถรู้รสแป้ง (ซึ่งมนุษย์ไม่สามารถ) แมวไม่สามารถรู้รสหวาน และสัตว์กินเนื้อหลายอย่างรวมทั้งหมาไฮยีน่า ปลาโลมา และสิงโตทะเลต่างก็ได้เสียการรู้รสชาติอาจถึง 4 อย่างจาก 5 อย่างที่บรรพบุรุษของพวกมันรู้.

ใหม่!!: การถ่ายโอนสัญญาณและการรับรู้รส · ดูเพิ่มเติม »

การรับรู้อากัปกิริยา

ซีรีบรัมเป็นส่วนในสมองที่มีหน้าที่ประสานงานเกี่ยวข้องกับการรับรู้อากัปกิริยา การรับรู้อากัปกิริยา"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ proprioception ว่า "การรับรู้อากัปกิริยา" และของ proprioceptor ว่า "ปลายประสาทรับรู้อากัปกิริยา" หรือการรู้ตำแหน่งข้อและการเคลื่อนไหว (proprioception มาจากคำว่า "proprius" ซึ่งแปลว่า "ของตน" หรือ "แต่ละบุคคล" และคำว่า "perception" ซึ่งแปลว่า "การรับรู้") เป็นความรู้สึกเกี่ยวกับตำแหน่ง (limb position sense) และเกี่ยวกับการเคลื่อนไหวของอวัยวะในร่างกาย (kinesthesia หรือ motion sense) ที่ไม่สืบเนื่องกับการมองเห็นให้สังเกตให้ดีว่า คำว่า "proprioception" นั้น เป็นคำที่ชาลส์ สก็อตต์ เชอร์ริงตัน ได้บัญญัติขึ้นตั้งแต่ปี..

ใหม่!!: การถ่ายโอนสัญญาณและการรับรู้อากัปกิริยา · ดูเพิ่มเติม »

การลดขั้ว

ในชีววิทยา การลดขั้ว (depolarization) เป็นความเปลี่ยนแปลงของศักย์เยื่อหุ้มเซลล์ โดยความเป็นขั้วบวกมากขึ้น หรือเป็นขั้วลบน้อยลง ในเซลล์ประสาทหรือเซลล์อย่างอื่นบางอย่าง และถ้าการลดขั้วมีระดับที่สูงพอ ก็จะทำให้เกิดศักยะงานในเซลล์ได้ การเพิ่มขั้ว (Hyperpolarization) เป็นขบวนการตรงข้ามกับการลดขั้ว เป็นการยับยั้งหรือห้ามการเกิดขึ้นของศักยะงาน.

ใหม่!!: การถ่ายโอนสัญญาณและการลดขั้ว · ดูเพิ่มเติม »

การอักเสบ

ฝีบนผิวหนัง แสดงลักษณะแดงและบวม ซึ่งเป็นลักษณะเฉพาะของการอักเสบ (หรืออาจเป็นสีดำมากยิ่งขึ้นในกลุ่มคนผิวเข้ม) วงแหวนของเนื้อเยื่อเซลล์ที่ตายล้อมรอบพื้นที่ที่มีหนอง การอักเสบ (Inflammation) เป็นการตอบสนองทางชีวภาพที่ซับซ้อนของเนื้อเยื่อหลอดเลือดต่อสิ่งกระตุ้นที่เป็นอันตราย เช่นเชื้อโรค เซลล์ที่เสื่อมสภาพ หรือการระคายเคือง ซึ่งเป็นความพยายามของสิ่งมีชีวิตที่จะนำสิ่งกระตุ้นดังกล่าวออกไปและซ่อมแซมเนื้อเยื่อที่ถูกทำลาย การอักเสบไม่ใช่อาการของการติดเชื้อ แม้ว่าการอักเสบหลายๆ ครั้งก็เกิดขึ้นจากการติดเชื้อ เพราะว่าการติดเชื้อนั้นเกิดจากจุลชีพก่อโรคภายนอกร่างกาย แต่การอักเสบคือการตอบสนองของร่างกายเพื่อต่อต้านจุลชีพก่อโรคหรือต่อปัจจัยอื่นๆ เช่น การบาดเจ็บ สารเคมี สิ่งแปลกปลอม หรือภูมิคุ้มกันต่อต้านตนเอง หากไม่มีการอักเสบเกิดขึ้น เชื้อโรคจะไม่ถูกกำจัดออกไปและแผลจะไม่ถูกรักษาให้หาย ซึ่งอาจเกิดความเสียหายของเนื้อเยื่อมากขึ้นจนอันตรายถึงชีวิตได้ แต่ทั้งนี้อาการอักเสบที่มีมากเกินไปก็สามารถเกิดโรคต่างๆ ได้ เช่นไข้ละอองฟาง โรคท่อเลือดแดงและหลอดเลือดแดงแข็ง และข้ออักเสบรูมาทอยด์ ด้วยเหตุผลนี้เอง ร่างกายจึงต้องมีกระบวนการควบคุมการอักเสบอย่างใกล้ชิด การอักเสบอาจถูกแบ่งออกเป็นแบบ เฉียบพลัน หรือ เรื้อรัง การอักเสบเฉียบพลัน (acute inflammation) เป็นการต่อต้านวัตถุอันตรายของร่ายกายในระยะเริ่มแรก โดยเกิดการเคลื่อนที่ของพลาสมาและเม็ดเลือดขาวจากเลือดไปยังเนื้อเยื่อที่อักเสบ กระบวนการทางชีวเคมีที่เกิดขึ้นเป็นขั้นเป็นตอนนี้เองที่ทำให้เกิดการอักเสบ ซึ่งต้องอาศัยส่วนร่วมของระบบไหลเวียนโลหิต ระบบภูมิคุ้มกัน และเซลล์ต่างๆ ในเนื้อเยื่อที่เสียหาย การอักเสบเรื้อรัง (chronic inflammation) นำไปสู่การเปลี่ยนชนิดของเซลล์ที่นำเสนอในบริเวณอักเสบ และมีลักษณะพิเศษของการทำลายที่เกิดขึ้นพร้อมกับการรักษาเนื้อเยื่อจากกระบวนการอัก.

ใหม่!!: การถ่ายโอนสัญญาณและการอักเสบ · ดูเพิ่มเติม »

การถอดรหัส (พันธุศาสตร์)

การถอดรหัส หรือ การสร้างอาร์เอ็นเอ (Transcription หรือ RNA synthesis) คือ กระบวนการการสร้างอาร์เอ็นเอจากดีเอ็นเอ ซึ่งทั้งอาร์เอ็นเอและดีเอ็นเอต่างเป็นกรดนิวคลิอิกซึ่งใช้ลำดับคู่เบสของนิวคลีโอไทด์เป็นส่วนเติมเต็มซึ่งกันและกันซึ่งสามารถเปลี่ยนกลับไปกลับมาได้หากมีเอนไซม์ที่เหมาะสม ในช่วงการถอดรหัสนั้น ลำดับดีเอ็นเอจะถูกอ่านโดยเอนไซม์ RNA polymerase ซึ่งจะสร้างคู่เติมเต็มซึ่งเป็นสายอาร์เอ็นเอที่ขนานสวนกัน เทียบกันกับการสร้างดีเอ็นเอแล้ว การถอดรหัสจะทำให้ได้ผลเป็นอาร์เอ็นเอคู่เติมเต็มที่มีเบสยูราซิล (Uracil, U) แทนที่ตำแหน่งของเบสไทมีน (Thymine, T) ที่เคยมีในสายดีเอ็นเอคู่นั้น.

ใหม่!!: การถ่ายโอนสัญญาณและการถอดรหัส (พันธุศาสตร์) · ดูเพิ่มเติม »

การทบทวนวรรณกรรม

การทบทวนวรรณกรรม (literature review) เป็นเนื้อหาหลักส่วนหนึ่งในการเขียนรายงานการวิจัย โดยเน้นอธิบายเกี่ยวกับงานวิจัยหรือความรู้ในหัวข้อเดียวกันหรือใกล้เคียงในอดีต โดยการทบทวนวรรณกรรมนั้นมีจุดหมายในการรวบรวมข้อมูลปัจจุบันของผลงานวิจัยที่เกี่ยวข้อง การทบทวนวรรณกรรมมักจะพบได้ในงานเขียนด้านวิชาการ เช่นในวิทยานิพนธ์ ดุษฎีนิพนธ์ หรือผลงานในวารสารวิชาการ การทบทวนวรรณกรรมมักจะถูกลำดับเป็นส่วนที่สองของงานเขียนต่อจากบทนำ และมักจะอยู่ก่อนหน้าเป้าหมายงานวิจัย และขั้นตอนการวิจั.

ใหม่!!: การถ่ายโอนสัญญาณและการทบทวนวรรณกรรม · ดูเพิ่มเติม »

การดื้อยา

การดื้อยา (drug resistance) คือ การลดลงของประสิทธิภาพยา เช่น ยาต้านจุลชีพหรือยาต้านมะเร็ง (antineoplastic) ในการรักษาโรคหรือสภาวะหนึ่ง ๆ เมื่อยานั้นไม่ได้ตั้งใจฆ่าหรือยับยั้งจุลชีพก่อโรค คำนี้จะเทียบเท่ากับความชินยา (drug tolerance) คำนี้ใช้ในบริบทการดื้อที่จุลชีพก่อโรค "ได้รับมา" มากกว่า คือ มีวิวัฒนาการการดื้อยา เมื่อสิ่งมีชีวิตหนึ่งดื้อต่อยามากกว่าหนึ่งชนิด จะเรียกว่า มีการดื้อยาหลายชนิด (multidrug-resistant) การพัฒนา โดยเฉพาะอย่างยิ่งการดื้อยาปฏิชีวนะ เกิดจากยาที่มีเป้าหมายต่อโปรตีนแบคทีเรียที่จำเพาะ ด้วยเหตุที่ยาจำเพาะเกินไป การกลายพันธุ์ใด ๆ ในโปรตีนเหล่านี้จะขัดขวางหรือลบล้างฤทธิ์ทำลายของยา ส่งผลให้เกิดการดื้อยาปฏิชีวนะ ไม่เพียงแบคทีเรียสามารถเปลี่ยนแปลงเอนไซม์อันเป็นเป้าหมายของยาปฏิชีวนะเท่านั้น แต่แบคทีเรียยังใช้เอนไซม์ดัดแปลงยาปฏิชีวนะจนทำให้หมดฤทธิ์ไปเองได้ด้วย ตัวอย่างจุลชีพก่อโรคที่เปลี่ยนแปลงเป้าหมาย เช่น Staphylococcus aureus, Enterococcus ที่ดื้อแวนโคมัยซิน และ Streptococcus ที่ดื้อมาโครไลด์ และตัวอย่างจุลชีพที่ดัดแปลงยาปฏิชีวนะ เช่น Pseudomonas aeruginosa และ Acinetobacter baumannii ที่ดื้ออะมิโนไกลโคไซด์ กล่าวโดยย่อ การขาดความพยายามร่วมกันจากรัฐบาลและอุตสาหกรรมเภสัช ร่วมกับสมรรถภาพสืบทอดของจุลชีพในการพัฒนาการดื้อยาในอัตราที่เร็วกว่าการพัฒนายาใหม่ ๆ แนะว่า ยุทธศาสตร์ที่มีอยู่ในการพัฒนาการบำบัดต้านแบคทีเรียระยะยาวซึ่งอยู่รอดได้จะล้มเหลวในท้ายที่สุด หากปราศจากยุทธศาสตร์ทางเลือก การดื้อยาโดยจุลชีพก่อโรคจวนเป็นหนึ่งในภัยคุกคามทางสาธารณสุขที่สำคัญที่สุดที่มนุษยชาติกำลังเผชิญในคริสต์ศตวรรษที่ 21.

ใหม่!!: การถ่ายโอนสัญญาณและการดื้อยา · ดูเพิ่มเติม »

การติดเชื้อ

การติดเชื้อ หมายถึงการเจริญของสิ่งมีชีวิตชนิดอื่นบนร่างกายของโฮสต์ซึ่งก่อให้เกิดอันตรายหรือเกิดโรคได้ จุลชีพก่อโรคจะมีการพยายามใช้ทรัพยากรของโฮสต์เพื่อใช้ในการเพิ่มจำนวนของตัวเอง จุลชีพก่อโรคจะรบกวนการทำงานปกติของร่างกายโฮสต์ซึ่งอาจทำให้เกิดบาดแผลเรื้อรัง (chronic wound), เนื้อตายเน่า (gangrene), ความพิการของแขนและขา และอาจทำให้เสียชีวิตได้ การตอบสนองของโฮสต์ต่อการติดเชื้อ เรียกว่า การอักเสบ (inflammation) จุลชีพก่อโรคที่ทำให้เกิดการติดเชื้อมักจะเป็นสิ่งมีชีวิตขนาดเล็กซึ่งมีความหลากหลายเช่นแบคทีเรีย ไวรัส ปรสิต เชื้อรา พรีออน หรือไวรอยด์ ภาวะพึ่งพิงซึ่งกันและกันระหว่างปรสิตและโฮสต์ซึ่งปรสิตได้ประโยชน์แต่โฮสต์เสียประโยชน์นั้นในทางนิเวศวิทยาเรียกว่าภาวะปรสิต (parasitism) แขนงของวิชาแพทยศาสตร์ซึ่งเน้นศึกษาในเรื่องการติดเชื้อและจุลชีพก่อโรคคือสาขาวิชาโรคติดเชื้อ (infectious disease) การติดเชื้ออาจแบ่งออกเป็นการติดเชื้อปฐมภูมิ (primary infection) คือการติดเชื้อหลังจากการได้รับจุลชีพก่อโรคเป็นครั้งแรก และการติดเชื้อทุติยภูมิ (secondary infection) ซึ่งหมายถึงการติดเชื้อที่เกิดขึ้นหลังหรือระหว่างการรักษาการติดเชื้อปฐมภูม.

ใหม่!!: การถ่ายโอนสัญญาณและการติดเชื้อ · ดูเพิ่มเติม »

การแบ่งเซลล์

Three types of cell division การแบ่งเซลล์คือกระบวนการที่เซลล์ตั้งต้น (parent cell) แบ่งตัวออกเป็นเซลล์ลูก (daughter cell) จำนวนสองเซลล์ขึ้นไป ส่วนใหญ่แล้วเกิดขึ้นเป็นส่วนหนึ่งของวัฏจักรเซลล์ หมวดหมู่:วัฏจักรเซลล์ หมวดหมู่:กระบวนการของเซลล์ หมวดหมู่:เทโลเมียร์.

ใหม่!!: การถ่ายโอนสัญญาณและการแบ่งเซลล์ · ดูเพิ่มเติม »

การแพร่

แสดงการผสมกันของสารสองสารด้วยการแพร่ การแพร่ เป็นการกระจายตัวของโมเลกุลของสสารจากจุดที่มีความเข้มข้นสูงกว่า ไปยังจุดที่มีความเข้มข้นต่ำกว่าด้วยการเคลื่อนที่เชิงสุ่มของโมเลกุล การแพร่จะทำให้ เกิดการผสมของวัสดุอย่างช้าๆ สำหรับเฟสหนึ่งๆของวัสดุใดๆก็ตามที่มีอุณหภูมิสม่ำเสมอ และไม่มีแรงภายนอกมากระทำกับอนุภาค กระบวนการแพร่ก็จะยังคงเกิดถึงแม้ว่า สสารจะผสมกันโดยสมบูรณ์หรือเข้าสู่ภาวะสมดุลแล้ว โดยพื้นฐานแล้ว การเคลื่อนที่ของโมเลกุล จากพื้นที่ที่มีความเข้มข้นสูงไปสู่ความเข้มข้นที่ต่ำกว่าเรียกว่าการแพร่ทั้งสิ้น ตัวอย่างการแพร่ เช่น การแพร่ของเกล็ดด่างทับทิมในน้ำ การแพร่ของน้ำหวานในน้ำ การแพร่ของสีน้ำในน้ำ โดยปกติแล้วการแพร่ของโมเลกุลจะอธิบายทางคณิตศาสตร์ได้โดยผ่าน กฎของฟิก.

ใหม่!!: การถ่ายโอนสัญญาณและการแพร่ · ดูเพิ่มเติม »

การแสดงออกของยีน

การแสดงออกของยีนคือกระบวนการที่ข้อมูลในยีนถูกใช้ในการสังเคราะห์ผลผลิตของยีนที่ทำงานได้ ซึ่งส่วนใหญ่เป็นโปรตีน แต่บางยีน เช่น rRNA tRNA หรือ snRNA มีผลผลิตเป็น RNA ซึ่งมีบทบาททำงานได้เช่นกัน กระบวนการที่ใช้ในการแสดงออกของยีนเกิดขึ้นในสิ่งมีชีวิตทุกชนิด ทั้งยูคาริโอต (รวมถึงสิ่งมีชีวิตหลายเซลล์ด้วย) โปรคาริโอต (แบคทีเรียและอาร์เคีย) และอาจนับรวมถึงไวรัสด้วย กระบวนการนี้ทำให้เกิดกลไกที่เกิดจากโมเลกุลขนาดใหญ่ และทำให้เกิดชีวิต กระบวนการที่เซลล์ใช้ในการทำให้เกิดการแสดงออกของยีนมีหลายขั้นตอน เช่น การถอดรหัส การตัดแบ่ง RNA การแปลรหัส และการดัดแปลงโปรตีนหลังการแปลรหัส หมวดหมู่:อณูชีววิทยา หมวดหมู่:การแสดงออกของยีน.

ใหม่!!: การถ่ายโอนสัญญาณและการแสดงออกของยีน · ดูเพิ่มเติม »

การแข็งตัวขององคชาต

การแข็งตัวขององคชาต (erection, ศัพย์การแพทย์: penile erection, penile tumescence) เป็นปรากฏการณ์ทางสรีรภาพของอวัยวะเพศชายในสัตว์หลายสปีชีส์ ที่องคชาตแข็งตัวขึ้น คั่งไปด้วยเลือด และขยายใหญ่ขึ้น เป็นผลของปฏิกิริยาอันสลับซับซ้อนของจิตใจ ระบบประสาท ระบบหลอดเลือด และระบบต่อมไร้ท่อ มักจะเกิดขึ้นพร้อมกับอารมณ์ทางเพศ แต่จริง ๆ อาจจะเกิดขึ้นเมื่อไรก็ได้ รูปร่าง มุมตั้ง และทิศทางขององคชาตที่แข็งตัวมีความแตกต่างกันอย่างมากแม้ในหมู่มนุษย์ โดยสรีรภาพแล้ว กระบวนการแข็งตัวขององคชาตเริ่มจากระบบประสาทพาราซิมพาเทติก (ส่วนหนึ่งของระบบประสาทอัตโนมัติ) ที่เป็นเหตุให้ระดับก๊าซไนโตรเจนออกไซด์ (เป็นสารขยายหลอดเลือด) สูงขึ้นในหลอดเลือด trabecular และในกล้ามเนื้อเรียบขององคชาต หลอดเลือดนั้นก็จะขยายใหญ่ขึ้นทำให้เนื้อเยื่อคล้ายฟองน้ำที่เรียกว่า corpora cavernosa (ดูรูป) (และ corpus spongiosum แม้ว่าจะน้อยกว่า) เต็มไปด้วยเลือด และในขณะเดียวกัน ก็จะทำให้กล้ามเนื้อ ischiocavernosus และ bulbospongiosus เข้าไปกดหลอดเลือดดำของเนื้อเยื่อ จำกัดการไหลออกของเลือด (จากเนื้อเยื่อ) และการไหลเวียนของโลหิตที่ไหลเข้าไป (ในเนื้อเยื่อ) การแข็งตัวจะลดลงเมื่อการทำงานในระบบประสาทพาราซิมพาเทติกลดระดับลงไปเป็นปกติ เพราะว่าเป็นการตอบสนองอัตโนมัติ การแข็งตัวอาจเกิดขึ้นจากสิ่งเร้าหลายอย่างรวมทั้งการเร้าอารมณ์เพศ (sexual stimulationการเร้าอารมณ์เพศ (sexual stimulation) เป็นตัวกระตุ้นอะไรก็ได้ รวมทั้งสัมผัสทางกาย ที่เพิ่มและรักษาอารมณ์เพศ ซึ่งอาจนำไปสู่การหลั่งน้ำอสุจิและ/หรือจุดสุดยอดทางเพศในที่สุด ถึงแม้ว่าอารมณ์เพศอาจเกิดขึ้นได้โดยไม่ต้องอาศัยการกระตุ้น แต่จะถึงจุดสุดยอดทางเพศได้ ปกติต้องมีการกระตุ้นทางเพศ) และอารมณ์ทางเพศ ดังนั้น จึงไม่ได้อยู่ใต้อำนาจจิตใจโดยสิ้นเชิง การแข็งตัวในระหว่างการนอนหลับหรือเมื่อตื่นนอนมีศัพท์ทางแพทย์ภาษาอังกฤษว่า nocturnal penile tumescence และความปราศจากการแข็งตัวในระหว่างการนอนหลับสามารถใช้ในการแยกแยะเหตุที่เป็นไปทางกายภาพหรือทางจิตใจของภาวะหย่อนสมรรถภาพทางเพศสาเหตุทางร่างกาย (ICD-10 N48.4) หรืออวัยวะเพศไม่ตอบสนอง (เหตุทางใจ ICD-10 F52.2) องคชาตที่ไม่แข็งตัวเต็มที่มีศัพท์การแพทย์ภาษาอังกฤษว่า partial tumescence.

ใหม่!!: การถ่ายโอนสัญญาณและการแข็งตัวขององคชาต · ดูเพิ่มเติม »

การแปลรหัส (พันธุศาสตร์)

ทรานสเลชันของโปรตีนที่หลั่งเข้าสู่เอนโดพลาสมิก เรติคิวลัม ทรานสเลชัน (Translation) เป็นขั้นตอนแรกของการสังเคราะห์โปรตีน ซึ่งเป็นส่วนหนึ่งของการแสดงออกของยีน ทรานสเลชันเป็นการผลิตโปรตีนโดยอ่านรหัสจาก mRNA ที่ได้จากทรานสคริบชัน ทรานสเลชันเกิดในไซโตพลาสซึมซึ่งมีไรโบโซมอยู่ ไรโบโซมนั้นประกอบด้วยหน่วยย่อยขนาดใหญ่และขนาดเล็ก ซึ่งจะมาประกบกันเมื่อมี mRNA ทรานสเลชันนี้จะสร้างพอลิเพปไทด์จากการอ่านรหัสพันธุกรรมที่เป็นลำดับเบสบน mRNA รหัสพันธุกรรมจะเป็นตัวบอกลำดับของกรดอะมิโนในโปรตีน ส่วน RNA ชนิดอื่น เช่น rRNA, tRNA, snRNA ไม่เกี่ยวข้องกับการกำหนดกรดอะมิโน ทรานสเลชันมี 4 ขั้นตอนคือ การกระตุ้น การเริ่มต้น การต่อเนื่องและการสิ้นสุด กรดอะมิโนจะถูกนำมายังไรโบโซมจากนั้นจึงต่อกันเป็นโปรตีน ขั้นตอนการกระตุ้น กรดอะมิโนจะเกิดพันธะโควาเลนต์กัน tRNA ที่เป็นคู่กัน กรดอะมิโนจะใช้หมู่คาร์บอกซิลจับกับหมู่ 3' OH ของ tRNA ด้วยพันธะเอสเทอร์ ขั้นตอนการเริ่มต้น เริ่มจากหน่วยเล็กของไรโบโซมจับกับปลาย 5' ของ mRNA โดยมี initiation factors (IF) เป็นผู้ช่วย การสิ้นสุดของการสร้างสายพอลิเพปไทด์เกิดขึ้นเมื่อด้าน A ของไรโบโซมเป็นรหัสพันธุกรรมหยุด (UAA, UAG, UGA) ซึ่งจะไม่มี tRNA เข้ามา แต่ releasing factor จะเข้ามาทำให้ปล่อยสายพอลิเพปไทด์ออกไป ปลาย 5' ของ mRNA ไปเป็นปลาย N ของพอลิเพปไทด์ และขั้นตอนทรานสเลชันเริ่มจาก N->C ยาปฏิชีวนะจำนวนหนึ่งออกฤทธิ์ยับยั้งทรานสเลชัน เช่น anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin และpuromycin ไรโบโซมของโปรคาริโอตมีโครงสร้างต่างจากของยูคาริโอต ทำให้ยาปฏิชีวนะจำเพาะเฉพาะแบคทีเรียไม่ทำลายยูคาริโอตที่เป็นเจ้าบ้าน หมวดหมู่:การแสดงออกของยีน หมวดหมู่:เซลล์ หมวดหมู่:อณูชีววิทยา.

ใหม่!!: การถ่ายโอนสัญญาณและการแปลรหัส (พันธุศาสตร์) · ดูเพิ่มเติม »

การได้ยิน

การได้ยิน หรือ การฟัง หมายถึงการรับรู้เสียงได้ เป็นการรับรู้การสื่อสารจากการพูด และเป็นหนึ่งในสัมผัสทั้งห้า อวัยวะที่ใช้ในการฟังเราเรียกว่าหู การได้ยินเป็นหนึ่งในสัมผัสสามอย่างที่ไม่สามารถปิดกั้นได้(ได้แก่ การได้ยิน การดม และกายสัมผัส).

ใหม่!!: การถ่ายโอนสัญญาณและการได้ยิน · ดูเพิ่มเติม »

การเปลี่ยนโครงรูป

ในสาขาเคมีชีวภาพ การเปลี่ยนโครงรูป หรือ การเปลี่ยนโครงสร้าง (conformational change) เป็นการเปลี่ยนรูปร่างในสามมิติของของแมโครโมเลกุล ของเยื่อหุ้มเซลล์ หรือของโครงสร้างอื่น ๆ แต่ปกติเป็นของโครงสร้างตติยภูมิของโปรตีน โดยมีเหตุจากสิ่งแวดล้อม จากการจับกันของลิแกนด์กับหน่วยรับ หรือจากการจับกับของซับสเตรตกับเอนไซม์ เพราะแมโครโมเลกุลปกติจะยืดหยุ่นได้และไม่อยู่คงที่ มันจึงสามารถเปลี่ยนรูปร่างตอบสนองต่อสิ่งแวดล้อมหรือปัจจัยอื่น ๆ รูปร่างที่เป็นไปได้แต่ละอย่างจะเรียกว่าโครงรูป (conformation) และการเปลี่ยนเป็นโครงรูปต่าง ๆ เรียกว่า การเปลี่ยนโครงรูป (conformational change) โดยปัจจัยที่เป็นเหตุรวมทั้ง.

ใหม่!!: การถ่ายโอนสัญญาณและการเปลี่ยนโครงรูป · ดูเพิ่มเติม »

ภาวะธำรงดุล

วะธำรงดุล (homeostasis) หรือ การรักษาดุลยภาพของสิ่งมีชีวิต คือคุณสมบัติของระบบเปิดโดยเฉพาะในสิ่งมีชีวิต ที่ทำการควบคุมสภาพภายในตนเองเพื่อรักษาสถานะเสถียรภาพสภาพอย่างคงที่ โดยการปรับสมดุลพลวัตหลายอย่างซึ่งมีกลไกการควบคุมที่มีความสัมพันธ์กันมากมาย แนวคิดนี้ถูกพูดถึงครั้งแรกในปี..

ใหม่!!: การถ่ายโอนสัญญาณและภาวะธำรงดุล · ดูเพิ่มเติม »

มะเร็ง

มะเร็ง หรือทางการแพทย์ว่า เนื้องอกร้าย (malignant tumor) เป็นกลุ่มของโรคที่เกี่ยวข้องกับการเจริญเติบโตของเซลล์ที่ผิดปกติ คือ เซลล์จะแบ่งตัวและเจริญอย่างควบคุมไม่ได้ ก่อเป็นเนื้องอกร้าย และมีศักยภาพในการรุกรานร่างกายส่วนข้างเคียง มะเร็งอาจแพร่กระจายไปยังร่างกายส่วนที่อยู่ห่างไกลได้ผ่านระบบน้ำเหลืองหรือกระแสเลือด แต่ไม่ใช่เนื้องอกทุกชนิดจะเป็นมะเร็ง เพราะเนื้องอกไม่ร้ายจะไม่ลุกลามไปยังอวัยวะข้างเคียงและไม่กระจายไปทั่วร่างกาย อาการและอาการแสดงของโรคมะเร็งที่เป็นไปได้รวมถึง:..

ใหม่!!: การถ่ายโอนสัญญาณและมะเร็ง · ดูเพิ่มเติม »

ม้าม

ำลองภายในม้าม (Gray's Anatomy) ม้าม (spleen) เป็นอวัยวะในร่างกายสัตว์เลี้ยงลูกด้วยนม มีรูปทรงเรียวรี คล้ายเมล็ดถั่ว เป็นอวัยวะที่ขจัดเชื้อโรคและเซลล์เม็ดเลือดแดงที่ตายแล้วออกจากกระแสเลือด ม้ามจะอยู่บริเวณช่องท้องส่วนบน ใต้กะบังลมทางซ้าย และอยู่ใกล้กับตับอ่อน และไตซ้าย ถูกยึดติดไว้กับเยื่อบุช่องท้อง ม้ามมีขนาดแตกต่างกันไปในแต่ละบุคคล โดยในวัยผู้ใหญ่ ม้ามจะมีความยาวประมาณ 13 เซนติเมตร (ประมาณ 5 นิ้ว) และจะมีความกว้างประมาณ 10 เซนติเมตร (4 นิ้ว) และหนาประมาณ 3.8 เซนติเมตร (1.5 นิ้ว) และมีน้ำหนักประมาณ 200 กรัม (7 ออนซ์) หลอดเลือดที่เข้าสู่ม้ามคือ หลอดเลือดสเปลนิกอาร์เตอร์รี่ (splenic artery) และเลือดจากม้ามจะไหลเข้าสู่ตั.

ใหม่!!: การถ่ายโอนสัญญาณและม้าม · ดูเพิ่มเติม »

ยูแคริโอต

ูแคริโอต (eukaryote) คือ สิ่งมีชีวิตที่เซลล์มีนิวเคลียสและโครงสร้างอื่น (ออร์แกเนลล์) อยู่ภายในเยื่อหุ้มเซลล์ ยูแคริโอตเป็นหน่วยอนุกรมวิธาน ยูคาร์ยาหรือยูแคริโอตา อย่างเป็นทางการ เยื่อหุ้มนิวเคลียสเป็นโครงสร้างที่นิยามเซลล์ยูแคริโอตแยกจากเซลล์โปรแคริโอต โดยภายในเยื่อหุ้มนิวเคลียสมีสารพันธุกรรม การมีนิวเคลียสเป็นที่มาของชื่อยูแคริโอต ซึ่งมาจากภาษากรีก ευ (eu, "ดี") และ κάρυον (karyon, "ผลมีเมล็ดเดียว" หรือ "เมล็ด") เซลล์ยูแคริโอตส่วนใหญ่ยังมีออร์แกเนลล์ที่มีเยื่อหุ้มอื่นด้วย เช่น ไมโทคอนเดรียหรือกอลจิแอพพาราตัส นอกเหนือจากนี้ พืชและสาหร่ายยังมีคลอโรพลาสต์ สิ่งมีชีวิตเซลล์เดียวหลายชนิดเป็นยูแคริโอต เช่น โปรโตซัว แต่สิ่งมีชีวิตหลายเซลล์ทุกชนิดเป็นยูแคริโอต ซึ่งได้แก่ สัตว์ พืชและเห็ดรา การแบ่งเซลล์ในยูแคริโอตแตกต่างจากสิ่งมีชีวิตที่ไม่มีนิวเคลียส (โปรแคริโอต) มีกระบวนการแบ่งตัวสองประเภท คือ ไมโทซิสและไมโอซิส ไมโทซิสเป็นการที่เซลล์หนึ่งแบ่งตัวได้เซลล์ที่มีพันธุกรรมเหมือนกันสองเซลล์ ในไมโอซิสซึ่งจำเป็นในการสืบพันธุ์แบบอาศัยเพศ เซลล์ดิพลอยด์หนึ่ง (ซึ่งมีโครโมโซมสองชุด ชุดหนึ่งมาจากพ่อ อีกชุดหนึ่งมาจากแม่) มีการจับคู่โครโมโซมจากพ่อแม่แต่ละคู่ใหม่ แล้วผ่านการแบ่งเซลล์อีกสองขั้นตอน จนได้เซลล์แฮพลอยด์สี่เซลล์ (เซลล์สืบพันธุ์) เซลล์สืบพันธุ์แต่ละเซลล์มีโครโมโซมชุดเดียว ซึ่งเป็นการผสมโครโมโซมจากพ่อแม่คู่เดียวกัน โดเมนยูแคริโอตาดูเหมือนมาจากชาติพันธุ์เดียว (monophyletic) จึงเป็นหนึ่งในสามโดเมนของสิ่งมีชีวิต อีกสองโดเมน ได้แก่ แบคทีเรียและอาร์เคีย เป็นโปรแคริโอตและไม่มีคุณสมบัติที่กล่าวมาข้างต้น ยูแคริโอตเป็นสิ่งมีชีวิตส่วนน้อยมาก อย่างไรก็ดี เนื่องจากยูแคริโอตมีขนาดใหญ่กว่ามาก มวลชีวภาพรวมทั่วโลกจึงประมาณว่าเท่ากับมวลชีวภาพของโปรแคริโอตWhitman, Coleman, and Wiebe,, Proc.

ใหม่!!: การถ่ายโอนสัญญาณและยูแคริโอต · ดูเพิ่มเติม »

ยีสต์

ีสต์ หรือ ส่าเหล้า (yeast) คือ รากลุ่มหนึ่งที่ส่วนใหญ่เป็นเซลล์เดี่ยว มีรูปร่างหลายแบบ เช่น รูปร่างกลม รี สามเหลี่ยม รูปร่างแบบมะนาว ฝรั่ง เป็นต้น ส่วนใหญ่มีการสืบพันธุ์แบบไม่อาศัยเพศ โดยวิธีการแตกหน่อ พบทั่วไปในธรรมชาติในดิน ในน้ำ ในส่วนต่างๆ ของพืช ยีสต์บางชนิดพบอยู่กับแมลง และในกระเพาะของสัตว์บางชนิด แต่แหล่งที่พบยีสต์อยู่บ่อยๆ คือแหล่งที่มีน้ำตาลความเข้มข้นสูง เช่น น้ำผลไม้ที่มีรสหวาน ยีสต์ที่มีอยู่ตามธรรมชาติ มักจะปนลงไปในอาหาร เป็นเหตุให้อาหารเน่าเสียได้ ยีสต์เป็นสิ่งมีชีวิตที่มีขนาดเล็กมาก มีเยื่อหุ้มนิวเคลียส (eukaryotic micro-organisms) จัดอยู่ในกลุ่มจำพวกเห็ด รา (Fungi) มีทั้งที่เป็นประโยชน์และโทษต่ออาหาร มีการนำยีสต์มาใช้ประโยชน์นานมาแล้ว โดยเฉพาะการผลิตอาหารที่มีแอลกอฮอล์ จากคุณสมบัติที่มีขนาดเล็กมาก สามารถเพาะเลี้ยงให้เกิดได้ในเวลาอันรวดเร็ว และวิธีการไม่ยุ่งยาก ทำให้ยีสต์เริ่มมีบทบาทที่สำคัญในวงการเพาะเลี้ยงสัตว์น้ำ โดยสามารถนำมาใช้เป็นอาหารสำหรับเลี้ยงอาหารธรรมชาติที่สำคัญอีกทีหนึ่ง เช่น ไรแดง โรติเฟอร์ และอาร์ทีเมี.

ใหม่!!: การถ่ายโอนสัญญาณและยีสต์ · ดูเพิ่มเติม »

ระบบภูมิคุ้มกัน

ระบบภูมิคุ้มกัน (immune system) คือระบบที่คอยปกป้องร่างกายของสิ่งมีชีวิตจากสิ่งแปลกปลอม โดยเฉพาะจุลชีพก่อโรค เช่น แบคทีเรีย ไวรัส ปรสิต รา พยาธิ รวมถึงสิ่งแปลกปลอมอื่นๆ เช่น เซลล์ที่กำลังเจริญเติบโตไปเป็นมะเร็ง อวัยวะของผู้อื่นที่ปลูกถ่ายเข้ามาในร่างกาย การได้รับเลือดผิดหมู่ สารก่อภูมิแพ้ ฯลฯ สิ่งแปลกปลอมที่ร่างกายตรวจจับได้เรียกว่า แอนติเจน (antigen) แอนติเจนที่กระตุ้นการทำงานของระบบภูมิคุ้มกันเรียกว่า อิมมูโนเจน (immunogen) สิ่งแวดล้อมทั้งภายในและภายนอกร่างกายเต็มไปด้วยจุลินทรีย์ขนาดเล็กที่มองไม่เห็นด้วยตาเปล่า ส่วนใหญ่จุลินทรีย์ที่อยู่รอบตัวเหล่านี้ไม่ใช่เชื้อก่อโรคแต่ประการใด แต่ก็มีจุลินทรีย์อีกมากมายที่ก่อให้เกิดโรคติดเชื้อ เรียกว่าเชื้อโรค (pathogen) เพื่อป้องกันร่างกายจากเชื้อโรคเหล่านี้ มนุษย์มีระบบภูมิคุ้มกันที่ทำหน้าที่อย่างทรงประสิทธิภาพในการกำจัดเชื้อโรคออกไป หากภูมิคุ้มกันบกพร่อง แม้จะพัฒนายาต้านจุลชีพที่ดีเลิศเพียงใด ก็อาจจะไม่สามารถรักษาชีวิตคนเราจากโรคติดเชื้อไว้ได้ เพราะการที่จะหายจากโรคติดเชื้อได้นั้น ภูมิคุ้มกันในร่างกายเป็นผู้ช่วยตัวสำคัญที.

ใหม่!!: การถ่ายโอนสัญญาณและระบบภูมิคุ้มกัน · ดูเพิ่มเติม »

ระบบรับความรู้สึกทางกาย

การเห็นบกพร่อง สัมผัสเป็นประสาทสัมผัสที่สำคัญเพื่อรับรู้สิ่งแวดล้อม ระบบรับความรู้สึกทางกาย"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ somato-gnosis ว่า "ความรู้สึก-ทางกาย" และของ sensory ว่า "-รับความรู้สึก" แต่สิ่งที่ตีพิมพ์ในวรรณกรรมมักใช้คำอังกฤษว่า somatosensory system โดยไม่แปล (somatosensory system) เป็นส่วนของระบบรับความรู้สึกที่สามารถรับรู้อย่างหลายหลาก ประกอบด้วยตัวรับความรู้สึก/ปลายประสาทรับความรู้สึก (sensory receptor) ที่ระบบประสาทนอกส่วนกลาง และศูนย์ประมวลผลต่าง ๆ ที่ระบบประสาทกลางมากมาย ทำให้รับรู้ตัวกระตุ้นได้หลายแบบรวมทั้งสัมผัส อุณหภูมิ อากัปกิริยา และโนซิเซ็ปชั่น (ซึ่งอาจให้เกิดความเจ็บปวด) ตัวรับความรู้สึกมีอยู่ที่ผิวหนัง เนื้อเยื่อบุผิว กล้ามเนื้อโครงร่าง กระดูก ข้อต่อ อวัยวะภายใน และระบบหัวใจและหลอดเลือด ถึงแม้จะสืบทอดมาตั้งแต่ครั้งโบราณว่า สัมผัสเป็นความรู้สึกอย่างหนึ่งในทวารทั้ง 5 (เช่น "โผฏฐัพพะ" ในพระพุทธศาสนา) แต่ความจริงแล้ว "สัมผัส" เป็นความรู้สึกต่าง ๆ หลายแบบ ดังนั้น การแพทย์จึงมักจะใช้ศัพท์ภาษาอังกฤษว่า "somatic senses (ความรู้สึกทางกาย)" แทนศัพท์ว่า "touch (สัมผัส)" เพื่อให้ครอบคลุมกลไกความรู้สึกทางกายทั้งหมด ความรู้สึกทางกายบางครั้งเรียกว่า "somesthetic senses" โดยที่คำว่า "somesthesis" นั้น รวมการรับรู้สัมผัส (touch) การรับรู้อากัปกิริยา และในบางที่ การรับรู้วัตถุโดยสัมผัส (haptic perception) ระบบรับความรู้สึกทางกายมีปฏิสัมพันธ์กับสิ่งเร้ามากมายหลายแบบ โดยอาศัยตัวรับความรู้สึกประเภทต่าง ๆ รวมทั้งตัวรับอุณหภูมิ โนซิเซ็ปเตอร์ ตัวรับแรงกล และตัวรับรู้สารเคมี ข้อมูลความรู้สึกจะส่งไปจากตัวรับความรู้สึกผ่านเส้นประสาทรับความรู้สึก (sensory nerve) ผ่านลำเส้นใยประสาทในไขสันหลัง ตรงเข้าไปยังสมอง การประมวลผลโดยหลักเกิดขึ้นที่คอร์เทกซ์รับความรู้สึกทางกายปฐมภูมิ (primary somatosensory cortex) ในสมองกลีบข้าง cortical homunculus ที่แสดงไว้โดยไวล์เดอร์ เพ็นฟิลด์ กล่าวอย่างง่าย ๆ ที่สุด ระบบรับความรู้สึกทางกายจะเริ่มทำงานเมื่อตัวรับความรู้สึกที่กายเขตหนึ่งเริ่มทำงาน โดยถ่ายโอนคุณสมบัติของตัวกระตุ้นบางอย่างเช่นความร้อนไปเป็นสัญญาณประสาท ซึ่งในที่สุดก็จะเดินทางไปถึงเขตสมองที่มีหน้าที่เฉพาะเจาะจงต่อเขตกายนั้น และเพราะเฉพาะเจาะจงอย่างนี้ จึงสามารถระบุเขตกายที่เกิดความรู้สึกโดยเฉพาะซึ่งเป็นผลแปลของสมอง ความสัมพันธ์จุดต่อจุดเช่นนี้ปรากฏเป็นแผนที่ผิวกายในสมองที่เรียกว่า homunculus แปลว่า "มนุษย์ตัวเล็ก ๆ" และเป็นส่วนสำคัญในการรับรู้ความรู้สึกที่ส่วนต่าง ๆ ของร่างกาย แต่แผนที่ในสมองเช่นนี้ ไม่ใช่ว่าจะเปลี่ยนแปลงไม่ได้ และจริง ๆ สามารถเปลี่ยนแปลงได้อย่างน่าทึ่งใจ เพื่อตอบสนองต่อโรคหลอดเลือดสมองหรือความบาดเจ็บอื่น.

ใหม่!!: การถ่ายโอนสัญญาณและระบบรับความรู้สึกทางกาย · ดูเพิ่มเติม »

ระบบประสาท

ระบบประสาทของมนุษย์ ระบบประสาทของสัตว์ มีหน้าที่ในการออกคำสั่งการทำงานของกล้ามเนื้อ ควบคุมการทำงานของอวัยวะต่างๆ ในร่างกาย และประมวลข้อมูลที่รับมาจากประสาทสัมผัสต่างๆ และสร้างคำสั่งต่าง ๆ (action) ให้อวัยวะต่าง ๆ ทำงาน (ดูเพิ่มเติมที่ ระบบประสาทกลาง) ระบบประสาทของสัตว์ที่มีสมองจะมีความคิดและอารมณ์ ระบบประสาทจึงเป็นส่วนของร่างกายที่ทำให้สัตว์มีการเคลื่อนไหว (ยกเว้นสัตว์ชั้นต่ำที่ไม่สามารถเคลื่อนไหวได้เช่น ฟองน้ำ) สารเคมีที่มีฤทธิ์ต่อระบบประสาทหรือเส้นประสาท (nerve) เรียกว่า สารที่มีพิษต่อระบบประสาท (neurotoxin) ซึ่งมักจะมีผลทำให้เป็นอัมพาต หรือตายได้.

ใหม่!!: การถ่ายโอนสัญญาณและระบบประสาท · ดูเพิ่มเติม »

ระบบประสาทกลาง

แผนภาพแสดงซีเอ็นเอส:'''1.''' สมอง'''2.''' ระบบประสาทกลาง (สมองและไขสันหลัง) '''3.''' ไขสันหลัง ระบบประสาทกลาง หรือ ระบบประสาทส่วนกลาง หรือ ซีเอ็นเอส (central nervous system; ตัวย่อ: CNS) เป็นโครงสร้างที่ใหญ่ที่สุดของระบบประสาท ประกอบด้วยสมองและไขสันหลัง ทำหน้าที่ร่วมกับระบบประสาทนอกส่วนกลาง (peripheral nervous system) ในการควบคุมพฤติกรรม โครงสร้างของระบบประสาทกลางจะอยู่ภายในช่องลำตัวด้านหลัง (dorsal cavity) สมองอยู่ในช่องลำตัวด้านศีรษะ (cranial cavity) และไขสันหลังอยู่ในช่องไขสันหลัง (spinal cavity) โครงสร้างเหล่านี้ถูกปกคลุมด้วยเยื่อหุ้มสมองและไขสันหลัง (meninges) สมองยังถูกปกคลุมด้วยกะโหลกศีรษะและไขสันหลังยังมีกระดูกสันหลังช่วยป้องกันการกระทบกระเทือน.

ใหม่!!: การถ่ายโอนสัญญาณและระบบประสาทกลาง · ดูเพิ่มเติม »

รางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์

หรียญรางวัลโนเบล รางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์ (Nobelpriset i fysiologi eller medicin, Nobel Prize in Physiology or Medicine) จัดโดยมูลนิธิโนเบล มีการมอบทุกปีให้แก่การค้นพบที่โดดเด่นในสาขาวิทยาศาสตร์สิ่งมีชีวิตและแพทยศาสตร์ รางวัลโนเบลสาขาดังกล่าวเป็นหนึ่งในห้าสาขา ริเริ่มในปี..

ใหม่!!: การถ่ายโอนสัญญาณและรางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์ · ดูเพิ่มเติม »

รูปแบบเอกสารใช้ได้หลายระบบ

รูปแบบเอกสารใช้ได้หลายระบบ (portable document format (ย่อ: pdf)) คือ รูปแบบแฟ้มลักษณะหนึ่ง ที่พัฒนาโดยบริษัทอะโดบีซิสเต็มส์ สำหรับแสดงเอกสารที่สามารถใช้งานได้ในทุกระบบปฏิบัติการ และยังคงลักษณะเอกสารเหมือนต้นฉบับ เอกสารในรูปแบบนี้สามารถจัดเก็บ ตัวอักษร รูปภาพ รูปลายเส้น ในลักษณะเป็นหน้าหนังสือ ตั้งแต่ หนึ่งหน้า หรือหลายพันหน้าได้ในแฟ้มเดียวกัน รูปแบบเป็นมาตรฐานที่เปิดให้คนอื่นสามารถเขียนโปรแกรมมาทำงานร่วมกันได้ รูปแบบนี้ เหมาะสมสำหรับงานที่ต้องการให้แสดงผลลักษณะเดียวกับต้นฉบับ ซึ่งแตกต่างกับการใช้งานรูปแบบอื่น เช่น HTML เพราะการแสดงผลของ HTML จะขึ้นอยู่กับโปรแกรมเบราว์เซอร์และคอมพิวเตอร์ที่ใช้ และเพราะฉะนั้น จะแสดงผลต่างกัน ถ้าใช้ต่างกัน.

ใหม่!!: การถ่ายโอนสัญญาณและรูปแบบเอกสารใช้ได้หลายระบบ · ดูเพิ่มเติม »

ร่างแหเอนโดพลาซึม

ไม่มีคำอธิบาย.

ใหม่!!: การถ่ายโอนสัญญาณและร่างแหเอนโดพลาซึม · ดูเพิ่มเติม »

ลำดับสงวน

accessdate.

ใหม่!!: การถ่ายโอนสัญญาณและลำดับสงวน · ดูเพิ่มเติม »

ลิพิด

รงสร้างลิพิด ลิพิดส่วนใหญ่ประกอบด้วยส่วนหัวเป็นโพลาร์ กรุ๊ป (P) และส่วนหางที่เป็นนอนโพลาร์ (U for unpolar) ลิพิดแสดงฟอสโฟลิพิด 2 หาง รูปซ้ายเป็นส่วนขยายของภาพทางขวา ที่แทน โซ่ลิพิด 1, 2 และ 3 เส้น ลิพิด (lipid) คือสารชีวโมเลกุลที่ไม่ละลายในน้ำ (water-insoluble) มีหลายชนิด หรือ สารประกอบ ไม่มีขั้ว (nonpolar) ละลายน้ำน้อยตลอดจนละลายน้ำมาก พวกที่ละลายน้ำได้มากจะเป็นสารประกอบจำพวก มีขั้ว (polar) ลิพิดบางตัวมีโมเลกุลเป็นเส้นตรง อะลิฟาติก (aliphatic) บางตัวมีวงแหวนเรียก อะโรมาติก (aromatic) บางตัวยืดหยุ่นบางตัวเปราะบาง โมเลกุลของลิพิดมีสองส่วนทั้งที่มีขั้วและไม่มีขั้ว จึงทำให้ลิพิดสามารถละลายได้ทั้งในตัวทำละลายมีขั้วเช่นน้ำ และไม่มีขั้วเช่นน้ำมัน โมเลกุลเหล่านี้เรียกว่า แอมฟิฟิลิก (amphiphilic) คือใน โมเลกุล เดียวกันมีทั้งส่วนที่ชอบน้ำ ไฮโดรฟิลิก (hydrophilic) และส่วนที่กลัวน้ำ ไฮโดรโฟบิก (hydrophobic) ตัวอย่างเช่น คอเลสเตอรอลส่วนที่มีขั้วคือ -OH (ไฮดรอกซิล หรือ แอลกอฮอล์).

ใหม่!!: การถ่ายโอนสัญญาณและลิพิด · ดูเพิ่มเติม »

ลิแกนด์

ลิแกนด์ (ligand) มีความหมายตามวิชาดังนี้.

ใหม่!!: การถ่ายโอนสัญญาณและลิแกนด์ · ดูเพิ่มเติม »

วิวัฒนาการ

ในด้านชีววิทยา วิวัฒนาการ (Evolution) คือการเปลี่ยนแปลงทางพันธุกรรมในประชากรของสิ่งมีชีวิต จากรุ่นหนึ่งสู่อีกรุ่นหนึ่ง วิวัฒนาการเกิดจากกระบวนการหลัก 3 กระบวนการ ได้แก่ ความแปรผัน การสืบพันธุ์ และการคัดเลือก โดยอาศัยยีนเป็นตัวกลางในการส่งผ่านลักษณะทางพันธุกรรม อันเป็นพื้นฐานของการเกิดวิวัฒนาการ ลักษณะเช่นนี้เกิดขึ้นในประชากรเพื่อให้เกิดความแปรผันทางพันธุกรรมเมื่อสิ่งมีชีวิตให้กำเนิดลูกหลานย่อมเกิดลักษณะใหม่ หรือเปลี่ยนแปลงลักษณะเดิม โดยลักษณะใหม่ที่เกิดขึ้นนี้มีสาเหตุสำคัญ 2 ประการ ประการหนึ่ง เกิดจากกระบวนการกลายพันธุ์ของยีน และอีกประการหนึ่ง เกิดจากการแลกเปลี่ยนยีนระหว่างประชากร และระหว่างสปีชีส์ ในสิ่งมีชีวิตที่มีการสืบพันธุ์แบบอาศัยเพศ สิ่งมีชีวิตใหม่ที่เกิดขึ้นจะผ่านกระบวนการแลกเปลี่ยนยีน อันก่อให้เกิดความแปรผันทางพันธุกรรมที่หลากหลายในสิ่งมีชีวิต วิวัฒนาการเกิดขึ้นเมื่อความแตกต่างทางพันธุกรรมเกิดขึ้น จนเกิดความแตกต่างมากขึ้นเรื่อยๆ จนกลายเป็นลักษณะที่แตกต่างกัน กลไกในการเกิดวิวัฒนาการแบ่งได้ 2 กลไก กลไกหนึ่งคือการคัดเลือกโดยธรรมชาติ (natural selection) อันเป็นกระบวนการคัดเลือกสิ่งมีชีวิตที่มีลักษณะเหมาะสมที่จะอยู่รอด และสืบพันธุ์จนได้ลักษณะที่เหมาะสมที่สุด และลักษณะที่ไม่เหมาะสมจะเหลือน้อยลง กลไกนี้เกิดขึ้นเพื่อคัดเลือกลักษณะของประชากรที่เกิดประโยชน์ในการสืบพันธุ์สูงสุด เมื่อสิ่งมีชีวิตหลายรุ่นได้ผ่านพ้นไป ก็จะเกิดกระบวนการปรับตัวของสิ่งมีชีวิต เพื่อให้อยู่ในสิ่งแวดล้อมได้อย่างเหมาะสม กลไกที่สองในการขับเคลื่อนกระบวนการวิวัฒนาการคือการแปรผันทางพันธุกรรม (genetic drift) อันเป็นกระบวนการอิสระจากการคัดเลือกความถี่ของยีนประชากรแบบสุ่ม การแปรผันทางพันธุกรรมเป็นผลมาจากการอยู่รอด และการสืบพันธุ์ของสิ่งมีชีวิต แม้ว่าการแปรผันทางพันธุกรรมในแต่ละรุ่นนั้นจะเปลี่ยนแปลงเพียงเล็กน้อย แต่ลักษณะเหล่านี้จะสะสมจากรุ่นสู่รุ่น เกิดการเปลี่ยนแปลงทีละเล็กละน้อยในสิ่งมีชีวิต จนกระทั่งเวลาผ่านไปเป็นระยะเวลานาน จะทำให้เกิดการเปลี่ยนแปลงขึ้นในลักษณะของสิ่งมีชีวิต กระบวนการดังกล่าวเมื่อถึงจุดสูงสุดจะทำให้กำเนิดสปีชีส์ชนิดใหม่ แม้กระนั้น ความคล้ายคลึงกันระหว่างสิ่งมีชีวิตมีข้อเสนอที่เป็นที่รู้จักกันดีคือการสืบเชื้อสายจากบรรพบุรุษ (หรือยีนพูลของบรรพบุรุษ) เมื่อผ่านกระบวนการนี้จะก่อให้เกิดความหลากหลายมากขึ้นทีละเล็กละน้อย เอกสารหลักฐานทางชีววิทยาวิวัฒนาการชี้ให้เห็นว่ากระบวนการวิวิฒนาการเป็นสิ่งที่เกิดขึ้นจริง ทฤษฎีอยู่ในช่วงของการทดลอง และพัฒนาในสาเหตดังกล่าว การศึกษาซากฟอสซิล และความหลากหลายทางชีวภาพของสิ่งมีชีวิตทำให้นักวิทยาศาสตร์ช่วงกลางคริสศตวรรษที่ 19 ส่วนใหญ่เชื่อว่าสปีชีส์มีการเปลี่ยนแปลงมาตลอดในระยะเวลาที่ผ่านมา อย่างไรก็ตาม กระบวนการที่ขับเคลื่อนการเปลี่ยนแปลงนี้เป็นปริศนาต่อนักวิทยาศาสตร์ทั่วไป จนกระทั่งปี พ.ศ. 2402 ชาร์ล ดาวิน ตีพิมพ์หนังสือ กำเนิดสปีชีส์ ซึ่งได้อธิบายทฤษฎีวิวัฒนาการโดยกระบวนการคัดเลือกโดยธรรมชาต.

ใหม่!!: การถ่ายโอนสัญญาณและวิวัฒนาการ · ดูเพิ่มเติม »

วิถีเมแทบอลิซึม

ในทางชีวเคมี วิถีเมแทบอลิซึม (metabolic pathway) เป็นชุดของปฏิกิริยาเคมีที่เกิดขึ้นในเซลล์ ในแต่ละวิถี สารเคมีหลักจะเกิดปฏิกิริยาเคมีและเปลี่ยนไปเป็นสารอื่น โดยมีเอนไซม์เป็นตัวเร่งปฏิกิริยา และมักต้องอาศัยแร่ธาตุ วิตามินและโคแฟกเตอร์อื่น ๆ จึงจะดำเนินไปอย่างเหมาะสม เพราะมีสารเคมีจำนวนมาก ("เมแทบอไลต์") เข้ามาเกี่ยวข้อง วิถีเมแทบอลิซึมจึงอาจค่อนข้างซับซ้อน ยิ่งไปกว่านั้น วิถีซึ่งแตกต่างกันจำนวนมากเกิดร่วมกันในเซลล์ หมู่วิถีนี้เรียกว่า เครือข่ายเมแทบอลิซึม วิถีเมแทบอลิซึมสำคัญต่อการรักษาภาวะธำรงดุล (homeostasis) ในสิ่งมีชีวิต วิถีแคแทบอลิซึมและแอแนบอลิซึมมักทำงานพึ่งพาอาศัยกันเพื่อสร้างโมเลกุลชีวภาพใหม่เป็นผลิตภัณฑ์สุดท้าย วิถีเมแทบอลิซึมเกี่ยวข้องกับการเปลี่ยนแปลงสารตั้งต้นทีละขั้นเพื่อให้ได้ผลิตภัณฑ์ใหม่ ผลิตภัณฑ์ที่ได้มานั้นสามารถนำไปใช้ได้สามทาง คือ.

ใหม่!!: การถ่ายโอนสัญญาณและวิถีเมแทบอลิซึม · ดูเพิ่มเติม »

วิตามินดี

วิตามินดี หมายถึง เซกโคสเตอรอยด์ (secosteroids) ที่ละลายในไขมันกลุ่มหนึ่งซึ่งทำหน้าที่เสริมการดูดซึมแคลเซียม เหล็ก แม็กนีเซียม ฟอสเฟตและสังกะสี ในมนุษย์ สารประกอบที่สำคัญที่สุดในกลุ่มนี้ คือ วิตามินดี3 (หรือ คอเลแคลซิเฟรอล) และวิตามินดี2 (เออร์โกแคลซิเฟรอล) คอเลแคลซิเฟรอลและเออร์โกแคลซิเฟรอลสามารถดูดซึมจากอาหารและอาหารเสริมได้ มีอาหารน้อยชนิดมากที่มีวิตามินดี การสังเคราะห์วิตามินดี (โดยเฉพาะคอเลแคลซิเฟรอล) ในผิวหนังเป็นแหล่งของวิตามินดังกล่าวตามธรรมชาติที่สำคัญเพียงแหล่งเดียว การสังเคราะห์วิตามินดีของผิวหนังจากคอเลสเตอรอลอาศัยการได้รับแสงแดด (โดยเฉพาะรังสียูวีบี) หมวดหมู่:วิตามิน หมวดหมู่:ยา หมวดหมู่:โมเลกุลชีวภาพ.

ใหม่!!: การถ่ายโอนสัญญาณและวิตามินดี · ดูเพิ่มเติม »

วิตามินเอ

รงสร้างของเรตินอล วิตามินเอที่พบได้บ่อย วิตามินเอ เป็นวิตามินที่ละลายได้ในไขมัน มีส่วนประกอบสำคัญของคอร์เนีย และยังมีผลต่อการเจริญเติบโต การสร้างกระดูก และระบบสืบพันธุ์ นอกจากนี้ ยังป้องกันการติดเชื้อระบบทางเดินอาหาร ระบบทางเดินหายใจ และระบบขับปัสสาวะ ทำให้ผิวและผมแข็งแรง ค้นพบโดย ดร.

ใหม่!!: การถ่ายโอนสัญญาณและวิตามินเอ · ดูเพิ่มเติม »

วงศ์ผักกาด

วงศ์ผักกาด หรือ Brassicaceae, เป็นวงศ์ของพืชมีดอก ชื่อวงศ์ตั้งตามชื่อสกุล Brassica วงศ์นี้แต่เดิมใช้ชื่อว่า Cruciferae หมายถึงลักษณะดอกที่มีสี่กลีบ วงศ์นี้ประกอบด้วย 330 สกุล มีสมาชิกประมาณ 3,700 สปีชีส์ สกุลที่ใหญ่ที่สุดคือ Draba (365 สปีชีส์) รองลงไปได้แก่ Cardamine (200 สปีชีส์แต่คำจำกัดความยังมีข้อโต้แย้ง) Erysimum (225 สปีชีส์), Lepidium (230 สปีชีส์) และ Alyssum (195 สปีชีส์) สปีชีส์ในวงศ์นี้ที่เป็นที่รู้จักกันดีได้แก่ Brassica oleracea (กะหล่ำ) Brassica napus (เรปสีด) Raphanus sativus (ผักกาดหัว) Armoracia rusticana (ฮอร์สเรดิช) Arabidopsis thaliana (พืชที่ใช้เป็นแบบจำลองในการศึกษาทางด้านชีวโมเลกุล).

ใหม่!!: การถ่ายโอนสัญญาณและวงศ์ผักกาด · ดูเพิ่มเติม »

ศักยะงาน

การเกิดกระแสประสาท ในวิชาสรีรวิทยา ศักยะงาน (action potential) เป็นเหตุการณ์ที่กินเวลาสั้น ๆ ซึ่งศักย์เยื่อหุ้มเซลล์ (membrane potential) ไฟฟ้าของเซลล์เพิ่มและลดลงอย่างรวดเร็ว ตามด้วยแนววิถีต่อเนื่อง ศักยะงานเกิดขึ้นในเซลล์สัตว์หลายชนิด เรียกว่า เซลล์ที่เร้าได้ (excitable cell) ซึ่งรวมถึงเซลล์ประสาท เซลล์กล้ามเนื้อ และเซลล์ไร้ท่อ (endocrine cell) เช่นเดียวกับเซลล์พืชบางเซลล์ ในเซลล์ประสาท ศักยะงานมีบทบาทศูนย์กลางในการสื่อสารเซลล์ต่อเซลล์ ส่วนในเซลล์ประเภทอื่น หน้าที่หลักของศักยะงาน คือ กระตุ้นกระบวนการภายในเซลล์ ตัวอย่างเช่น ในเซลล์กล้ามเนื้อ ศักยะงานเป็นขั้นแรกในชุดเหตุการณ์ที่นำไปสู่การหดตัว ในเซลล์บีตาของตับอ่อน ศักยะงานทำให้เกิดการหลั่งอินซูลิน ศักยะงานในเซลล์ประสาทยังรู้จักในอีกชื่อหนึ่งว่า "กระแสประสาท" หรือ "พลังประสาท" (nerve impulse) หรือ spike ศักยะงานสร้างโดยช่องไอออนที่ควบคุมด้วยศักย์ไฟฟ้า (voltage-gated ion channel) ชนิดพิเศษที่ฝังอยู่ในเยื่อหุ้มเซลล์ ช่องเหล่านี้ถูกปิดเมื่อศักย์เยื่อหุ้มเซลล์ใกล้กับศักยะพัก (resting potential) แต่จะเริ่มเปิดอย่างรวดเร็วหากศักย์เยื่อหุ้มเซลล์เพิ่มขึ้นถึงค่าระดับกั้น (threshold) ที่นิยามไว้อย่างแม่นยำ เมื่อช่องเปิด จะทำให้ไอออนโซเดียมไหลเข้ามาในเซลล์ประสาท ซึ่งเปลี่ยนแปลงประจุไฟฟ้า (electrochemical gradient) การเปลี่ยนแปลงนี้ยิ่งเพิ่มศักย์เยื่อหุ้มเซลล์เข้าไปอีก ทำให้ช่องเปิดมากขึ้น และเกิดกระแสไฟฟ้าแรงขึ้นตามลำดับ กระบวนการดังกล่าวดำเนินไปกระทั่งช่องไอออนที่มีอยู่เปิดออกทั้งหมด ทำให้ศักย์เยื่อหุ้มเซลล์แกว่งขึ้นอย่างมาก การไหล่เข้าอย่างรวดเร็วของไอออนโซเดียมทำให้สภาพขั้วของเยื่อหุ้มเซลล์กลายเป็นตรงข้าม และช่องไอออนจะหยุดทำงาน (inactivate) อย่างรวดเร็ว เมื่อช่องโซเดียมปิด ไอออนโซเดียมจะไม่สามารถเข้าสู่เซลล์ประสาทได้อีกต่อไป และจะถูกลำเลียงแบบใช้พลังงานออกจากเยื่อหุ้มเซลล์ จากนั้น ช่องโปแทสเซียมจะทำงาน และมีกระแสไหลออกของไอออนโปแทสเซียม ซึ่งคืนประจุไฟฟ้ากลับสู่สถานะพัก หลังเกิดศักยะงานแล้ว จะมีการเปลี่ยนแปลงที่เรียกว่า ระยะดื้อ (refractory period) เนื่องจากกระแสโปแทสเซียมเพิ่มเติม กลไกนี้ป้องกันมิให้ศักยะงานเดินทางย้อนกลับ ในเซลล์สัตว์ มีศักยะงานอยู่สองประเภทหลัก ประเภทหนึ่งสร้างโดย ช่องโซเดียมที่ควบคุมด้วยศักย์ไฟฟ้า อีกประเภทหนึ่งโดยช่องแคลเซียมที่ควบคุมด้วยศักย์ไฟฟ้า ศักยะงานที่เกิดจากโซเดียมมักคงอยู่น้อยกว่าหนึ่งมิลลิวินาที ขณะที่ศักยะงานที่เกิดจากแคลเซียมอาจอยู่ได้นานถึง 100 มิลลิวินาทีหรือกว่านั้น.

ใหม่!!: การถ่ายโอนสัญญาณและศักยะงาน · ดูเพิ่มเติม »

ศักย์ไฟฟ้า

ักย์ไฟฟ้า (electric potential) (ยังถูกเรียกว่า ศักย์สนามไฟฟ้าหรือศักย์ไฟฟ้าสถิต) เป็นปริมาณของพลังงานศักย์ไฟฟ้าที่ประจุไฟฟ้าที่จุดหนึ่งเดียวนั้นจะพึงมีถ้ามันถูกมองหาตำแหน่งที่จุดใดจุดหนึ่งในที่ว่าง และมีค่าเท่ากับงานที่ถูกกระทำโดยสนามไฟฟ้าหนึ่งในการเคลื่อนย้ายหนึ่งหน่วยของประจุบวกจากที่ห่างไกลไม่สิ้นสุด (infinity) มาที่จุดนั้น ในทฤษฎีแม่เหล็กไฟฟ้าแบบคลาสสิก ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์แสดงโดย, หรือ มีค่าเท่ากับพลังงานศักย์ไฟฟ้า(มีหน่วยเป็นจูล)ของอนุภาคที่มีประจุใด ๆ ที่ตำแหน่งใด ๆ หารด้วยประจุ(มีหน่วยเป็นคูลอมบ์)ของอนุภาคนั้น เมื่อประจุของอนุภาคได้ถูกหารออกไป ส่วนที่เหลือจึงเป็น "คุณสมบัติ" ของตัวสนามไฟฟ้าเอง ค่านี้สามารถคำนวณได้ในสนามไฟฟ้าที่คงที่(เวลาไม่เปลี่ยน)หรือในสนามไฟฟ้าแบบไดนามิก(เปลี่ยนไปตามเวลา)ในเวลาที่กำหนด และมีหน่วยเป็นจูลต่อคูลอมบ์, หรือ volts ศักย์ไฟฟ้าที่อินฟินิตี้สมมติว่ามีค่าเป็นศูนย์ ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์ เพราะศักย์ไฟฟ้าเป็นพลังงานต่อหนึ่งหน่วยประจุเนื่องจากพลังงานศักย์ไฟฟ้ามีหน่วยเป็นจูล (J) ประจุมีหน่วยเป็นคูลอมบ์ (C) ศักย์ไฟฟ้าจึงมีหน่วยเป็น จูลต่อคูบอมบ์ ซึ่งเรียกว่า โวลต์ (V)            ในกรณีสนามโน้มถ่วงของโลก พลังงานศักย์โน้มถ่วงของวัตถุที่ตำแหน่งต่างๆ ขึ้นกับความสูงของวัตถุเมื่อเทียบกับระดับอ้างอิง ซึ่งจะอยู่ที่ระดับดำก็ได้แล้วแต่จะกำหนด และให้ระดับอ้างอิงนี้มีพลังงานศักย์โน้มถ่วงเป็นศูนย์ ในการหาพลังงานศักย์ไฟฟ้าของประจุที่ตำแหน่งต่างๆ ก็ต้องกำหนดระดับอ้างอิงเช่นกัน นอกจากนี้ศักย์ไฟฟ้าแบบสเกลล่าร์ทั่วไปยังถูกใช้ในระบบ electrodynamics เมื่อสนามแม่เหล็กไฟฟ้าที่เปลี่ยนแปลงไปตามเวลาปรากฎอยู่ แต่ศักย์ไฟฟ้าทั่วไปนี้ไม่สามารถคำนวนออกมาง่าย ๆ ศักย์ไฟฟ้าและศักย์เวกเตอร์แม่เหล็กรวมเข้าด้วยกันเป็นสี่เวกเตอร์ เพื่อที่ว่าทั้งสองชนิดของศักย์จะถูกนำมาผสมกันภายใต้ Lorentz transformations.

ใหม่!!: การถ่ายโอนสัญญาณและศักย์ไฟฟ้า · ดูเพิ่มเติม »

สรีรวิทยา

"เดอะ วิทรูเวียน แมน" (The Vitruvian Man) โดยเลโอนาร์โด ดา วินชี ประมาณปี 1487 เป็นตัวอย่างที่ดีเกี่ยวกับความรู้ด้านสรีรวิทยา สรีรวิทยา (physiology) เป็นสาขาวิชาที่ศึกษาเกี่ยวกับการทำงานของระบบต่างๆในสิ่งมีชีวิต ทั้งในด้านกลศาสตร์ ด้านกายภาพ และด้านชีวเคมี สรีรวิทยาแบ่งออกเป็นสรีรวิทยาของพืชและสรีรวิทยาของสัตว์ แต่สรีรวิทยาทุกสาขามีหลักการร่วมกัน ไม่ว่าจะเป็นการศึกษาสิ่งมีชีวิตชนิดใด เช่น การศึกษาสรีรวิทยาของเซลล์ยีสต์ สามารถนำมาประยุกต์ใช้กับการศึกษาเซลล์ของมนุษย์ได้ สาขาสรีรวิทยาของสัตว์นั้นหมายรวมถึงเครื่องมือและวิธีการศึกษาสรีรวิทยาของมนุษย์ซึ่งนำมาใช้ศึกษาในสัตว์ด้วย สาขาสรีรวิทยาของพืชก็สามารถใช้วิธีการศึกษาเช่นเดียวกับสัตว์และมนุษย์ด้วยเช่นกัน สาขาวิชาอื่นๆที่ถือกำเนิดจากการศึกษาวิจัยทางสรีรวิทยา ได้แก่ ชีวเคมี ชีวฟิสิกส์ ชีวกลศาสตร์ และเภสัชวิท.

ใหม่!!: การถ่ายโอนสัญญาณและสรีรวิทยา · ดูเพิ่มเติม »

สวิตช์โมเลกุล

วิตช์โมเลกุล (molecular switch) เป็นโมเลกุลที่สามารถเปลี่ยนกลับไปกลับมา ระหว่างสภาพที่เสถียรสองอย่างหรือมากกว่านั้น โมเลกุลอาจเปลี่ยนระหว่างสภาพต่าง ๆ เพื่อตอบสนองต่อสิ่งเร้าจากสิ่งแวดล้อม เช่น การเปลี่ยนแปลงของความเป็นกรดด่าง แสงสว่าง อุณหภูมิ กระแสไฟฟ้า สิ่งแวดล้อมจุลภาค หรือเมื่อมีลิแกนด์ ในบางกรณี จะต้องมีสิ่งเร้ามากกว่าหนึ่งอย่าง รูปแบบเก่าแก่ที่สุดของสวิตช์โมเลกุลที่สังเคราะห์ขึ้นก็คือ สารชี้บอกความเป็นกรดด่าง (pH indicator) ซึ่งแสดงสีต่าง ๆ ตามระดับความเป็นกรดด่าง ในปัจจุบัน สวิตช์โมเลกุลแบบสังเคราะห์ที่ได้รับความสนใจอยู่ในสาขานาโนเทคโนโลยี เพื่อใช้กับคอมพิวเตอร์ระดับโมเลกุล หรือระบบการส่งยา (ไปยังอวัยวะ/โครงสร้างที่เป็นเป้าหมาย) ที่สามารถแสดงผล สวิตช์โมเลกุลเป็นเรื่องสำคัญในชีววิทยา เพราะการทำงานทางชีวภาพหลายอย่างอาศัยมัน ยกตัวอย่างเช่น allosteric regulation (การควบคุมเอนไซม์โดยให้จับกับหน่วยปฏิบัติงานที่จุดยึดซึ่งไม่ใช่จุดแอ๊กถีฟ) และการเห็น มันยังเป็นตัวอย่างง่ายสุดของจักรกลโมเลกุล.

ใหม่!!: การถ่ายโอนสัญญาณและสวิตช์โมเลกุล · ดูเพิ่มเติม »

สัตว์เลี้ยงลูกด้วยน้ำนม

ัตว์เลี้ยงลูกด้วยน้ำนม (Mammalia) จัดอยู่ในไฟลัมสัตว์มีแกนสันหลัง โดยคำว่า Mammalia มาจากคำว่า Mamma ที่มีความหมายว่า "หน้าอก" เป็นกลุ่มของสัตว์เลี้ยงลูกด้วยน้ำนม ที่มีการวิวัฒนาการและพัฒนาร่างกายที่ดีหลากหลายประการ รวมทั้งมีระบบประสาทที่เจริญก้าวหน้า สามารถดำรงชีวิตได้ในทุกสภาพสิ่งแวดล้อมสัตววิทยา (สัตว์เลี้ยงลูกด้วยน้ำนม), บพิธ-นันทพร จารุพันธุ์, สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, 2547, หน้า 411 มีขนาดของร่างกายและรูปพรรณสัณฐานที่แตกต่างกันออกไป รวมถึงการทำงานของระบบต่าง ๆ ภายในร่างกาย ที่มีการปรับเปลี่ยนไปตามลักษณะของสายพันธุ์ มีลักษณะเด่นคือมีต่อมน้ำนมที่มีเฉพาะในเพศเมียเท่านั้น เพื่อผลิตน้ำนมเพื่อใช้เลี้ยงลูกวัยแรกเกิด เป็นสัตว์เลือดอุ่น มีขนเป็นเส้น ๆ (hair) หรือขนอ่อน (fur) ปกคลุมทั่วทั้งร่างกาย เพื่อเป็นการรักษาอุณหภูมิในร่างกาย ยกเว้นสัตว์น้ำที่ไม่มีขน สัตว์เลี้ยงลูกด้วยน้ำนม ไม่จัดอยู่ในประเภทสัตว์กลุ่มใหญ่ คือมีจำนวนประชากรประมาณ 4,500 ชนิด ซึ่งถือว่าเป็นปริมาณน้อยมากเมื่อเทียบกับนก ที่มีประมาณ 9,200 ชนิด และปลาอีกประมาณ 20,000 ชนิด รวมทั้งแมลงอีกประมาณ 800,000 ชนิด ส่วนใหญ่เป็นสัตว์บก เช่น สุนัข ช้าง ลิง เสือ สิงโต จิงโจ้ เม่น หนู ฯลฯ สำหรับสัตว์น้ำที่จัดเป็นเลี้ยงลูกด้วยน้ำนม ได้แก่ โลมา วาฬ มานาทีและพะยูน แต่สำหรับสัตว์ปีกประเภทเดียวที่เลี้ยงลูกด้วยน้ำนมคือค้างคาว ซึ่งกระรอกบินและบ่างนั้น ไม่จัดอยู่ในประเภทของสัตว์ปีก เนื่องจากใช้ปีกในการร่อนไปได้เพียงแค่ระยะหนึ่งเท่านั้น สัตว์เลี้ยงลูกด้วยน้ำนมส่วนใหญ่ออกลูกเป็นตัว ยกเว้นตุ่นปากเป็ดและอีคิดนาเท่านั้นที่ออกลูกเป็น.

ใหม่!!: การถ่ายโอนสัญญาณและสัตว์เลี้ยงลูกด้วยน้ำนม · ดูเพิ่มเติม »

สารกึ่งตัวนำ

รกึ่งตัวนำ (semiconductor) คือ วัสดุที่มีคุณสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวน เป็นวัสดุที่ใช้ทำอุปกรณ์อิเล็คทรอนิกส์ มักมีตัวประกอบของ germanium, selenium, silicon วัสดุเนื้อแข็งผลึกพวกหนึ่งที่มีสมบัติเป็นตัวนำ หรือสื่อไฟฟ้าก้ำกึ่งระหว่างโลหะกับอโลหะหรือฉนวน ความเป็นตัวนำไฟฟ้าขึ้นอยู่กับอุณหภูมิ และสิ่งไม่บริสุทธิ์ที่มีเจือปนอยู่ในวัสดุพวกนี้ ซึ่งอาจเป็นธาตุหรือสารประกอบก็มี เช่น ธาตุเจอร์เมเนียม ซิลิคอน ซีลีเนียม และตะกั่วเทลลูไรด์ เป็นต้น วัสดุกึ่งตัวนำพวกนี้มีความต้านทานไฟฟ้าลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งเป็นลักษณะตรงข้ามกับโลหะทั้งปวง ที่อุณหภูมิ ศูนย์ เคลวิน วัสดุพวกนี้จะไม่ยอมให้ไฟฟ้าไหลผ่านเลย เพราะเนื้อวัสดุเป็นผลึกโควาเลนต์ ซึ่งอิเล็กตรอนทั้งหลายจะถูกตรึงอยู่ในพันธะโควาเลนต์หมด (พันธะที่หยึดเหนี่ยวระหว่างอะตอม) แต่ในอุณหภูมิธรรมดา อิเล็กตรอนบางส่วนมีพลังงาน เนื่องจากความร้อนมากพอที่จะหลุดไปจากพันธะ ทำให้เกิดที่ว่างขึ้น อิเล็กตรอนที่หลุดออกมาเป็นสาเหตุให้สารกึ่งตัวนำ นำไฟฟ้าได้เมื่อมีมีสนามไฟฟ้ามาต่อเข้ากับสารนี้ สารกึ่งตัวนำไม่บริสุทธิ์ เป็นสารที่เกิดขึ้นจากการเติมสารเจือปนลงไปในสารกึ่งตัวนำแท้ เช่น ซิลิกอน หรือเยอรมันเนียม เพื่อให้ได้สารกึ่งตัวนำที่มีสภาพการนำไฟฟ้าที่ดีขึ้น สารกึ่งตัวนำไม่บริสุทธิ์นี้แบ่งออกเป็น 2 ประเภทคือ สารกึ่งตัวนำประเภทเอ็น (N-Type) และสารกึ่งตัวนำประเภทพี (P-Type).

ใหม่!!: การถ่ายโอนสัญญาณและสารกึ่งตัวนำ · ดูเพิ่มเติม »

สารละลาย

รละลายเกลือแกงในน้ำ ในทางเคมี สารละลาย (solution) คือสารผสมที่เป็นเนื้อเดียวกัน ซึ่งมีสสารหนึ่งชนิดหรือมากกว่าเป็นตัวละลาย ละลายอยู่ในสารอีกชนิดหนึ่งซึ่งเป็นตัวทำละลาย ตัวอย่างเช่น ไม่เพียงแต่ของแข็งที่สามารถละลายในของเหลว เหมือนเกลือหรือน้ำตาลที่ละลายในน้ำ (หรือแม้แต่ทองคำที่ละลายในปรอทแล้วเกิดเป็นอะมัลกัม (amalgam)) แต่ก๊าซก็สามารถละลายในของเหลวได้ เช่น คาร์บอนไดออกไซด์หรือออกซิเจนสามารถละลายในน้ำได้.

ใหม่!!: การถ่ายโอนสัญญาณและสารละลาย · ดูเพิ่มเติม »

สารสื่อประสาท

รสื่อประสาท (neurotransmitter) คือ สารเคมีที่มีหน้าที่ในการนำ, ขยาย และควบคุมสัญญาณไฟฟ้าจากเซลล์ประสาทเซลล์หนึ่งไปยังอีกเซลล์หนึ่ง ตามระบอบความเชื่อ ที่ตั้งขึ้นในทศวรรษที่ 1960 โดยที่สารเคมีนั้นจะเป็นสารสื่อประสาทได้จะต้องเป็นจริงตามเงื่อนไขดังนี้.

ใหม่!!: การถ่ายโอนสัญญาณและสารสื่อประสาท · ดูเพิ่มเติม »

สารเคลือบเซลล์

รเคลือบเซลล์ (Extracellular metrix, ECM) เป็นผลิตภัณฑ์อย่างหนึ่งของเซลล์ซึ่งพบอยู่ที่บริเวณรอบนอกของเซลล์สัตว์ สารเคลือบเซลล์นั้นมีส่วนสำคัญในการค้ำจุนโครงสร้างของเซลล์ นอกจากนี้ยังทำหน้าที่ที่สำคัญต่างๆอีกมากมาย ซึ่งถ้าสารเคลือบเซลล์เกิดความผิดปกติขึ้นก็อาจทำให้เซลล์นั้นเกิดความผิดปกติตามไปด้วยและอาจนำไปสู่การเกิดมะเร็งในที่สุด สารเคลือบเซลล์นั้นจะถูกคัดหลั่งออกมาจากตัวเซลล์และไฟโบรบลาสท์ (fibrobrast) หรือเนื้อเยื่อเกี่ยวพัน (connective tissus) ที่แทรกอยู่ระหว่างเซลล์ ซึ่งสารที่คัดหลั่งออกมานั้นจะมีองค์ประกอบที่สำคัญ 2 ประการ ได้แก่ สารประกอบเชิงซ้อนของโพลีแซคคาไรด์กับโปรตีนที่มีชื่อว่า ไกลโคซามิโนไกลแคนส์ (Glycosaminoglycans,GAGs) สารนี้จะมีคุณสมบัติในการดูดซับน้ำได้ จึงทำให้สารเคลือบเซลล์นั้นมีลักษณะคล้ายเจล และองค์ประกอบสำคัญอีกอย่างหนึ่งก็คือ โปรตีนเส้นใย (Fibrous proteins) ได้แก่ คอลลาเจน(collagen) อีลาสติน(elastin) ไฟโบรเนกติน(fibronectin) และ ลามินิน(laminin) เป็นต้น ซึ่งโปรตีนเส้นใยเหล่านี้จะมีการเชื่อมโยงกับโปรตีนต่างๆในเซลล์ด้วย สารเคลือบเซลล์นั้นจะพบมากในบริเวณเนื้อเยื่อเกี่ยวพันซึ่งปรากฏในหลายรูปแบบ เช่น กระดูก(bone) ฟัน(teeth) กระจกตา(cornea) เอ็นที่ยึดระหว่างปลายมัดของกล้ามเนื้อกับกระดูก(tendons) เป็นต้น แต่จะพบได้น้อยในเนื้อเยื่อประเภทเนื้อเยื่อสมองและไขสันหลังเนื่องจากเนื้อเยื่อนั้นติดกันแน่น.

ใหม่!!: การถ่ายโอนสัญญาณและสารเคลือบเซลล์ · ดูเพิ่มเติม »

สิ่งมีชีวิตหลายเซลล์

งมีชีวิตหลายเซลล์ (multicellular organism) เป็นสิ่งมีชีวิตที่มีเซลล์มากกว่าหนึ่งเซลล์ ต่างจากสิ่งมีชีวิตเซลล์เดียว ในการจะเกิดเป็นสิ่งมีชีวิตหลายเซลล์นั้น เซลล์เหล่านี้จำต้องระบุเอกลักษณ์และยึดเข้ากับเซลล์อื่น สัตว์เกือบทั้งหมด 1.5 ล้านสปีชีส์ ตลอดจนพืชและฟังไจจำนวนมากเป็นสิ่งมีชีวิตหลายเซลล.

ใหม่!!: การถ่ายโอนสัญญาณและสิ่งมีชีวิตหลายเซลล์ · ดูเพิ่มเติม »

สเตอรอยด์

ตอรอยด์ (อังกฤษ: steroid) เป็นลิพิดที่มีคุณสมบัติพิเศษ โดยที่โครงสร้างคาร์บอนจะเป็นวงแหวน 4 วงเชื่อมต่อกัน ความแตกต่างของชนิดสเตอรอยด์จะผันแปรไปตามฟังก์ชันนัลกรุป (functional group) ที่ติดอยู่กับวงแหวนเหล่านี้ มีสเตอรอยด์แตกต่างกันนับร้อยชนิดที่สามารถตรวจพบในพืชและสัตว์ ตัวอย่างบทบาทสำคัญของสเตอรอยด์ในสิ่งมีชีวิตส่วนใหญ่คือ ฮอร์โมน Steroid skeleton. Carbons 18 and above can be absent. ในสรีรวิทยาและการแพทย์ของมนุษย์ สารสเตอรอยด์ที่สำคัญส่วนใหญ่ คือ คอเลสเตอรอล, สเตอรอยด์, ฮอร์โมน และสารตั้งต้น (precursor) และเมแทบอไลต์ คอเลสเตอรอลเป็นสารประกอบประเภท สเตอรอยด์แอลกอฮอล์ ซึ่งเป็นส่วนประกอบของเยื่อหุ้มเซลล์ในสัตว์ แต่อย่างไรก็ดี ถ้ามันมีปริมาณมากเกินไปจะทำให้เกิดโรค และภาวะผิดปกติมากมาย เช่น ภาวะผนังเส้นโลหิตแดงหนาและมีความยึดหยุ่นน้อยลง (atherosclerosis) สเตอรอยด์อื่นส่วนใหญ่ถูกสังเคราะห์จาก คอเลสเตอรอลฮอร์โมนต่าง ๆ เช่น ฮอร์โมนเพศของสัตว์มีกระดูกสันหลัง (vertebrate) ก็เป็นสเตอรอยด์ที่สร้างจากคอเลสเตอรอล สเตอรอยด์แบ่งเป็นประเภทต่าง ๆ ดังนี้.

ใหม่!!: การถ่ายโอนสัญญาณและสเตอรอยด์ · ดูเพิ่มเติม »

หนู

หนู เป็นสกุลของสัตว์ฟันแทะ ที่อยู่ในวงศ์ Muridae ใช้ชื่อสกุลว่า Rattus มีการกระจายพันธุ์อยู่ในซีกโลกที่เรียกว่า "โลกเก่า" อันได้แก่ ทวีปเอเชีย, ยุโรป และแอฟริกา ตัวเมียเข้าสู่วัยเจริญพันธุ์เมื่ออายุได้ 2–3 เดือน ในขณะที่ตัวผู้อายุ 3 เดือนขึ้นไป.

ใหม่!!: การถ่ายโอนสัญญาณและหนู · ดูเพิ่มเติม »

หน่วยรับที่จับคู่กับจีโปรตีน

รงสร้างแบบ α-helix โดยมีโดเมนข้ามเยื่อหุ้มเซลล์ 7 โดเมนของ G protein-coupled receptor หน่วยรับที่จับคู่กับจีโปรตีน (G protein-coupled receptors ตัวย่อ GPCRs) ที่มีชื่ออื่น ๆ อีกว่า seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptor, และ G protein-linked receptors (GPLR), เป็นกลุ่ม (family) โปรตีนหน่วยรับ (receptor) กลุ่มใหญ่ ที่ตรวจจับโมเลกุลนอกเซลล์ แล้วจุดชนวนวิถีการถ่ายโอนสัญญาณ (signal transduction) ภายในเซลล์ ซึ่งในที่สุดมีผลเป็นการตอบสนองของเซลล์ เป็นหน่วยรับที่จับคู่กับจีโปรตีน (G protein) ที่เรียกว่า seven-transmembrane receptor เพราะมีโครงสร้างที่ข้ามผ่านเยื่อหุ้มเซลล์ถึง 7 ครั้ง GPCRs จะพบแต่ในยูแคริโอตรวมทั้งยีสต์, choanoflagellate, และสัตว์ ลิแกนด์ที่จับและเริ่มการทำงานของหน่วยรับเช่นนี้รวมทั้งสารประกอบไวแสง กลิ่น ฟีโรโมน ฮอร์โมน และสารสื่อประสาท โดยมีขนาดต่าง ๆ เริ่มตั้งแต่โมเลกุลเล็ก ๆ จนถึงเพปไทด์และโปรตีนขนาดใหญ่ GPCRs มีบทบาทในโรคหลายอย่าง และเป็นเป้าหมายการออกฤทธิ์ของยาปัจจุบันประมาณ 34% มีวิถีการถ่ายโอนสัญญาณสองอย่างเกี่ยวกับ GPCRs คือ.

ใหม่!!: การถ่ายโอนสัญญาณและหน่วยรับที่จับคู่กับจีโปรตีน · ดูเพิ่มเติม »

หน่วยรับความรู้สึก

หน่วยรับความรู้สึก, ตัวรับหรือที่รับ (receptor) ในชีวเคมี เป็นโปรตีนที่อยู่บนเยื่อหุ้มเซลล์ หรือในไซโทพลาสซึมหรือนิวเคลียสที่จะเชื่อมต่อกับโมเลกุลเฉพาะซึ่งเรียกว่า ลิแกนด์ (ligand) เช่น สารสื่อประสาท, ฮอร์โมน หรือสารประกอบอื่นๆ และทำให้เกิดการเริ่มต้นตอบสนองของเซลล์ต่อลิแกนด์นั้น.

ใหม่!!: การถ่ายโอนสัญญาณและหน่วยรับความรู้สึก · ดูเพิ่มเติม »

ออกซิเจน

ออกซิเจน (Oxygen) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ O และเลขอะตอม 8 ธาตุนี้พบมาก ทั้งบนโลกและทั่วทั้งจักรวาล โมเลกุลออกซิเจน (O2 หรือที่มักเรียกว่า free oxygen) บนโลกมีความไม่เสถียรทางเทอร์โมไดนามิกส์จึงเกิดปฏิกิริยาออกซิเดชันกับธาตุอื่น ๆ ได้ง่าย ออกซิเจนเกิดขึ้นครั้งแรกในโลกจากการสังเคราะห์ด้วยแสงของแบคทีเรียและพื.

ใหม่!!: การถ่ายโอนสัญญาณและออกซิเจน · ดูเพิ่มเติม »

ออร์แกเนลล์

นิวเคลียส, (3) ไรโบโซม, (4) เวสิเคิล, (5) เอนโดพลาสมิกเรติคูลัมแบบผิวขรุขระ, (6) กอลจิแอปพาราตัส, (7) ไซโทสเกลเลตอน, (8) เอนโดพลาสมิกเรติคูลัมแบบผิวเรียบ, (9) ไมโทคอนเดรีย, (10) แวคิวโอล, (11) ไซโทพลาซึม, (12) ไลโซโซม, (13) เซนทริโอล ในชีววิทยาของเซลล์ ออร์แกเนลล์เป็นโครงสร้างย่อยๆ ภายในเซลล์ที่มีหน้าที่เฉพาะ และอยู่ภายในโครงสร้างปิดที่เป็นเยื่อลิพิดแบ่งออกเป็น1ชั้นและ2ชั้น คำว่า ออร์แกเนลล์ (organelle) มาจากแนวความคิดที่ว่า โครงสร้างเล็กๆ ในเซลล์นี้เปรียบเหมือนกับ อวัยวะ (organ) ของร่างกาย (โดยการเติมคำปัจจัย -elle: เป็นส่วนเล็กๆ) ออร์แกเนลล์มองเห็นได้ภายใต้กล้องจุลทรรศน์ และแยกให้บริสุทธิ์ได้โดยวิธีการกระบวนการปั่นแยกเซลล์ (cell fractionation) ออร์แกเนลล์มีหลายชนิดโดยเฉพาะในเซลล์ยูแคริโอตของสัตว์ชั้นสูง เซลล์โปรแคริโอตในครั้งหนึ่งเคยคิดว่าไม่มีออร์แกเนลล์ แต่ว่ามีงานวิจัยที่สามารถพิสูจน์ได้ว่ามีการเกิดขึ้นกับวัวและควายด้ว.

ใหม่!!: การถ่ายโอนสัญญาณและออร์แกเนลล์ · ดูเพิ่มเติม »

ออสโมซิส

ออสโมซิส (osmosis) เป็นกระบวนการแพร่โมเลกุลของเหลวหรือน้ำผ่านเยื่อเลือกผ่าน จากบริเวณที่มีความเข้มข้นของน้ำมาก (สารละลายความเข้มข้นต่ำ) ไปยังบริเวณที่มีความเข้มข้นของน้ำน้อย (สารละลายความเข้มข้นสูง) กระจายจนกว่าโมเลกุลของน้ำจะเท่ากัน เป็นกระบวนการทางกายภาพที่ตัวทำละลายจะเคลื่อนที่โดยอาศัยพลังงานความร้อน ผ่านเยื่อเลือกผ่าน (ซึ่งตัวทำละลายจะผ่านเยื่อเลือกผ่านได้ แต่สารละลายจะไม่สามารถผ่านเยื่อเลือกผ่านได้) ออสโมซิสก่อให้เกิดพลังงาน และสามารถสร้างแรงได้ออสโมซิส การเคลื่อนที่ของตัวทำละลายจะเคลื่อนที่จากสารละลายความเข้มข้นต่ำกว่า ไปยังสารละลายที่มีความเข้มข้นสูงกว่า เพื่อเป็นการลดความต่างของความเข้มข้นของสาร แรงดันออสโมซิส หมายถึง แรงดันที่ใช้สำหรับการคงดุลยภาพ โดยที่ไม่มีการเคลื่อนที่ของตัวทำละลายอีกต่อไป ออสโมซิสเป็นกระบวนการสำคัญสำหรับระบบชีววิทยา โดยเยื่อหุ้มเซลล์ของสิ่งมีชีวิตส่วนใหญ่จะมีคุณสมบัติเป็นเยื่อเลือกผ่าน โดยทั่วไปแล้ว เยื่อหุ้มเซลล์จะไม่ยอมให้สารละลายอินทรีย์ที่มีโมเลกุลขนาดใหญ่ (เช่น พอลิแซ็กคาไรด์) ผ่านเข้าออกได้ ขณะที่น้ำ อากาศ และสารละลายที่ไม่มีประจุไฟฟ้าสามารถผ่านเข้าออกได้ ความสามารถในการผ่านเข้าออกเยื่อหุ้มเซลล์ของสารอาจขึ้นอยู่กับคุณสมบัติในการละลาย ประจุไฟฟ้า หรือคุณสมบัติทางเคมี และขนาดของสารละลายนั้น กระบวนการออสโมซิสเป็นกระบวนการพื้นฐานในการนำน้ำผ่านเข้าออกเยื่อหุ้มเซลล์ แรงดันเทอร์เกอร์ของเซลล์จะถูกควบคุมโดยออสโมซิส ตัวอย่างออสโมซิส เช่น การออสโมซิสของน้ำเข้าไปในเซลล์พืชทำให้ผิวของพืชเต่ง การออสโมซิสของสีนำเข้าไปในผิวกระดาษ ทำให้ผิวกระดาษเปลี่ยนสี.

ใหม่!!: การถ่ายโอนสัญญาณและออสโมซิส · ดูเพิ่มเติม »

อะพอพโทซิส

ตัดขวางของตับหนูแสดงเซลล์ที่ตายแบบอะพอพโทซิส (ลูกศร) อะพอพโทซิส เป็นรูปแบบหนึ่งของการตายของเซลล์แบบที่มีการโปรแกรมไว้แล้ว (programmed cell death) ของสิ่งมีชีวิตหลายเซลล์ ซึ่งเกี่ยวข้องกับชุดของปฏิกิริยาทางชีวเคมีซึ่งทำให้เซลล์ตายอย่างมีลักษณะที่เฉพาะ หรือกล่าวอย่างจำเพาะคือเป็นชุดของปฏิกิริยาทางชีวเคมีที่ทำให้เซลล์มีสัณฐานวิทยาเปลี่ยนแปลงหลายรูปแบบ เช่น การบวมของเซลล์ (blebbing), การเปลี่ยนแปลงของเยื่อหุ้มเซลล์เช่นการเหี่ยวของเซลล์, นิวเคลียสแตกเป็นชิ้นส่วน, โครมาตินหนาตัวขึ้น, และดีเอ็นเอแตกเป็นท่อน กระบวนการกำจัดเศษซากเซลล์ก็จะไม่ทำให้เกิดการกระตุ้นให้เนื้อเยื่อข้างเคียงเกิดความเสียหายซึ่งต่างจากการตายแบบการตายเฉพาะส่วนหรือเนโครซิส (necrosis) อะพอพโทซิสเป็นการตายที่เกิดขึ้นตามปกติในกระบวนการเจริญพัฒนาของสิ่งมีชีวิต ซึ่งต่างจากการตายเฉพาะส่วนที่เกิดจากการบาดเจ็บของเซลล์แบบเฉียบพลัน อะพอพโทซิสเกี่ยวข้องกับการพัฒนารูปร่างและอวัยวะของเอ็มบริโอ เช่นการเจริญของนิ้วมือและนิ้วเท้าเนื่องจากเซลล์ที่อยู่ระหว่างนิ้วอะพอพโทซิสไป ทำให้นิ้วทั้งห้าแยกออกจากกัน โดยเฉลี่ยแล้วในผู้ใหญ่จะมีเซลล์ราว 5 หมื่นล้านถึง 7 หมื่นล้านเซลล์ตายแบบอะพอพโทซิสทุกวัน และในเด็กอายุ 8-14 ปีจะมีเซลล์ตายราว 2 หมื่นล้านถึง 3 หมื่นล้านเซลล์ต่อวัน งานวิจัยเกี่ยวกับการตายแบบอะพอพโทซิสมีจำนวนเพิ่มมากขึ้นตั้งแต่ต้นทศวรรษที่ 1990 ทำให้มีการค้นพบการตายแบบอะพอพโทซิสที่ผิดปกติในโรคต่างๆ หากอะพอพโทซิสเกิดขึ้นมากเกินไปจะทำให้เกิดการฝ่อของอวัยวะ เช่นในภาวะการขาดเลือดเฉพาะที่ (ischemic damage) ในขณะที่การตายแบบอะพอพโทซิสที่ไม่เพียงพอทำให้เกิดเซลล์ที่เพิ่มจำนวนอย่างควบคุมไม่ได้ เช่นมะเร็ง.

ใหม่!!: การถ่ายโอนสัญญาณและอะพอพโทซิส · ดูเพิ่มเติม »

อะดีโนซีนไตรฟอสเฟต

อะดีโนซีนไตรฟอสเฟต (adenosine triphosphate: ATP) เป็นสารให้พลังงานสูงแก่เซลล์ ผลิตจากกระบวนการสังเคราะห์แสง หรือการหายใจระดับเซลล์และถูกใช้โดยกระบวนการต่าง ๆ ของร่างกาย เช่น สลายอาหาร, active transport,move ในสิ่งมีชีวิต ATP ถูกสร้างขึ้นด้วยวิถีทางต่าง ๆ ดังนี้.

ใหม่!!: การถ่ายโอนสัญญาณและอะดีโนซีนไตรฟอสเฟต · ดูเพิ่มเติม »

อาร์จินีน

อาร์จินีน (Arginine) เป็นกรดอะมิโน-α ถูกแยกออกมาครั้งแรกในปี 1886 แอล-ฟอร์ม เป็นหนึ่งใน 20 กรดอะมิโนที่พบมากที่สุดในธรรมชาติ อยู่ในระดับอณูพันธุศาสตร์ ในโครงสร้างของกรดเอ็มอาร์เอ็นเอ, CGU, CGC, CGA, CGG, AGA, และ AGG แฝดสามของฐานเบสหรือโคดอนโค้ดที่มีสำหรับอาร์จินีนในระหว่างการสังเคราะห์โปรตีน ในสัตว์เลี้ยงลูกด้วยนม, อาร์จินีน จัดเป็นกรดอะมิโนจำเป็น หรือเงื่อนไขเซไมเอสเซนเตียล ขึ้นอยู่กับขั้นตอนการพัฒนาและสถานะสุขภาพของแต่ละบุคคล โดยทั่วไปคนส่วนใหญ่ไม่จำเป็นต้องใช้ผลิตภัณฑ์เสริมอาหารอาร์จินีน เพราะร่างกายมักจะสร้างเพียงพอ.

ใหม่!!: การถ่ายโอนสัญญาณและอาร์จินีน · ดูเพิ่มเติม »

อินซูลิน

ผลึกของอินซูลิน อินซูลิน (อังกฤษ: Insulin) มาจากภาษาละติน insula หรือ "island" - "เกาะ" เนื่องจากการถูกสร้างขึ้นบน "ไอส์เล็ตส์ออฟแลงเกอร์ฮานส์" ซึ่งเป็นกลุ่มเซลล์ในตับอ่อน) คือฮอร์โมนชนิดอนาโบลิกโพลีเพบไทด์ ซึ่งทำหน้าที่ควบคุมการเผาผลาญคาร์โบไฮเดรต นอกจากนี้ยังทำหน้าที่เป็นสารตัวกระทำในคาร์โบไฮเดรทชนิดโฮมีโอสตาซิส มีผลต่อการเผาผลาญไขมันเปลี่ยนการทำงานของตับให้ทำหน้าที่เก็บหรือปลดปล่อยกลูโคส และทำให้เกิดการทำงานของลิพิด (ไขมัน) ในเลือดและในเนื้อเยื่ออื่น เช่นไขมันและกล้ามเนื้อ ปริมาณของอินซูลินที่เวียนอยู่ในร่างกายมีผลกระทบสูงมากในวงกว้างในทุกส่วนของร่างกาย ในวงการแพทย์ อินซูลินถูกใช้ในการรักษาโรคเบาหวานบางชนิด คนไข้ที่ป่วยเป็นโรคเบาหวานประเภท 1 ต้องอาศัยอินซูลินจากนอกร่างกาย (เกือบทั้งหมดใช้วิธีฉีดเข้าใต้ผิวหนัง) เพื่อช่วยให้รอดชีวีตจากการขาดฮอร์โมน คนไข้ที่ป่วยเป็นโรคเบาหวานประเภท 2 จะต่อต้านอินซูลิน หรือ ผลิตอินซูลินน้อย หรือทั้งสองอย่าง ผู้ป่วยเบาหวานประเภท 2 บางรายต้องการอินซูลินเฉพาะเมื่อยาอื่นที่ใช้รักษาอยู่ไม่เพียงพอในการควบคุมระดับกลูโคสในเลือด อินซูลิน ประกอบด้วยกรดอะมิโน 51 ชนิดรวมกันอยู่ และมีน้ำหนักโมเลกุล 5808 Da โครงสร้างของอินซูลิน ผันแปรเล็กน้อยตามชนิดของสัตว์ อินซูลินที่มีแหล่งมาจากสัตว์จะแตกต่างกันในเชิงขีดความสามารถในการควบคุมพลังการทำงาน (เช่น การเผาผลาญคาร์โบไฮเดรท) ในมนุษย์ อินซูลินจากสุกรมีความคล้ายคลึงกับอินซูลินของมนุษย์มากที.

ใหม่!!: การถ่ายโอนสัญญาณและอินซูลิน · ดูเพิ่มเติม »

อนุมูลอิสระ

อนุมูลอิสระ (radical หรือมักใช้ว่า free radical) คือ อะตอม โมเลกุลหรือไอออนซึ่งมีอิเล็กตรอนคู่โดดเดี่ยวหรือการจัดเรียงเป็นเชลล์เปิด (open shell) อนุมูลอิสระอาจมีประจุเป็นบวก ลบหรือเป็นศูนย์ก็ได้ ด้วยข้อยกเว้นบางประการ อิเล็กตรอนคู่โดดเดี่ยวเหล่านี้ทำให้อนุมูลอิสระว่องไวต่อปฏิกิริยาสูง อนุมูลอิสระมีบทบาทสำคัญในการสันดาป เคมีบรรยากาศ พอลิเมอไรเซชัน เคมีพลาสมา ชีวเคมี และกระบวนการทางเคมีอีกหลายอย่าง ในสิ่งมีชีวิต ซูเปอร์ออกไซด์ ไนตริกออกไซด์และผลิตภัณฑ์จากปฏิกิริยาของมันควบคุมหลายกระบวนการ เช่น ควบคุมการบีบตัวของหลอดเลือด ซึ่งควบคุมความดันโลหิตอีกต่อหนึ่ง นอกจากนี้ อนุมูลอิสระยังมีบทบาทสำคัญในเมแทบอลิซึมตัวกลางของสารประกอบทางชีวภาพหลายชนิด อนุมูลอิสระเกิดขึ้นเป็นปกติจากปฏิกิริยาในร่างกายอยู่แล้ว โดยเฉพาะอย่างยิ่ง เมื่อมีธาตุเหล็ก ทองแดง แมงกานีส โคบอลต์ โครเมียม นิเกิลน้อย มักเกิดเป็นปฏิกิริยาลูกโซ่ โดยร่างกายจะมีระบบกำจัดอนุมูลอิสระ แต่หากร่างกายได้รับสารอนุมูลอิสระจากภายนอก เช่น ได้รับจากอาหารบางชนิด จากขบวนการประกอบอาหาร เช่น การย่างเนื้อสัตว์ที่มีไขมันประกอบสูง การนำน้ำมันที่ใช้ทอดอาหารที่อุณหภูมิสูง ๆ มาใช้อีก หรือจากสิ่งแวดล้อม เช่น แสงอาทิตย์ซึ่งมีรังสีอัลตราไวโอเลต การแผ่รังสี รังสีเอกซ์ หรือจากมลพิษ เช่น ควันบุหรี่ ก๊าซคาร์บอนมอนอกไซด์จากไอเสียรถยนต์ มากเกินไป หรือในภาวะที่ร่างกายสามารถกำจัดอนุมูลอิสระได้ลดลง ก็จะทำให้มีอนุมูลอิสระมากเกินไป เป็นสาเหตุของโรคภัยได้ อนุมูลอิสระที่มากเกินไปจะเป็นอันตรายต่อไขมัน (โดยเฉพาะไลโปโปรตีนความหนาแน่นต่ำ) โปรตีน หน่วยพันธุกรรม และคาร์โบไฮเดรต ซึ่งจะไม่กล่าวถึงรายละเอียดในที่นี้ ทำให้เพิ่มอัตราการเสี่ยงต่อการเป็นโรคหลายชนิด โรคที่สำคัญและมีการศึกษากันมาก ได้แก่ โรคหลอดเลือดตีบและแข็งตัว โรคมะเร็งบางชนิด โรคอัลไซเมอร์ โรคไขข้ออักเสบ โรคความแก่ เป็นต้น.

ใหม่!!: การถ่ายโอนสัญญาณและอนุมูลอิสระ · ดูเพิ่มเติม »

ฮอร์โมน

อร์โมน (hormone มาจากภาษากรีก horman แปลว่า เคลื่อนไหว) คือ ตัวนำส่งสารเคมีจากเซลล์กลุ่มของเซลล์หนึ่งไปยังเซลล์อื่น ๆ สิ่งมีชีวิตหลายเซลล์ (multicellular organism) ทั้งพืชและสัตว์ สามารถผลิตฮอร์โมนได้ที่ ต่อมไร้ท่อ (endocrine gland) โมเลกุลของฮอร์โมนจะถูกปล่อยโดยตรงยังกระแสเลือด ของเหลวในร่างกายอื่นๆ หรือเนื้อเยื่อใกล้เคียง หน้าที่ของฮอร์โมน คือการส่งสัญญาณให้ทำงานหรือหยุดทำงาน เช่น.

ใหม่!!: การถ่ายโอนสัญญาณและฮอร์โมน · ดูเพิ่มเติม »

จอตา

ในสัตว์มีกระดูกสันหลัง เรตินา หรือ จอตา"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑" หรือ จอประสาทตา (retina, พหูพจน์: retinae, จากคำว่า rēte แปลว่า ตาข่าย) เป็นเนื้อเยื่อมีลักษณะเป็นชั้น ๆ ที่ไวแสง บุอยู่บนผิวด้านในของดวงตา การมองเห็นภาพต่าง ๆ นั้นเกิดขึ้นได้โดยอาศัยเซลล์ที่อยู่บนเรตินา เป็นตัวรับและแปลสัญญาณแสงให้กลายเป็นสัญญาณประสาทหรือกระแสประสาท ส่งขึ้นไปแปลผลยังสมองส่วนที่เกี่ยวข้อง ทำให้เราสามารถมองเห็นภาพต่างๆได้ คือ กลไกรับแสงของตาฉายภาพของโลกภายนอกลงบนเรตินา (ผ่านกระจกตาและเลนส์) ซึ่งทำหน้าที่คล้ายกับฟิลม์ในกล้องถ่ายรูป แสงที่ตกลงบนเรตินาก่อให้เกิดปรากฏการณ์ทางเคมีและไฟฟ้าที่เป็นไปตามลำดับ ซึ่งนำไปสู่การส่งสัญญาณประสาทโดยที่สุด ซึ่งดำเนินไปยังศูนย์ประมวลผลทางตาต่าง ๆ ในสมองผ่านเส้นประสาทตา ในสัตว์มีกระดูกสันหลังในช่วงพัฒนาการของเอ็มบริโอ ทั้งเรตินาทั้งเส้นประสาทตามีกำเนิดเป็นส่วนหนึ่งของสมอง ดังนั้น เรตินาจึงได้รับพิจารณาว่าเป็นส่วนของระบบประสาทกลาง (CNS) และจริง ๆ แล้วเป็นเนื้อเยื่อของสมอง"Sensory Reception: Human Vision: Structure and function of the Human Eye" vol.

ใหม่!!: การถ่ายโอนสัญญาณและจอตา · ดูเพิ่มเติม »

จุดประสานประสาท

องไซแนปส์เคมี ซึ่งเป็นการติดต่อกันระหว่างเซลล์ประสาทเพื่อเปลี่ยนกระแสประสาทเป็นสารสื่อประสาทในการนำสัญญาณประสาทไปยังเซลล์ประสาทหลังไซแนปส์ ไซแนปส์ (Synapse) หรือ จุดประสานประสาท เป็นช่องว่างพิเศษระหว่างส่วนแรก คือ เซลล์ประสาทก่อนไซแนปส์ กับส่วนที่สองที่อาจเป็นเซลล์ประสาทหลังไซแนปส์หรือเซลล์ชนิดอื่น เช่น เซลล์กล้ามเนื้อลาย และเซลล์ของต่อม เป็นต้น เพื่อสื่อสารและถ่ายทอดข้อมูลในการทำงานของระบบประสาท ในทางประสาทวิทยาศาสตร์ ไซแนปส์แบ่งออกเป็น 2 ชนิด คือ.

ใหม่!!: การถ่ายโอนสัญญาณและจุดประสานประสาท · ดูเพิ่มเติม »

จีโปรตีน

Phosducin-transducin beta-gamma complex - หน่วยย่อยบีตาและแกมมาของจีโปรตีนแสดงเป็นสีน้ำเงินและแดงตามลำดับ Guanosine diphosphate (GDP) จีโปรตีน (G protein) หรือ guanine nucleotide-binding proteins เป็นหมู่โปรตีนที่ทำหน้าที่เป็นสวิตช์โมเลกุลภายในเซลล์ และมีบทบาทในการส่งผ่านสัญญาณจากสิ่งเร้าในรูปแบบต่าง ๆ นอกเซลล์เข้าไปในเซลล์ แฟกเตอร์ต่าง ๆ จะควบคุมฤทธิ์ของมันโดยคุมการจับของมันกับ guanosine triphosphate (GTP) และคุมการสลาย GTP ด้วยน้ำให้เป็น guanosine diphosphate (GDP) เพราะเมื่อมันจับกับ GTP มันจึงจะมีฤทธิ์คือมีสภาพกัมมันต์ และเมื่อมันจับกับ GDP มันก็จะไร้ฤทธิ์คือมีสภาพอกัมมันต์ จีโปรตีนเป็นส่วนของกลุ่มเอนไซม์กลุ่มใหญ่ที่เรียกว่า GTPase มีจีโปรตีนสองกลุ่ม กลุ่มแรกทำงานเป็น GTPase ที่เป็นมอนอเมอร์ขนาดเล็ก (monomeric small GTPase) และกลุ่มสองทำงานเป็นคอมเพล็กซ์จีโปรตีนที่มีสามส่วนโดยแต่ละส่วนไม่เหมือนกัน (heterotrimeric G protein) โดยคอมเพล็กซ์กลุ่มหลังจะมีหน่วยย่อย ๆ คือ แอลฟา (α) บีตา (β) และแกมมา (γ) อนึ่ง หน่วยย่อยบีตาและแกมมายังอาจรวมเป็นคอมเพล็กซ์แบบไดเมอร์ที่เสถียร โดยเรียกว่า คอมเพล็กซ์บีตา-แกมมา (beta-gamma complex) จีโปรตีนในเซลล์จะเริ่มทำงาน/เปลี่ยนเป็นสภาพกัมมันต์โดยหน่วยรับ คือ G protein-coupled receptor (GPCR) ที่ทอดข้ามเยื่อหุ้มเซลล์ คือโมเลกุลส่งสัญญาณที่หนึ่งจะจับกับโดเมนภายนอกของ GPCR และโดเมนภายในก็จะเริ่มการทำงานของจีโปรตีน โดย GPCR ที่ยังไม่เริ่มทำงานบางอย่างได้แสดงแล้วว่า จับคู่อยู่กับจีโปรตีน แล้วจีโปรตีนก็จะเริ่มลำดับการส่งสัญญาณต่อ ๆ ไปซึ่งในที่สุดมีผลเปลี่ยนการทำงานของเซลล์ GPCR และจีโปรตีนทำงานร่วมกันเพื่อส่งผ่านสัญญาณจากฮอร์โมน จากสารสื่อประสาท และจากแฟกเตอร์ส่งสัญญาณอื่น ๆ เป็นจำนวนมาก จีโปรตีนควบคุมกลไกต่าง ๆ รวมทั้งเอนไซม์ ช่องไอออน โปรตีนขนส่ง และกลไกการทำงานของเซลล์อื่น ๆ ซึ่งเป็นการควบคุมการถอดรหัสยีน การเคลื่อนไหว (motility) การหดเกร็ง (contractility) และการหลั่งสารของเซลล์ ซึ่งก็เป็นการควบคุมหน้าที่ของระบบต่าง ๆ ในร่างกายมากมายรวมทั้งพัฒนาการของตัวอ่อน การเรียนรู้ ความจำ และภาวะธำรงดุล.

ใหม่!!: การถ่ายโอนสัญญาณและจีโปรตีน · ดูเพิ่มเติม »

จีโนมมนุษย์

จีโนมของมนุษย์คือชุดของข้อมูลทางพันธุกรรมทั้งหมดของมนุษย์ ข้อมูลนี้อยู่ในลำดับ DNA ซึ่งกระจายอยู่บนโครโมโซม 23 คู่ในนิวเคลียสของเซลล์แต่ละเซลล์ รวมทั้งในโมเลกุล DNA อีกส่วนหนึ่งที่อยู่ในไมโตคอนเดรีย ข้อมูลในจีโนมของมนุษย์มีทั้ง DNA ส่วนที่จะถูกถอดรหัสเป็นโปรตีน (coding DNA) และส่วนที่จะไม่ถูกถอดรหัสเป็นโปรตีน (noncoding DNA) ครึ่งหนึ่งหรือส่วนที่เป็นแฮพลอยด์ของจีโนมมนุษย์ (พบในเซลล์ไข่หรือเซลล์อสุจิ) มีจำนวนสามพันล้านคู่เบส ในขณะที่จีโนมทั้งหมดหรือดิพลอยด์ของจีโนม (พบในเซลล์โซมาติกทั่วไป) มีจำนวนคู่เบสดีเอ็นเอเป็น 2 เท่า หมวดหมู่:แผนที่พันธุกรรม หมวดหมู่:พันธุศาสตร์ หมวดหมู่:จีโนมิกส์ หมวดหมู่:มนุษย์ หมวดหมู่:วิวัฒนาการของมนุษย์ หมวดหมู่:มนุษยพันธุศาสตร์.

ใหม่!!: การถ่ายโอนสัญญาณและจีโนมมนุษย์ · ดูเพิ่มเติม »

ดัชนี

ัชนี (index) อาจหมายถึง.

ใหม่!!: การถ่ายโอนสัญญาณและดัชนี · ดูเพิ่มเติม »

ดีเอ็นเอ

กลียวคู่ดีเอ็นเอ กรดดีออกซีไรโบนิวคลีอิก (deoxyribonucleic acid) หรือย่อเป็น ดีเอ็นเอ เป็นกรดนิวคลีอิกที่มีคำสั่งพันธุกรรมซึ่งถูกใช้ในพัฒนาการและการทำหน้าที่ของสิ่งมีชีวิตทุกชนิดเท่าที่ทราบ (ยกเว้นอาร์เอ็นเอไวรัส) ส่วนของดีเอ็นเอซึ่งบรรจุข้อมูลพันธุกรรมนี้เรียกว่า ยีน ทำนองเดียวกัน ลำดับดีเอ็นเออื่น ๆ มีความมุ่งหมายด้านโครงสร้าง หรือเกี่ยวข้องกับการควบคุมการใช้ข้อมูลพันธุกรรมนี้ ดีเอ็นเอ อาร์เอ็นเอและโปรตีนเป็นหนึ่งในสามมหโมเลกุลหลักที่สำคัญในสิ่งมีชีวิตทุกชนิดที่ทราบ ดีเอ็นเอประกอบด้วยพอลิเมอร์สองสายยาวประกอบจากหน่วยย่อย เรียกว่า นิวคลีโอไทด์ โดยมีแกนกลางเป็นน้ำตาลและหมู่ฟอสเฟตเชื่อมต่อกันด้วยพันธะเอสเทอร์ ทั้งสองสายนี้จัดเรียงในทิศทางตรงกันข้าม จึงเป็น antiparallel น้ำตาลแต่ละตัวมีโมเลกุลหนึ่งในสี่ชนิดเกาะอยู่ คือ นิวคลีโอเบส หรือเรียกสั้น ๆ ว่า เบส ลำดับของนิวคลีโอเบสทั้งสี่ชนิดนี้ตามแกนกลางที่เข้ารหัสข้อมูลพันธุกรรม ข้อมูลนี้อ่านโดยใช้รหัสพันธุกรรม ซึ่งกำหนดลำดับของกรดอะมิโนในโปรตีน รหัสนี้ถูกอ่านโดยการคัดลอกดีเอ็นเอเป็นกรดนิวคลีอิกอาร์เอ็นเอที่เกี่ยวข้องในขบวนการที่เรียกว่า การถอดรหัส ดีเอ็นเอภายในเซลล์มีการจัดระเบียบเป็นโครงสร้างยาว เรียกว่า โครโมโซม ระหว่างการแบ่งเซลล์ โครโมโซมเหล่านี้ถูกคัดลอกในขบวนการการถ่ายแบบดีเอ็นเอ ทำให้แต่ละเซลล์มีชุดโครโมโซมที่สมบูรณ์ของตัวเอง สิ่งมีชีวิตยูคาริโอต (สัตว์ พืช ฟังไจและโพรทิสต์) เก็บดีเอ็นเอส่วนมากไว้ในนิวเคลียส และดีเอ็นเอบางส่วนอยู่ในออร์แกเนลล์ เช่น ไมโทคอนเดรียและคลอโรพลาสต์ ในทางตรงข้าม โปรคาริโอต (แบคทีเรียและอาร์เคีย) เก็บดีเอ็นเอไว้เฉพาะในไซโทพลาสซึม ในโครโมโซม โปรตีนโครมาติน เช่น ฮิสโตนบีบอัดและจัดรูปแบบของดีเอ็นเอ โครงสร้างบีบอัดเหล่านี้นำอันตรกิริยาระหว่างดีเอ็นเอกับโปรตีนอื่น ช่วยควบคุมส่วนของดีเอ็นเอที่จะถูกถอดรหั.

ใหม่!!: การถ่ายโอนสัญญาณและดีเอ็นเอ · ดูเพิ่มเติม »

ความเข้มข้น

น้ำผสมสีแดงด้วยปริมาณสีที่แตกต่างกัน ทางซ้ายคือเจือจาง ทางขวาคือเข้มข้น ในทางเคมี ความเข้มข้น คือการวัดปริมาณของสสารที่กำหนดซึ่งผสมอยู่ในสสารอีกชนิดหนึ่ง ใช้วัดสารผสมทางเคมีชนิดต่าง ๆ แต่บ่อยครั้งแนวคิดนี้ก็ใช้จำกัดแต่เฉพาะสารละลาย ซึ่งหมายถึงปริมาณของตัวถูกละลายในตัวทำละลาย การที่จะทำให้สารละลายเข้มข้นขึ้น ทำได้โดยการเพิ่มปริมาณของตัวถูกละลายมากขึ้น หรือการลดตัวทำละลายลง ในทางตรงข้าม การที่จะทำให้สารละลายเจือจางลง ก็จะต้องเพิ่มตัวทำละลายขึ้น หรือลดตัวถูกละลายลง เป็นอาทิ ถึงแม้สสารทั้งสองชนิดจะผสมกันได้อย่างเต็มที่ แต่ก็จะมีความเข้มข้นค่าหนึ่งซึ่งตัวถูกละลายจะไม่ละลายในสารผสมนั้นอีกต่อไป ที่จุดนี้เรียกว่าจุดอิ่มตัวของสารละลาย ซึ่งขึ้นอยู่กับตัวแปรหลายอย่าง เช่นอุณหภูมิแวดล้อม และสมบัติทางเคมีโดยธรรมชาติของสสารชนิดนั้น.

ใหม่!!: การถ่ายโอนสัญญาณและความเข้มข้น · ดูเพิ่มเติม »

คอลลาเจน

อลลาเจนเกลียวสาม คอลลาเจนเป็นโปรตีนโครงสร้างหลักในเนื้อเยื่อเกี่ยวพันหลายชนิดในสัตว์ คอลลาเจนเป็นองค์ประกอบหลักของเนื้อเยื่อเกี่ยวพัน ฉะนั้นจึงเป็นโปรตีนที่พบมากที่สุดในสัตว์เลี้ยงลูกด้วยนมด้วย โดยคิดเป็น 25% ถึง 35% ของปริมาณโปรตีนทั้งร่างกาย ส่วนใหญ่พบคอลลาเจนในรูปเส้นใยฝอยยืดในเนื้อเยื่อเส้นใย (fibrous tissue) เช่น เอ็นกล้ามเนื้อ (tendon) เอ็น (ligament) และผิวหนัง ทั้งพบมากในกระจกตา กระดูกอ่อน กระดูก หลอดเลือด ทางเดินอาหารและหมอนกระดูกสันหลัง เซลล์สร้างเส้นใย (fibroblast) เป็นเซลล์ที่สร้างคอลลาเจนมากที่สุด ในเนื้อเยื่อกล้ามเนื้อ คอลลาเจนเป็นองค์ประกอบหลักของเยื่อหุ้มใยกล้ามเนื้อ (endomysium) คอลลาเจนประกอบเป็น 1% ถึง 2% ของเนื้อเยื่อกล้ามเนื้อ และเป็น 6% ของน้ำหนักกล้ามเนื้อมีเอ็นที่แข็งแรง เจลาติน ซึ่งใช้ในอาหารและอุตสาหกรรม เป็นคอลลาเจนที่ผ่านกระบวนการสลายด้วยน้ำ (hydrolysis) แบบย้อนกลับไม่ได้.

ใหม่!!: การถ่ายโอนสัญญาณและคอลลาเจน · ดูเพิ่มเติม »

คาร์บอนมอนอกไซด์

คาร์บอนมอนอกไซด์ มีสูตรทางเคมี "CO" เป็นก๊าซที่ไม่มีสี ไม่มีกลิ่น ไม่มีรส แต่มีความเป็นอันตรายอย่างร้ายแรงต่อระบบลำเลียงเลือด โมเลกุลประกอบไปด้วยคาร์บอนหนึ่งอะตอมและออกซิเจนหนึ่งอะตอมเชื่อมกันด้วยพันธะโควาเลนต์ อาจจัดได้ว่าเป็นสารประกอบแอนไฮไดรด์อย่างหนึ่งของกรดฟอร์มิก ก๊าซคาร์บอนมอนอกไซด์เกิดจากการเผาไหม้ที่ไม่สมบูรณ์ของสารประกอบคาร์บอน โดยเฉพาะเครื่องยนต์สันดาปภายใน คาร์บอนมอนออกไซด์จะเกิดได้มากเมื่อออกซิเจนไม่เพียงพอในการสันดาป คาร์บอนมอนอกไซด์สามารถใช้เป็นเชื้อเพลิงได้ เผาไหม้ในอากาศจะเกิดเปลวเพลิงสีน้ำเงินและให้คาร์บอนไดออกไซด์ออกมา แม้ว่าจะมีความเป็นพิษอย่างร้ายแรงคาร์บอนมอนออกไซด์ก็มีประโยชน์ในโลกปัจจุบันอย่างมากเพราะเป็นสารตั้งต้นในการผลิตผลิตภัณฑ์อย่างอื่นนานาชนิด หมวดหมู่:พิษวิทยา หมวดหมู่:สารเคมี.

ใหม่!!: การถ่ายโอนสัญญาณและคาร์บอนมอนอกไซด์ · ดูเพิ่มเติม »

ตับ

ตับ (liver) เป็นอวัยวะสำคัญที่พบในสัตว์มีกระดูกสันหลังและสัตว์บางชนิด ในร่างกายมนุษย์ อยู่ในช่องท้องซีกขวาด้านบนใต้กระบังลม มีหน้าที่หลายอย่างรวมทั้งการกำจัดพิษในเมแทบอไลท์ (metabolites) (สารที่ได้จากขบวนการเมแทบอลิซึม) การสังเคราะห์โปรตีน และการผลิตสารชีวเคมีต่างๆที่จำเป็นในกระบวนการย่อยอาหาร ถ้าตับล้มเหลว หน้าที่ของตับไม่สามารถทดแทนได้ในระยะยาว โดยที่เทคนิคการฟอกตับ (liver dialysis) อาจช่วยได้ในระยะสั้น ตับยังจัดเป็นต่อมที่มีขนาดใหญ่ที่สุดในร่างกาย ในศัพท์ทางการแพทย์ คำที่มีความหมายเกี่ยวข้องกับตับจะขึ้นต้นด้วยคำว่า hepato- หรือ hepatic ซึ่งมาจากคำในภาษากรีก hepar ซึ่งหมายถึงตับ มีหน้าที่สำคัญในขบวนการเมแทบอลิซึมหลายประการในร่างกาย เช่นการควบคุมปริมาณไกลโคเจนสะสม การสลายเซลล์เม็ดเลือดแดง การสังเคราะห์พลาสมาโปรตีน การผลิตฮอร์โมน และการกำจัดพิษ ตับยังเป็นต่อมช่วยย่อยอาหารโดยผลิตน้ำดีซึ่งเป็นสารประกอบอัลคาไลน์ช่วยย่อยอาหารผลิตโดยขบวนการผสมกับไขมัน (emulsification of lipids) ถุงนํ้าดีจะใช้เป็นที่เก็บน้ำดีนี้ ถุงน้ำดีมีลักษณะเป็นถุงอยู่ใต้ตับ ก่อนอาหารถุงน้ำดีจะป่องมีขนาดเท่าผลลูกแพร์เล็กเต็มไปด้วยน้ำดี หลังอาหาร น้ำดีจะถูกนำไปใช้หมด ถุงน้ำดีจะแฟบ เนื้อเยื่อของตับมีความเป็นพิเศษอย่างมาก ส่วนใหญ่ประกอบด้วย hepatocytes ที่ควบคุมปฏิกิริยาชีวเคมีปริมาณสูง รวมทั้งการสังเคราะห์และการแตกตัวของโมเลกุลที่ซับซ้อนขนาดเล็กที่จำเป็นอย่างมากในการทำงานเพื่อการดำรงชีวิตปกติ หน้าที่การทำงานทั้งหมดอาจแตกต่างกันไป แต่ในตำราประมาณว่ามีจำนวนประมาณ 500 อย่าง.

ใหม่!!: การถ่ายโอนสัญญาณและตับ · ดูเพิ่มเติม »

ตัวกระตุ้น

ในสรีรวิทยา ตัวกระตุ้น"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ stimulus ว่า "ตัวกระตุ้น" หรือ "สิ่งเร้า" หรือ ตัวเร้า หรือ สิ่งเร้า หรือ สิ่งกระตุ้น (stimulus, พหูพจน์ stimuli) เป็นความเปลี่ยนแปลงของสิ่งแวดล้อมที่ตรวจจับได้โดยสิ่งมีชีวิตหรืออวัยวะรับรู้ความรู้สึก โดยปกติ เมื่อตัวกระตุ้นปรากฏกับตัวรับความรู้สึก (sensory receptor) ก็จะก่อให้เกิด หรือมีอิทธิพลต่อปฏิกิริยารีเฟล็กซ์ของเซลล์ ผ่านกระบวนการถ่ายโอนความรู้สึก (transduction) ตัวรับความรู้สึกเหล่านี้สามารถรับข้อมูลทั้งจากภายนอกร่างกาย เช่นตัวรับสัมผัส (touch receptor) ในผิวหนัง หรือตัวรับแสงในตา และทั้งจากภายในร่างกาย เช่น ตัวรับสารเคมี (chemoreceptors) และตัวรับแรงกล (mechanoreceptors) ตัวกระตุ้นภายในมักจะเป็นองค์ประกอบของระบบการธำรงดุล (homeostaticภาวะธำรงดุล (Homeostasis) เป็นคุณสมบัติของระบบหนึ่ง ๆ ที่ควบคุมสิ่งแวดล้อมภายในของระบบ และมักจะดำรงสภาวะที่สม่ำเสมอและค่อนข้างจะคงที่ขององค์ประกอบต่าง ๆ เช่นอุณหภูมิและค่าความเป็นกรด control system) ของร่างกาย ส่วนตัวกระตุ้นภายนอกสามารถก่อให้เกิดการตอบสนองแบบทั่วระบบของร่างกาย เช่นการตอบสนองโดยสู้หรือหนี (fight-or-flight response) การจะตรวจพบตัวกระตุ้นได้นั้นขึ้นอยู่กับระดับของตัวกระตุ้น คือต้องเกินระดับกระตุ้นขีดเริ่มเปลี่ยน (absolute thresholdในประสาทวิทยาและจิตฟิสิกส์ ระดับขีดเริ่มเปลี่ยนสัมบูรณ์ (absolute threshold) เป็นระดับที่ต่ำสุดของตัวกระตุ้นที่จะตรวจพบได้ แต่ว่า ในระดับนี้ สัตว์ทดลองบางครั้งก็ตรวจพบตัวกระตุ้น บางครั้งก็ไม่พบ ดังนั้น การจำกัดความอีกอย่างหนึ่งก็คือ ระดับของตัวกระตุ้นที่ต่ำที่สุดที่สามารถตรวจพบได้ 50% ในโอกาสทั้งหมดที่ตรวจ) ถ้าสัญญาณนั้นถึงระดับกระตุ้นขีดเริ่มเปลี่ยน ก็จะมีการส่งสัญญาณนั้นไปยังระบบประสาทกลาง ซึ่งเป็นระบบที่รวบรวมสัญญาณต่าง ๆ และตัดสินใจว่าจะตอบสนองต่อตัวกระตุ้นอย่างไร แม้ว่าร่างกายโดยสามัญจะตอบสนองต่อตัวกระตุ้น แต่จริง ๆ แล้ว ระบบประสาทกลางเป็นผู้ตัดสินใจในที่สุดว่า จะตอบสนองต่อตัวกระตุ้นนั้นหรือไม.

ใหม่!!: การถ่ายโอนสัญญาณและตัวกระตุ้น · ดูเพิ่มเติม »

ตัวทำละลาย

ตัวทำละลาย (solvent) เป็นของเหลวที่สามารถละลาย ตัวถูกละลาย ที่เป็นของแข็ง ของเหลว หรือก๊าซได้เป็น สารละลาย ตัวทำละลายที่คุ้นเคยมากที่สุดและใช้ในชีวิตประจำวันคือน้ำ สำหรับคำจำกัดความที่อ้างถึง ตัวทำละลายอินทรีย์ (organic solvent) จะหมายถึงตัวทำละลายอีกชนิดที่เป็น สารประกอบอินทรีย์ (organic compound) และมี คาร์บอน อะตอมอยู่ด้วย โดยปกติตัวทำละลายจะมี จุดเดือด ต่ำ และระเหยง่าย หรือสามารถกำจัดโดย การกลั่นได้ โดยทั่วไปแล้วตัวทำละลายไม่ควรทำปฏิกิริยากับตัวถูกละลาย คือ มันจะต้องมีคุณสมบัติ เฉื่อย ทางเคมี ตัวทำละลายสามารถใช้ สกัด (extract) สารประกอบที่ละลายในมันจากของผสมได้ตัวอย่างที่คุ้นเคยได้แก่ การต้ม กาแฟ หรือ ชา ด้วยน้ำร้อน ปกติตัวทำละลายจะเป็นของเหลวใสไม่มีสีและส่วนใหญ่จะมีกลิ่นเฉพาะตัว ความเข้มข้นของสารละลายคือจำนวนสารประกอบที่ละลายในตัวทำละลายในปริมาตรที่กำหนด การละลาย (solubility) คือจำนวนสูงสุดของสารประกอบที่ละลายได้ในตัวทำละลาย ตามปริมาตรที่กำหนดที่ อุณหภูมิ เฉพาะ ตัวทำละลายอินทรีย์ใช้ประโยชน์ทั่วไปดังนี้.

ใหม่!!: การถ่ายโอนสัญญาณและตัวทำละลาย · ดูเพิ่มเติม »

ต่อมหมวกไต

ต่อมหมวกไต อยู่ด้านบนของไตทั้งสองข้าง ต่อมหมวกไต (adrenal gland,suprarenal gland) เป็นต่อมไร้ท่อ (endocrine gland) ผลิตฮอร์โมนสำคัญๆหลายชนิด เช่น อะดรีนาลิน จะอยู่เหนือไตทั้ง2ข้าง มีหน้าที่ควบคุมการไหลเวียนของโลหิตและการหดตัวของเลือด ต่อมหมวกไตแบ่งได้เป็นสองส่วนคือ.

ใหม่!!: การถ่ายโอนสัญญาณและต่อมหมวกไต · ดูเพิ่มเติม »

ต่อมไร้ท่อ

ต่อมไร้ท่อ (endocrine gland) คือ ต่อมที่มีการผลิตสารแล้วลำเลียงสารทางกระแสเลือ.

ใหม่!!: การถ่ายโอนสัญญาณและต่อมไร้ท่อ · ดูเพิ่มเติม »

ต่อมไทรอยด์

ต่อมไทรอยด์ (Thyroid gland) เป็นต่อมไร้ท่อที่อยู่ด้านหน้าของลำคอ โดยอยู่ด้านข้างและใต้ต่อมกระดูกอ่อนไทรอยด์ (thyroid cartilage) และอยู่ลึกลงไปจากกล้ามเนื้อสเตอร์โนไฮออยด์ (sternohyoid), สเตอร์โนไทรอยด์ (sternothyroid) และโอโมไฮออยด์ (omoyoid) ต่อมนี้มี 2 พู แผ่ออกทางด้านข้างและคลุมพื้นที่บริเวณด้านหน้าและด้านข้างของหลอดลม (trachea) รวมทั้งส่วนของกระดูกอ่อนคริคอยด์ (cricoid cartilage) และส่วนล่างของกระดูกอ่อนไทรอยด์ (thyroid cartilage) ทั้งสองพูนี้จะเชื่อมกันที่คอคอดไทรอยด์ (isthmus) ซึ่งอยู่ที่บริเวณด้านหน้าต่อกระดูกอ่อนของหลอดลม (trachea cartilage) ชิ้นที่สองหรือสาม.

ใหม่!!: การถ่ายโอนสัญญาณและต่อมไทรอยด์ · ดูเพิ่มเติม »

ซีเลีย

ภาพถ่ายหน้าตัดของซีเลีย สังเกตซีเลียมที่มีลักษณะมนกลม จะเห็นว่ามีโครงสร้าง 9+2 อยู่ ซีเลีย (cilia หรือ cilium ในรูปเอกพจน์) เป็นออร์แกเนลล์ที่พบในเซลล์จำพวกยูแคริโอต (eukaryotic cell) ซิเลียมีลักษณะบาง ส่วนพัดโบกที่มีลักษณะคล้ายครีบหรือหางจะยื่นออกมาประมาณ 5-10 ไมโครเมตร นับจากผิวเปลือกของเซลล์ออกมา ซิเลียมีสองประเภทได้แก่ซิเลียที่เคลื่อนไหว (motile cilia) ซึ่งจะพัดโบกไปในทิศหนึ่งอย่างต่อเนื่อง ส่วนอีกประเภทหนึ่งคือซิเลียที่ไม่เคลื่อนไหว (non-motile cilia) ซึ่งทำหน้าที่เป็นออร์แกเนลล์ประสาทให้กับเซลล์ ซิเลียมีลักษณะทางโครงสร้างคล้ายๆ กับแฟลเจลลัมซึ่งจัดอยู่ในประเภทอุนดูลิโพเดียม (undilopodium) แต่ซิเลียจะต่างกับแฟลเจลลัมตรงที่ มีจำนวนส่วนที่ยื่นออกมาเยอะกว่าแฟลเจลลัมที่มีส่วนที่ยื่นออกมาเพียง 1-2 อันเท่านั้น รวมถึงยังมีขนาดเล็กกว่าและสั้นกว่าแฟลเจลลัมอีกด้วย ซิเลียทำหน้าที่ พัดโบกฝุ่นละออง และเมือก โครงสร้างของซิเลียนั้น ประกอบด้วยไมโครทิวบูลเรียงตัวกันเป็นวง ซึ่งด้านนอกของวงจะประกอบด้วยไมโครทิวบูลทั้งหมด 9 ชุด แต่ละชุดจะมีไมโครทิวบูล 2 อัน ส่วนตรงกลางของซิเลียนั้นจะมีไมโครทิวบูลอยู่ 2 ชุด แต่ละชุดจะมีไมโครทิวบูล 2 อันเช่นเดียวกัน แทนสัญลักษณ์ของไมโครทิวบูลในซิเลียด้วยตัวเลขเป็น 9+2 ไมโครทิวบูล 2 อันในแต่ละชุดจะเชื่อมกันด้วยแขนโปรตีนไดนีน (Dynien arm) และเมื่อคู่ไมโครทิวบูลในแต่ละชุดเกิดการเลื่อนหรือสไลด์ ก็จะทำให้ซิเลียสามารถโค้งงอได้ หมวดหมู่:ออร์แกเนลล์.

ใหม่!!: การถ่ายโอนสัญญาณและซีเลีย · ดูเพิ่มเติม »

ปฏิกิริยาฟอสโฟรีเลชัน

ปฏิกิริยาฟอสโฟรีเลชั่นเป็นปฏิกิริยาที่เกี่ยวข้องกับการถ่ายโอนหมู่ฟอสเฟตระหว่างสารอินทรีย์ต่าง.

ใหม่!!: การถ่ายโอนสัญญาณและปฏิกิริยาฟอสโฟรีเลชัน · ดูเพิ่มเติม »

ประสาทวิทยา

Jean-Martin Charcot ประสาทวิทยา (Neurology) เป็นการแพทย์เฉพาะทางที่เกี่ยวข้องกับความผิดปกติของระบบประสาท กล่าวคือเกี่ยวข้องกับการวินิจฉัยและรักษาโรคที่จัดว่าเกี่ยวข้องกับระบบประสาทกลาง, ระบบประสาทนอกส่วนกลาง และระบบประสาทอิสระ รวมทั้งหลอดเลือด เนื้อเยื่อปกคลุม และอวัยวะที่ประสาทสั่งการ เช่น กล้ามเนื้อ แพทย์ผู้เชี่ยวชาญด้านประสาทวิทยาจะได้รับการฝึกเพื่อการสืบค้น, การวินิจฉัย และรักษาความผิดปกติของระบบประสาท.

ใหม่!!: การถ่ายโอนสัญญาณและประสาทวิทยา · ดูเพิ่มเติม »

ประสาทสัมผัส

ประสาทสัมผัส (Sense)"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑" ให้ความหมายของ sense ว่า ความรู้สึก, การรับรู้, การกำหนดรู้, ประสาทสัมผัส เป็นสมรรถภาพในสรีระของสิ่งมีชีวิตที่ให้ข้อมูลเพื่อให้เกิดการรับรู้ (perception) มีการศึกษาประเด็นเกี่ยวกับการทำงาน การจำแนกประเภท และทฤษฎีของประสาทสัมผัส ในวิชาหลายสาขา โดยเฉพาะในวิทยาศาสตร์ประสาท จิตวิทยาปริชาน (หรือประชานศาสตร์) และปรัชญาแห่งการรับรู้ (philosophy of perception) ระบบประสาทของสัตว์นั้นมีระบบรับความรู้สึกหรืออวัยวะรับความรู้สึก สำหรับความรู้สึกแต่ละอย่าง มนุษย์เองก็มีประสาทสัมผัสหลายอย่าง การเห็น การได้ยิน การลิ้มรส การได้กลิ่น การถูกต้องสัมผัส เป็นประสาทสัมผัสห้าทางที่รู้จักกันมาตั้งแต่โบราณ แต่ว่า ความสามารถในการตรวจจับตัวกระตุ้นอื่น ๆ นอกเหนือจากนั้นก็ยังมีอยู่ รวมทั้ง อุณหภูมิ ความรู้สึกเกี่ยวกับเคลื่อนไหว (proprioception) ความเจ็บปวด (nociception) ความรู้สึกเกี่ยวกับการทรงตัว และความรู้สึกเกี่ยวกับตัวกระตุ้นภายในต่าง ๆ (เช่นมีเซลล์รับความรู้สึกเชิงเคมี คือ chemoreceptor ที่ตรวจจับระดับความเข้มข้นของเกลือและคาร์บอนไดออกไซด์ ที่อยู่ในเลือด) และความสามารถต่าง ๆ เหล่านี้สามารถเรียกว่าเป็นประสาทสัมผัสโดยต่างหากได้เพียงไม่กี่อย่าง เพราะว่า ประเด็นว่า อะไรเรียกว่า ประสาทสัมผัส (sense) ยังเป็นที่ถกเถียงกันอยู่ ทำให้ยากที่จะนิยามความหมายของคำว่า ประสาทสัมผัส อย่างแม่นยำ สัตว์ต่าง ๆ มีตัวรับความรู้สึกเพื่อที่จะสัมผัสโลกรอบ ๆ ตัว มีระดับความสามารถที่ต่าง ๆ กันไปแล้วแต่สปีชีส์ เมื่อเทียบกันแล้ว มนุษย์มีประสาทสัมผัสทางจมูกที่ไม่ดี และสัตว์เหล่าอื่นก็อาจจะไม่มีประสาทสัมผัส 5 ทางที่กล่าวถึงไปแล้วอย่างใดอย่างหนึ่ง สัตว์บางอย่างอาจจะรับข้อมูลเกี่ยวกับตัวกระตุ้นและแปลผลข้อมูลเหล่านั้นต่างไปจากมนุษย์ และสัตว์บางชนิดก็สามารถสัมผัสโลกโดยวิธีที่มนุษย์ไม่สามารถ เช่นมีสัตว์บางชนิดสามารถสัมผัสสนามไฟฟ้าและสนามแม่เหล็ก สามารถสัมผัสแรงดันน้ำและกระแสน้ำ.

ใหม่!!: การถ่ายโอนสัญญาณและประสาทสัมผัส · ดูเพิ่มเติม »

ปริมาตร

ออนซ์ และมิลลิลิตร ปริมาตร หมายถึง ปริมาณของปริภูมิหรือรูปทรงสามมิติ ซึ่งยึดถือหรือบรรจุอยู่ในภาชนะไม่ว่าจะสถานะใดๆก็ตาม บ่อยครั้งที่ปริมาตรระบุปริมาณเป็นตัวเลขโดยใช้หน่วยกำกับ เช่นลูกบาศก์เมตรซึ่งเป็นหน่วยอนุพันธ์เอสไอ นอกจากนี้ยังเป็นที่เข้าใจกันโดยทั่วไปว่า ปริมาตรของภาชนะคือ ความจุ ของภาชนะ เช่นปริมาณของของไหล (ของเหลวหรือแก๊ส) ที่ภาชนะนั้นสามารถบรรจุได้ มากกว่าจะหมายถึงปริมาณเนื้อวัสดุของภาชนะ รูปทรงสามมิติทางคณิตศาสตร์มักถูกกำหนดปริมาตรขึ้นด้วยพร้อมกัน ปริมาตรของรูปทรงอย่างง่ายบางชนิด เช่นมีด้านยาวเท่ากัน สันขอบตรง และรูปร่างกลมเป็นต้น สามารถคำนวณได้ง่ายโดยใช้สูตรต่าง ๆ ทางเรขาคณิต ส่วนปริมาตรของรูปทรงที่ซับซ้อนยิ่งขึ้นสามารถคำนวณได้ด้วยแคลคูลัสเชิงปริพันธ์ถ้าทราบสูตรสำหรับขอบเขตของรูปทรงนั้น รูปร่างหนึ่งมิติ (เช่นเส้นตรง) และรูปร่างสองมิติ (เช่นรูปสี่เหลี่ยมจัตุรัส) ถูกกำหนดให้มีปริมาตรเป็นศูนย์ในปริภูมิสามมิติ ปริมาตรของของแข็ง (ไม่ว่าจะมีรูปทรงปกติหรือไม่ปกติ) สามารถตรวจวัดได้ด้วยการแทนที่ของไหล และการแทนที่ของเหลวสามารถใช้ตรวจวัดปริมาตรของแก๊สได้อีกด้วย ปริมาตรรวมของวัสดุสองชนิดโดยปกติจะมากกว่าปริมาตรของวัสดุอย่างใดอย่างหนึ่ง เว้นแต่เมื่อวัสดุหนึ่งละลายในอีกวัสดุหนึ่งแล้ว ปริมาตรรวมจะไม่เป็นไปตามหลักการบวก ในเรขาคณิตเชิงอนุพันธ์ ปริมาตรถูกอธิบายด้วยความหมายของรูปแบบปริมาตร (volume form) และเป็นตัวยืนยงแบบไรมันน์ (Riemann invariant) ที่สำคัญโดยรวม ในอุณหพลศาสตร์ ปริมาตรคือตัวแปรเสริม (parameter) ชนิดพื้นฐาน และเป็นตัวแปรควบคู่ (conjugate variable) กับความดัน.

ใหม่!!: การถ่ายโอนสัญญาณและปริมาตร · ดูเพิ่มเติม »

นิวเคลียส

นิวเคลียส (nucleus, พหูพจน์: nucleuses หรือ nuclei (นิวคลีไอ) มีความหมายว่า ใจกลาง หรือส่วนที่อยู่ตรงกลาง โดยอาจมีความหมายถึงสิ่งต่อไปนี้ โดยคำว่า นิวเคลียส (Nucleus) เป็นคำศัพท์ภาษาละตินใหม่ (New Latin) มาจากคำศัพท์เดิม nux หมายถึง ผลเปลือกแข็งเมล็ดเดียว (nut).

ใหม่!!: การถ่ายโอนสัญญาณและนิวเคลียส · ดูเพิ่มเติม »

แบคทีเรีย

แบคทีเรีย หรือ บัคเตรี เป็นประเภทของสิ่งมีชีวิตประเภทใหญ่ประเภทหนึ่ง มีขนาดเล็ก มองด้วยตาเปล่าไม่เห็น ส่วนใหญ่มีเซลล์เดียว และมีโครงสร้างเซลล์ที่ไม่ซับซ้อนมาก และโดยทั่วไปแบคทีเรียแบ่งได้หลายรูปแ.

ใหม่!!: การถ่ายโอนสัญญาณและแบคทีเรีย · ดูเพิ่มเติม »

แสง

ปริซึมสามเหลี่ยมกระจายลำแสงขาว ลำที่ความยาวคลื่นมากกว่า (สีแดง) กับลำที่ความยาวคลื่นน้อยกว่า (สีม่วง) แยกจากกัน แสง (light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่าและมีคลื่นแคบกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นกว้างกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์ ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่) ^~^.

ใหม่!!: การถ่ายโอนสัญญาณและแสง · ดูเพิ่มเติม »

แอลคาลอยด์

isbn.

ใหม่!!: การถ่ายโอนสัญญาณและแอลคาลอยด์ · ดูเพิ่มเติม »

แคลเซียม

แคลเซียม (Calcium) เป็นธาตุเคมีในตารางธาตุซึ่งมีสัญลักษณ์เป็น Ca มีเลขอะตอมเป็น 20 แคลเซียมเป็นธาตุโลหะหนักประเภทอะคาไลที่มีสีเทาอ่อน มันถูกใช้เป็นสารรีดิวซิ่งเอเยนต์ในการสกัดธาตุ ทอเรียมเซอร์โคเนียม และยูเรเนียม แคลเซียมอยู่ในกลุ่ม 50 ธาตุที่มีมากที่สุดบนเปลือกโลก มันมีความสำคัญต่อสิ่งมีชีวิตโดยเฉพาะในระบบสรีระวิทยาของเซลล์และการยืดหดตัวของกล้ามเนื้อ แคลเซียมมีพื้นดินเป็นแหล่งรองรับจะถูกพืชดูดไปใช้เป็นประโยชน์และสัตว์กินพืชก็ได้รับสารประกอบแคลเซียมเข้าไปด้วย เมื่อสีตว์และพืชตาย แคลเซียมก็จะกลับลงสู่ดินอีก.

ใหม่!!: การถ่ายโอนสัญญาณและแคลเซียม · ดูเพิ่มเติม »

โพรสตาแกลนดิน

E1 - อัลโพรสตาดิล (Alprostadil) I2 - โพรสตาไซคลิน (Prostacyclin) โพรสตาแกลนดิน (prostaglandin) เป็นกลุ่มของสารประกอบจำพวกลิพิดซึ่งสร้างมาจากกรดไขมันและทำหน้าที่สำคัญหลายอย่างในร่างกายสัตว์ สารประกอบโพรสตาแกลนดินประกอบด้วยคาร์บอน 20 อะตอม และมีวงแหวน 5 อะตอมคาร์บอน (5-carbon ring) โพรสตาแกลนดินเป็นสารตัวกลาง (mediator) และทำหน้าทำให้เกิดอาการปวดและเหนี่ยวนำให้เกิดพยาธิสภาพของโรค เช่น โรคความดันโลหิตสูง, มะเร็ง และการอักเสบ เป็นต้น ทั้งโพรสตาแกลนดิน, ทรอมบอกเซน (thromboxane), และโพรสตาไซคลิน (prostacyclin) เป็นอนุพันธ์ของกรดไขมันที่เรียกว่ากลุ่มโพรสตานอยด์ (prostanoid) ซึ่งเป็นกลุ่มย่อยของพวกไอโคซานอยด์ (eicosanoid) หมวดหมู่:ฮอร์โมน หมวดหมู่:ลิพิด.

ใหม่!!: การถ่ายโอนสัญญาณและโพรสตาแกลนดิน · ดูเพิ่มเติม »

โพรทิสต์

รทิสต์ (protist มาจากคำในภาษากรีกว่า protiston แปลว่า สิ่งแรกสุด) หมายถึงจุลชีพยูแคริโอตหลากหลายกลุ่มใหญ่กลุ่มหนึ่ง ในอดีตกลุ่มโพรทิสต์มีสถานะเป็นอาณาจักร โพรทิสตา (Protista) ซึ่งรวมสิ่งมีชีวิตเซลล์เดียวที่ไม่สามารถจัดประเภทลงอาณาจักรอื่นได้เลย ซึ่งต่อมาก็ถูกคัดค้านในอนุกรมวิธานสมัยใหม่ มันอาจพิจารณาได้ว่าเป็นการรวมกลุ่มอย่างหลวม ๆ ของสิ่งมีชีวิต 30-40 ไฟลัมที่ผสมผสานกันต่าง ๆ นานาในเรื่องภาวะโภชนาการ กลไกของการเคลื่อนไหวเอง ผนังที่ห่อหุ้มเซลล์ และวงจรชีวิต คำศัพท์ โพรทิสตา ถูกใช้เป็นครั้งแรกโดย แอร์นสท์ เฮคเคิล (Ernst Haeckel) เมื่อ..

ใหม่!!: การถ่ายโอนสัญญาณและโพรทิสต์ · ดูเพิ่มเติม »

โพรแคริโอต

รงสร้างของเซลล์แบคทีเรีย โพรแคริโอต (prokaryote) เป็นสิ่งมีชีวิตที่ประกอบด้วยออร์แกเนลที่ไม่มีเยื่อหุ้ม ไม่มีนิวเคลียส มักเป็นสิ่งมีชีวิตเซลล์เดียว คำว่า prokaryotes มาจาก ภาษากรีกโบราณ pro- ก่อน + karyon เมล็ด ซึ่งหมายถึงนิวเคลียส + ปัจจัย -otos, พหูพจน์ -otesCampbell, N. "Biology:Concepts & Connections".

ใหม่!!: การถ่ายโอนสัญญาณและโพรแคริโอต · ดูเพิ่มเติม »

โพแทสเซียม

แทสเซียม (Potassium) ธาตุเคมีในกลุ่มโลหะ มีเลขอะตอม 19 สัญลักษณ์ K สัญลักษณ์ของโพแทสเซียม มาจากภาษาเยอรมันว่า Kalium ส่วนชื่อโพแทสเซียม มาจากคำว่า โพแทส ซึ่งเป็นชื่อเรียกแร่ชนิดหนึ่งที่สกัดธาตุโพแทสเซียมได้ โพแทสเซียมเป็นโลหะอัลคาไล เป็นผงสีขาว-เงินอ่อนๆ ในธรรมชาติมักเป็นสารประกอบร่วมกับธาตุอื่นเพราะไวต่อปฏิกิริยาเคมีมาก สามารถออกซิไดซ์ได้อย่างรวดเร็วในอากาศ มีสมบัติทางเคมีใกล้เคียงกับโซเดียม.

ใหม่!!: การถ่ายโอนสัญญาณและโพแทสเซียม · ดูเพิ่มเติม »

โมเลกุล

โครงสร้างสามมิติ (ซ้ายและกลาง) และโครงสร้างสองมิติ (ขวา) ของโมเลกุลเทอร์พีนอย โมเลกุล (molecule) เป็นส่วนที่เล็กที่สุดของสสารซึ่งสามารถดำรงอยู่ได้ตามลำพังและยังคงความเป็นสารดังกล่าวไว้ได้ โมเลกุลประกอบด้วยอะตอมของธาตุมาเกิดพันธะเคมีกันกลายเป็นสารประกอบชนิดต่าง ๆ ใน 1 โมเลกุล อาจจะประกอบด้วยอะตอมของธาตุทางเคมีตัวเดียว เช่น ออกซิเจน (O2) หรืออาจจะมีหลายธาตุก็ได้ เช่น น้ำ (H2O) ซึ่งเป็นการประกอบร่วมกันของ ไฮโดรเจน 2 อะตอมกับ ออกซิเจน 1 อะตอม หากโมเลกุลหลายโมเลกุลมาเกิดพันธะเคมีต่อกัน ก็จะทำให้เกิดสสารขนาดใหญ่ขึ้นมาได้ เช่น (H2O) รวมกันหลายโมเลกุล เป็นน้ำ มโลเกุล มโลเกุล หมวดหมู่:โมเลกุล.

ใหม่!!: การถ่ายโอนสัญญาณและโมเลกุล · ดูเพิ่มเติม »

โมเลกุลส่งสัญญาณที่สอง

มเลกุลส่งสัญญาณที่สอง (Second messenger) เป็นโมเลกุลให้สัญญาณภายในเซลล์ (intracellular signaling molecule) ที่เซลล์หลั่งออกเพื่อเริ่มการเปลี่ยนแปลงทางสรีรภาพ เช่น การเพิ่มจำนวนเซลล์ (proliferation) การเปลี่ยนสภาพ (differentiation) การอพยพย้ายที่ การรอดชีวิต และอะพอพโทซิส ดังนั้น โมเลกุลส่งสัญญาณที่สองจึงเป็นองค์ประกอบเริ่มต้นองค์หนึ่งที่จุดชนวนลำดับการถ่ายโอนสัญญาณ (signal transduction) ภายในเซลล์ ตัวอย่างของโมเลกุลส่งสัญญาณที่สองรวมทั้ง cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), inositol trisphosphate (IP3), ไดกลีเซอไรด์ และแคลเซียม เซลล์จะหลั่งโมเลกุลส่งสัญญาณที่สองเมื่อได้รับโมเลกุลส่งสัญญาณนอกเซลล์ ซึ่งเรียกว่า โมเลกุลส่งสัญญาณที่หนึ่ง (first messenger) และเป็นปัจจัยนอกเซลล์ บ่อยครั้งเป็นฮอร์โมนหรือสารสื่อประสาท เช่น เอพิเนฟรีน, growth hormone, และเซโรโทนิน เพราะฮอร์โมนแบบเพปไทด์และสารสื่อประสาทปกติจะเป็นโมเลกุลชอบน้ำ จึงไม่อาจผ่านข้ามเยื่อหุ้มเซลล์ซึ่งเป็นชั้นฟอสโฟลิพิดคู่ เพื่อเริ่มการเปลี่ยนแปลงภายในเซลล์โดยตรง นี่ไม่เหมือนฮอร์โมนแบบสเตอรอยด์ซึ่งปกติจะข้ามได้ การทำงานที่จำกัดเช่นนี้จึงทำให้เซลล์ต้องมีกลไกถ่ายโอนสัญญาณ เพื่อเปลี่ยนการส่งสัญญาณของโมเลกุลที่หนึ่งให้เป็นการส่งสัญญาณของโมเลกุลที่สอง คือให้สัญญาณนอกเซลล์แพร่กระจายไปภายในเซลล์ได้ ลักษณะสำคัญของระบบนี้ก็คือ โมเลกุลส่งสัญญาณที่สองอาจจับคู่ในลำดับต่อ ๆ ไปกับกระบวนการทำงานของ kinase แบบ multi-cyclic เพื่อขยายกำลังสัญญาณของโมเลกุลส่งสัญญาณแรกอย่างมหาศาล ยกตัวอย่างเช่น RasGTP จะเชื่อมกับลำดับการทำงานของ Mitogen Activated Protein Kinase (MAPK) เพื่อขยายการส่งสัญญาณแบบ allosteric ของปัจจัยการถอดรหัส (transcription factor) เพื่อเพิ่มจำนวนเซลล์ เช่น Myc และ CREB นักเภสัชวิทยาและเคมีชีวภาพชาวอเมริกัน เอิร์ล วิลเบอร์ ซัทเทอร์แลนด์ จูเนียร์ (Earl Wilbur Sutherland, Jr) เป็นผู้ค้นพบโมเลกุลส่งสัญญาณที่สอง เป็นงานที่เขาได้รับรางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์ในปี..

ใหม่!!: การถ่ายโอนสัญญาณและโมเลกุลส่งสัญญาณที่สอง · ดูเพิ่มเติม »

โรคหลอดเลือดสมอง

รคลมปัจจุบัน หรือ โรคลมเหตุหลอดเลือดสมอง หรือ โรคหลอดเลือดสมอง (stroke) เป็นการหยุดการทำงานของสมองอย่างฉับพลันโดยมีสาเหตุจากการรบกวนหลอดเลือดที่เลี้ยงสมอง โรคนี้อาจเกิดจากการขาดเลือดเฉพาะที่ของสมอง (ischemia) ซึ่งมีสาเหตุจากภาวะหลอดเลือดมีลิ่มเลือด (thrombosis) หรือภาวะมีสิ่งหลุดอุดหลอดเลือด (embolism) หรืออาจเกิดจากการตกเลือด (hemorrhage) ในสมอง ผลจากภาวะดังกล่าวทำให้สมองส่วนที่ขาดเลือดหรือตกเลือดทำงานไม่ได้ และอาจส่งผลทำให้อัมพาตครึ่งซีก (hemiplegia; ไม่สามารถขยับแขนขาส่วนใดส่วนหนึ่งหรือซีกใดซีกหนึ่ง) ไม่สามารถที่จะทำความเข้าใจหรือพูดได้ หรือตาบอดครึ่งซีก (hemianopsia; ไม่สามารถมองเห็นครึ่งซีกหนึ่งของลานสายตา) ทั้งนี้ถ้ามีความรุนแรงมาก อาจทำให้ถึงตายได้ โรคลมปัจจุบันเป็นภาวะฉุกเฉินทางการแพทย์ซึ่งสามารถทำให้เสียการทำงานของระบบประสาทอย่างถาวร อาจเกิดภาวะแทรกซ้อนมากมายทำให้พิการและเสียชีวิตได้ นับเป็นสาเหตุหลักของความพิการในสหรัฐอเมริกาและยุโรป และเป็นสาเหตุการตายอันดับที่สองของทั่วโลก และกำลังจะขึ้นเป็นสาเหตุการตายอันดับแรกในไม่ช้.

ใหม่!!: การถ่ายโอนสัญญาณและโรคหลอดเลือดสมอง · ดูเพิ่มเติม »

โรคอารมณ์สองขั้ว

รคอารมณ์สองขั้ว (bipolar disorder) เดิมเรียก ความเจ็บป่วยฟุ้งพล่าน-ซึมเศร้า (manic-depressive illness) เป็นโรคจิตซึ่งมีลักษณะ คือ มีช่วงที่ครึ้มใจและช่วงที่ซึมเศร้า อารมณ์ครึ้มใจมีความสำคัญและเรียก อาการฟุ้งพล่าน (mania) หรือภาวะไฮโปเมเนีย (hypomania) ขึ้นอยู่กับความรุนแรงหรือมีโรคจิตหรือไม่ ระหว่างภาวะฟุ้งพล่าน ปัจเจกบุคคลรู้สึกหรือแสดงออกว่ามีความสุข มีกำลังหรือหงุดหงิดผิดปกติ มักตัดสินใจไม่ดีโดยไม่คำนึงถึงผลลัพธ์ ความต้องการนอนหลับมักลดลง ระหว่างช่วงซึมเศร้า อาจมีการร้องไห้ เลี่ยงการสบตากับผู้อื่นและมองชีวิตในแง่ลบ ความเสี่ยงการฆ่าตัวตายในผู้ป่วยโรคนี้สูงที่กว่า 6% ในเวลา 20 ปี ขณะที่การทำร้ายตัวเองเกิด 30–40% โรคนี้ปกติสัมพันธ์กับปัญหาสุขภาพจิตอื่น เช่น โรควิตกกังวลและโรคการใช้สารเสพต.

ใหม่!!: การถ่ายโอนสัญญาณและโรคอารมณ์สองขั้ว · ดูเพิ่มเติม »

โดพามีน

มีน (Dopamine) เป็นสารประกอบอินทรีย์ในกลุ่มเดียวกัน แคทิคอลลามีน และ เฟนเอทิลเอมีน ซึ่งมีความสำคัญกับสมองและร่างกาย ซื่อโดพามีน ได้จากโครงสร้างทางเคมี ซึ่งสังเคราะห์โดยการเปลี่ยนหมู่กรดอินทรีย์ของ L-DOPA ( L-3,4-dihydroxyphenylalanine) ให้เป็นหมู่อะมิโน ซึ่งเป็นสารเคมีที่ผลิตขึ้นในสมองและไต และพบว่าพืชและสัตว์บางชนิดก็สามารถสังเคราะห์ได้เช่นกัน ในสมอง โดพามีนทำหน้าที่เป็นสารสื่อประสาท (neurotransmitter) คอยกระตุ้น ตัวรับโดพามีน (dopamine receptor) โดพามีนทำหน้าที่เป็นฮอร์โมนประสาท (neurohormone) ที่หลั่งมาจากสมองส่วนไฮโปทาลามัส (hypothalamus) หน้าที่หลักของฮอร์โมนตัวนี้คือยับยั้งการหลั่งโปรแลคติน (prolactin) จากต่อมใต้สมองส่วนหน้า (anterior pituitary) โดพามีนสามารถใช้เป็นยา ซึ่งมีผลต่อระบบประสาทซิมพาเทติก (sympathetic nervous system) โดยมีผลลัพธ์คือ อัตราการเต้นของหัวใจเพิ่มขึ้น แรงดันโลหิตเพิ่มขึ้น อย่างไรก็ตาม เมื่อโดพามีนไม่สามารถผ่านโครงสร้างกั้นระหว่างเลือดและสมอง (blood-brain barrier) โดพามีนที่ใช้เป็นยา จะไม่มีผลโดยตรงต่อระบบประสาทส่วนกลาง การเพิ่มปริมาณของโดพามีนในสมองของผู้ป่วยที่เป็นโรคต่างๆ เช่น พาร์คินสัน สามารถให้สารตั้งต้นแบบสังเคราะห์แก่โดพามีน เช่น L-DOPA เพื่อให้สามารถผ่านโครงสร้างกั้นระหว่างเลือดและสมองได้ โดพามีนเป็นสารสื่อประสาทกลุ่มแคทีโคลามีน (catecholamines) ที่สร้างมาจากกรดอะมิโนไทโรซีน (tyrosine) โดยอาศัยการทำงานของเอนไซม์ไทโรซีนไฮดรอกซิเลส (tyrosine hydroxylase) ในสมอง มีปริมาณโดพามีนประมาณร้อยละ 80 ของสารกลุ่มแคทีโคลามีนที่ถูกสร้างขึ้นทั้งหมด นอกจากนี้โดพามีนยังจัดเป็นนิวโรฮอร์โมน (neurohormone) ที่หลั่งจากสมองส่วนไฮโปธาลามัส ซึ่งทำหน้าที่ยับยั้งการหลั่งโปรแลกตินจากกลีบส่วนหน้าของต่อมพิทูอิตารี เมื่อโดพามีนถูกปลดปล่อยจากเซลล์ประสาทโดพามีนแล้ว จะมีผลต่อสมองส่วนต่างๆ ในหลายด้าน ซึ่งได้แก.

ใหม่!!: การถ่ายโอนสัญญาณและโดพามีน · ดูเพิ่มเติม »

โปรตีน

3 มิติของไมโอโกลบิน (โปรตีนชนิดหนึ่ง) โปรตีน (protein) เป็นสารประกอบชีวเคมี ซึ่งประกอบด้วยพอลิเพปไทด์หนึ่งสายหรือมากกว่า ที่พับกันเป็นรูปทรงกลมหรือเส้นใย โดยทำหน้าที่อำนวยกระบวนการทางชีววิทยา พอลิเพปไทด์เป็นพอลิเมอร์สายเดี่ยวที่เป็นเส้นตรงของกรดอะมิโนที่เชื่อมเข้ากันด้วยพันธะเพปไทด์ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโนของกรดอะมิโนเหลือค้าง (residue) ที่อยู่ติดกัน ลำดับกรดอะมิโนในโปรตีนกำหนดโดยลำดับของยีน ซึ่งเข้ารหัสในรหัสพันธุกรรม โดยทั่วไป รหัสพันธุกรรมประกอบด้วยกรดอะมิโนมาตรฐาน 20 ชนิด อย่างไรก็ดี สิ่งมีชีวิตบางชนิดอาจมีซีลีโนซิสตีอีน และไพร์โรไลซีนในกรณีของสิ่งมีชีวิตโดเมนอาร์เคียบางชนิด ในรหัสพันธุกรรมด้วย ไม่นานหรือระหว่างการสังเคราะห์ สารเหลือค้างในโปรตีนมักมีขั้นปรับแต่งทางเคมีโดยกระบวนการการปรับแต่งหลังทรานสเลชัน (posttranslational modification) ซึ่งเปลี่ยนแปลงคุณสมบัติทางกายภาพและทางเคมี การจัดเรียง ความเสถียร กิจกรรม และที่สำคัญที่สุด หน้าที่ของโปรตีนนั้น บางครั้งโปรตีนมีกลุ่มที่มิใช่เพปไทด์ติดอยู่ด้วย ซึ่งสามารถเรียกว่า โปรสทีติกกรุป (prosthetic group) หรือโคแฟกเตอร์ โปรตีนยังสามารถทำงานร่วมกันเพื่อบรรลุหน้าที่บางอย่าง และบ่อยครั้งที่โปรตีนมากกว่าหนึ่งชนิดรวมกันเพื่อสร้างโปรตีนเชิงซ้อนที่มีความเสถียร หนึ่งในลักษณะอันโดดเด่นที่สุดของพอลิเพปไทด์คือความสามารถจัดเรียงเป็นขั้นก้อนกลมได้ ขอบเขตซึ่งโปรตีนพับเข้าไปเป็นโครงสร้างตามนิยามนั้น แตกต่างกันไปมาก ปรตีนบางชนิดพับตัวไปเป็นโครงสร้างแข็งอย่างยิ่งโดยมีการผันแปรเล็กน้อย เป็นแบบที่เรียกว่า โครงสร้างปฐมภูมิ ส่วนโปรตีนชนิดอื่นนั้นมีการจัดเรียงใหม่ขนานใหญ่จากโครงสร้างหนึ่งไปยังอีกโครงสร้างหนึ่ง การเปลี่ยนแปลงโครงสร้างนี้มักเกี่ยวข้องกับการส่งต่อสัญญาณ ดังนั้น โครงสร้างโปรตีนจึงเป็นสื่อกลางซึ่งกำหนดหน้าที่ของโปรตีนหรือกิจกรรมของเอนไซม์ โปรตีนทุกชนิดไม่จำเป็นต้องอาศัยกระบวนการจัดเรียงก่อนทำหน้าที่ เพราะยังมีโปรตีนบางชนิดทำงานในสภาพที่ยังไม่ได้จัดเรียง เช่นเดียวกับโมเลกุลใหญ่ (macromolecules) อื่น ดังเช่น พอลิแซกคาไรด์และกรดนิวคลีอิก โปรตีนเป็นส่วนสำคัญของสิ่งมีชีวิตและมีส่วนเกี่ยวข้องในแทบทุกกระบวนการในเซลล์ โปรตีนจำนวนมากเป็นเอนไซม์ซึ่งเร่งปฏิกิริยาทางชีวเคมี และสำคัญต่อกระบวนการเมตาบอลิซึม โปรตีนยังมีหน้าที่ด้านโครงสร้างหรือเชิงกล อาทิ แอกตินและไมโอซินในกล้ามเนื้อและโปรตีนในไซโทสเกเลตอน ซึ่งสร้างเป็นระบบโครงสร้างค้ำจุนรูปร่างของเซลล์ โปรตีนอื่นสำคัญในการส่งสัญญาณของเซลล์ การตอบสนองของภูมิคุ้มกัน การยึดติดกันของเซลล์ และวัฏจักรเซลล์ โปรตีนยังจำเป็นในการกินอาหารของสัตว์ เพราะสัตว์ไม่สามารถสังเคราะห์กรดอะมิโนทั้งหมดตามที่ต้องการได้ และต้องได้รับกรดอะมิโนที่สำคัญจากอาหาร ผ่านกระบวนการย่อยอาหาร สัตว์จะแตกโปรตีนที่ถูกย่อยเป็นกรดอะมิโนอิสระซึ่งจะถูกใช้ในเมตาบอลิซึมต่อไป โปรตีนอธิบายเป็นครั้งแรกโดยนักเคมีชาวดัตช์ Gerardus Johannes Mulder และถูกตั้งชื่อโดยนักเคมีชาวสวีเดน Jöns Jacob Berzelius ใน..

ใหม่!!: การถ่ายโอนสัญญาณและโปรตีน · ดูเพิ่มเติม »

ไมโทคอนเดรีย

รงสร้างของไมโทคอนเดรีย ไมโทคอนเดรียน หรือมักเรียกว่า ไมโทคอนเดรีย (mitochondrion, พหูพจน์: mitochondria) ทำหน้าที่เป็นแหล่งพลังงานของเซลล์ ถูกค้นพบครั้งแรกโดย คอลลิกเกอร์ ส่วนใหญ่มีรูปร่างกลมท่อนสั้น คล้ายไส้กรอก ยาว 5-7 ไมครอน มีเส้นผ่านศูนย์กลาง 0.2-1 ไมครอน ประกอบไปด้วยโปรตีน 60-65% ลิพิด 35-40% มีเยื่อหุ้มสองชั้น (double unit membrane) ชั้นนอกเรียบหนา 60-80 อังสตรอม เยื่อชั้นในพับเข้าไปเป็นรอยหยักเรียก คริสตี้ (cristae) หนา 60-80 อังสตรอม ภายในบรรจุของเหลวประกอบไปด้วยสารหลายชนิดเรียก แมทริกซ์ (matrix) ภายในไมโทคอนเดรียสามารถพบ DNA ได้เช่นเดียวกับในนิวเคลียสและคลอโรพลาสต์ โดยเรียกว่า mtDNAhttp://www.mitochondrial.net/ มีการสันนิษฐานว่าไมโทคอนเดรียนั้นมีวิวัฒนาการร่วมกันกับเซลล์ยูคาริโอตมานานแล้ว โดยเริ่มแรกนั้นเซลล์สิ่งมีชีวิตชั้นสูงอาจไปกินเซลล์ที่มีขนาดเล็กกว่าเข้าไป ในเซลล์มนุษย์ DNA ภายในไมโทคอนเดรียมีลักษณะเป็นวงกลม โดยมียีนที่สร้างโปรตีนได้เพียงไม่กี่สิบยีนเท่านั้นมหัศจรรย์ดีเอ็นเอ.

ใหม่!!: การถ่ายโอนสัญญาณและไมโทคอนเดรีย · ดูเพิ่มเติม »

ไอออน

แผนภาพประจุอิเล็กตรอนของไนเตรตไอออน ไอออน คือ อะตอม หรือกลุ่มอะตอม ที่มีประจุสุทธิทางไฟฟ้าเป็นบวก หรือเป็นไอออนที่มีประจุลบ gaaจะมีอิเล็กตรอนในชั้นอิเล็กตรอน (electron shell) มากกว่าที่มันมีโปรตอนในนิวเคลียส เราเรียกไอออนชนิดนี้ว่า แอนไอออน (anion) เพราะมันถูกดูดเข้าหาขั้วแอโนด (anode) ส่วนไอออนที่มีประจุบวก จะมีอิเล็กตรอนน้อยกว่าโปรตอน เราเรียกว่า แคทไอออน (cation) เพราะมันถูกดูดเข้าหาขั้วแคโทด (cathode) กระบวนการแปลงเป็นไอออน และสภาพของการถูกทำให้เป็นไอออน เรียกว่า การแตกตัวเป็นไอออน (ionization) ส่วนกระบวนการจับตัวระหว่างไอออนและอิเล็กตรอนเข้าด้วยกัน จนเกิดเป็นอะตอมที่ดุลประจุแล้วมีความเป็นกลางทางไฟฟ้า เรียกว่า recombination แอนไอออนแบบโพลีอะตอมิก ซึ่งมีออกซิเจนประกอบอยู่ บางครั้งก็เรียกว่า "ออกซีแอนไอออน" (oxyanion) ไอออนแบบอะตอมเดียวและหลายอะตอม จะเขียนระบุด้วยเครื่องหมายประจุรวมทางไฟฟ้า และจำนวนอิเล็กตรอนที่สูญไปหรือได้รับมา (หากมีมากกว่า 1 อะตอม) ตัวอย่างเช่น H+, SO32- กลุ่มไอออนที่ไม่แตกตัวในน้ำ หรือแม้แต่ก๊าซ ที่มีส่วนของอนุภาคที่มีประจุ จะเรียกว่า พลาสมา (plasma) ซึ่งถือเป็น สถานะที่ 4 ของสสาร เพราะคุณสมบัติของมันนั้น แตกต่างไปจากของแข็ง ของเหลว หรือก๊าซ.

ใหม่!!: การถ่ายโอนสัญญาณและไอออน · ดูเพิ่มเติม »

ไฮโดรเจนซัลไฟด์

รเจนซัลไฟด์ (hydrogen sulfide หรือ hydrogen sulphide) หรือ ก๊าซไข่เน่า เป็นสารประกอบที่มีสูตรเคมีเป็น H2S ไม่มีสี, เป็นพิษ และเป็นแก๊สไวไฟ มีกลิ่นเน่าเหม็นคล้ายไข่เน่า บ่อยครั้งเป็นผลจากแบคทีเรียย่อยสลายซัลไฟต์ในสารอนินทรีย์ในสภาวะขาดออกซิเจน เช่นใน หนองน้ำและท่อระบายน้ำ (การย่อยสลายแบบไม่ใช้ออกซิเจน) นอกจากนั้นยังพบในแก๊สจากภูเขาไฟ ก๊าซธรรมชาติ และบ่อน้ำบางบ่อ กลิ่นของ H2S ไม่ใช่คุณสมบัติโดยทั่วไปของกำมะถัน ซึ่งในความจริงแล้วไม่มีกลิ่น.

ใหม่!!: การถ่ายโอนสัญญาณและไฮโดรเจนซัลไฟด์ · ดูเพิ่มเติม »

ไฮโดรเจนเพอร์ออกไซด์

รเจนเพอร์ออกไซด์ (hydrogen peroxide) มีสูตรทางเคมีว่า H2O2 เป็นสารประกอบเพอร์ออกไซด์ (สารที่ประกอบด้วยออกซิเจนสองตัวและเชื่อมกันด้วยพันธะเดี่ยว) รูปแบบที่ง่ายที่สุด มีสภาพเป็นของเหลวใส หนืดกว่าน้ำเล็กน้อย มีรสขม ไม่อยู่ตัว ซึ่งสามารถสลายตัวเป็นออกซิเจนกับน้ำ เมื่อเจือจางจะเป็นสารละลายไม่มีสี เนื่องจากไฮโดรเจนเพอร์ออกไซด์สามารถสลายตัวเป็นน้ำได้เมื่อถูกแสงและความร้อน จึงควรเก็บรักษาสารชนิดนี้ไว้ในภาชนะทึบแสง, ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคล.

ใหม่!!: การถ่ายโอนสัญญาณและไฮโดรเจนเพอร์ออกไซด์ · ดูเพิ่มเติม »

ไดกลีเซอไรด์

right ไดกลีเซอไรด์ (di-glyceride, diglyceride, diacyl-glycerol ตัวย่อ: DAG) เป็นกลีเซอไรด์ที่ประกอบด้วยโซ่กรดไขมันคู่ ที่มีพันธะโคเวเลนต์กับโมเลกุลกลีเซอรอล (glycerol) ผ่านเอสเทอร์ (พันธะเอสเทอร์) ในโมเลกุล 1-palmitoyl-2-oleoyl-glycerol ที่แสดงในรูป จะเห็นโซ่กรดไขมันคู่ที่มาจากกรดไขมันปาลม์ (palmitic acid) และกรดไขมันมะกอก (oleic acid) ไดกลีเซอไรด์อาจจะมีกรดไขมันแบบอื่น ๆ ที่ตำแหน่ง C-1 และ C-2 หรือที่ตำแหน่ง C-1 และ C-3 กลีเซอรอลที่มีโซ่กรดไขมันที่ตำแหน่ง 1,2 จะมีลักษณะเป็นไคแรล (chiral คือไม่เหมือนกับภาพที่สะท้อนในกระจก) ส่วนกลีเซอรอลที่มีโซ่ที่ตำแหน่ง 1,3 จะมีลักษณะเป็นไคแรลถ้าเป็นโซ่กรดไขมันที่ไม่เหมือนกัน.

ใหม่!!: การถ่ายโอนสัญญาณและไดกลีเซอไรด์ · ดูเพิ่มเติม »

ไซโทพลาซึม

ไซโทพลาซึม นี่คือภาพเซลล์โดยสัตว์ทั่วไป ประกอบด้วยออร์แกเนลล์ต่าง ๆ ดังนี้ (1) นิวคลีโอลัส (2) นิวเคลียส (3) ไรโบโซม (4) เวสิเคิล (5) เอนโดพลาสมิกเรติคูลัมแบบผิวขรุขระ (6) กอลไจแอปพาราตัส (7) ไซโทสเกลเลตอน (8) เอนโดพลาสมิกเรติคูลัมแบบผิวเรียบ (9) ไมโทคอนเดรีย (10) แวคิวโอล (11) ไซโทพลาซึม (12) ไลโซโซม (13) เซนทริโอล ไซโทพลาซึม (cytoplasm) คือส่วนประกอบของเซลล์ที่อยู่ภายใต้เยื่อหุ้มเซลล์ แต่อยู่นอกนิวเคลียส หรือเรียกได้ว่า ไซโทพลาซึมเป็นส่วนของโพรโทพลาสซึมที่อยู่นอกนิวเคลียส ไซโทพลาซึมประกอบไปด้วยส่วนที่เป็นโครงสร้างย่อย ๆ ภายในเซลล์ เรียกว่าออร์แกเนลล์ (organelle) และส่วนที่เป็นของกึ่งเหลว เรียกว่าไซโทซอล (cytosol) องค์ประกอบประมาณ 80% ของไซโทพลาซึมเป็นน้ำ และมักไม่มีสี ในเซลล์โพรแคริโอต (ซึ่งไม่มีนิวเคลียส) เนื้อในของเซลล์ทั้งหมดจะอยู่ในไซโทพลาซึม สำหรับเซลล์ยูแคริโอต องค์ประกอบภายในนิวเคลียสจะแยกออกจากไซโทพลาซึม และมีชื่อเรียกแยกว่า '''นิวคลิโอพลาซึม''' กิจกรรมต่างๆ ในระดับเซลล์มักเกิดขึ้นในไซโทพลาซึม เช่น ไกลโคไลซิส และการแบ่งเซลล์ บริเวณเนื้อด้านในๆ ของไซโทพลาซึมเรียกว่า เอนโดพลาซึม (endoplasm) ส่วนเนื้อด้านนอกของไซโทพลาซึมที่อยู่ถัดจากเยื้อหุ้มเซลล์ลงมา เรียกว่า เอกโตพลาซึม หรือ เซลล์คอร์เทกซ์ (cell cortex) ในเซลล์ของพืช จะมีการไหลเวียนของไซโทพลาซึมภายในเซลล์เพื่อลำเลียงสารจากบริเวณหนึ่งของเซลล์ไปยังอีกบริเวณหนึ่ง เรียกการไหลเวียนนี้ว่า ไซโทพลาสมิก สตรีมมิ่ง (cytoplasmic streaming) หรือ ไซโคลซิส (cyclosis) หน้าที่ของไซโทพลาสซึม    • เป็นบริเวณที่เกิดปฏิกิริยาเคมีของเซลล์     • สลายวัตถุดิบเพื่อให้ได้พลังงานและสิ่งที่จำเป็นสำหรับเซลล์     • สังเคราะห์สารที่จำเป็นสำหรับเซลล์    • เป็นที่เก็บสะสมวัตถุดิบสำหรับเซลล์     • เกี่ยวข้องกับกระบวนการขับถ่ายของเสียของเซลล์ หมวดหมู่:ชีววิทยาของเซลล์ หมวดหมู่:กายวิภาคศาสตร์เซลล์.

ใหม่!!: การถ่ายโอนสัญญาณและไซโทพลาซึม · ดูเพิ่มเติม »

ไซโตซอล

doi.

ใหม่!!: การถ่ายโอนสัญญาณและไซโตซอล · ดูเพิ่มเติม »

ไนตริกออกไซด์

นตริกออกไซด์ (Nitric oxide; NO) หรือไนโตรเจนออกไซด์ หรือไนโตรเจนมอนอกไซด์ เป็น โมเลกุล ที่มีสูตรทางเคมีเป็นNO เป็นอนุมูลอิสระ ที่อยู่ในรูปของก๊าซ สามารถเคลื่อนที่ได้ดีในเซลล์ ทั้งบริเวณที่ชอบน้ำและไม่ชอบน้ำ และมีความสำคัญในทางอุตสาหกรรมไนตริกออกไซด์เป็นผลพลอยได้ของการเผาไหม้สารอินทรีย์ในที่ที่มีอากาศ เช่นเครื่องยนต์ โรงงานอุตสาหกรรมที่ใช้เชื้อเพลิงจากฟอสซิล และเกิดขึ้นตามธรรมชาติระหว่างการเกิดฟ้าผ่า พืชสามารถสังเคราะห์ NO ขึ้นได้โดยวิถีกระบวนการสร้างและสลายที่ใช้ Arginine หรือไนไตรต์ เอนไซม์ที่เกี่ยวข้องที่สำคัญในพืช ได้แก่ nitrate reductase (NR) ซึ่งเปลี่ยนไนไตร์ลเป็น NO โดยมีโมลิบดินัมเป็นโคแฟกเตอร์ เอนไซม์อีกตัวหนึ่งที่เกี่ยวข้องคือ xanthine oxidoreductase ซึ่งมีโมลิบดินัมและโคบอลต์เป็นองค์ประกอบด้วย Arasimowicz, M., and Floryszak-Wieczorek, J. 2007.

ใหม่!!: การถ่ายโอนสัญญาณและไนตริกออกไซด์ · ดูเพิ่มเติม »

เพปไทด์

ปไทด์ เพปไทด์ (peptide มาจากภาษากรีก πεπτίδια) คือสายพอลิเมอร์ของกรดอะมิโนที่มาเชื่อมต่อกันด้วยพันธะเพปไทด์ ปลายด้านที่มีหมู่อะมิโนเป็นอิสระเรียกว่าปลายเอ็น (N-terminal) ส่วนปลายที่มีหมู่คาร์บอกซิลเป็นอิสระเรียกว่าปลายซี (C-terminal) การเรียกชื่อเพปไทด์จะเรียกตามลำดับกรดอะมิโนจากปลายเอ็นไปหาปลายซี เพปไทด์ขนาดเล็กหลายชนิดมีความสำคัญในสิ่งมีชีวิต เช่น.

ใหม่!!: การถ่ายโอนสัญญาณและเพปไทด์ · ดูเพิ่มเติม »

เกล็ดเลือด

กล็ดเลือด (platelet หรือ thrombocyte, เซลล์ลิ่มเลือด) เป็นส่วนประกอบของเลือดซึ่งมีหน้าที่ทำให้เลือดหยุดร่วมกับปัจจัยเลือดจับลิ่ม (coagulation factors) โดยเกาะกลุ่มและจับลิ่มการบาดเจ็บของหลอดเลือด เกล็ดเลือดไม่มีนิวเคลียสของเซลล์ เป็นส่วนหนึ่งของไซโทพลาซึมที่มาจากเมกาคาริโอไซต์ (megakaryocyte) ของไขกระดูก แล้วเข้าสู่ระบบไหลเวียน เกล็ดเลือดที่ยังไม่ปลุกฤทธิ์มีโครงสร้างคล้ายจานนูนสองข้าง (ทรงเลนส์) เส้นผ่านศูนย์กลางมากสุด 2–3 ไมโครเมตร เกล็ดเลือดพบเฉพาะในสัตว์เลี้ยงลูกด้วยนม ส่วนสัตว์อื่น เกล็ดเลือดไหลเวียนเป็นเซลล์นิวเคลียสเดี่ยวMichelson, Platelets, 2013, p. 3 ในสเมียร์เลือดที่ย้อมแล้ว เกล็ดเลือดปรากฏเป็นจุดสีม่วงเข้ม ประมาณ 20% ของเส้นผ่านศูนย์กลางเม็ดเลือดแดง สเมียร์ใช้พิจารณาขนาด รูปทรง จำนวนและการเกาะกลุ่มของเกล็ดเลือด สัดส่วนของเกล็โเลือดต่อเม็ดเลือดแดงในผู้ใหญ่สุขภาพดีอยู่ระหว่าง 1:10 ถึง 1:20 หน้าที่หลักของเกล็ดเลือด คือ การมีส่วนในการห้ามเลือด ซึ่งเป็นกระบวนการหยุดการตกเลือด ณ จุดที่เนื้อเยื่อบุโพรงฉีกขาด พวกมันจะมารวมกันตรงนั้นและจะอุดรูรั่วถ้ารอยฉีกขาดนั้นไม่ใหญ่เกินไป ขั้นแรก เกล็ดเลือดจะยึดกับสสารนอกเยื่อบุโพรงที่ฉีกขาด เรียก "การยึดติด" (adhesion) ขั้นที่สอง พวกมันเปลี่ยนรูปทรง เปิดตัวรับและหลั่งสารเคมีนำรหัส เรียก การปลุกฤทธิ์ (activation) ขั้นที่สาม พวกมันเชื่อมต่อกันโดยสะพานตัวรับ เรียก การรวมกลุ่ม (aggregation) การก่อก้อน (clot) เกล็ดเลือด (การห้ามเลือดปฐมภูมิ) นี้สัมพันธ์กับการปลุกฤทธิ์การจับลิ่มของเลือดเป็นลำดับ (coagulation cascade) โดยมีผลลัพธ์ทำให้เกิดการพอกพูน (deposition) และการเชื่อมกันของไฟบริน (การห้ามเลือดทุติยภูมิ) กระบวนการเหล่านี้อาจซ้อนทับกันได้ สเปกตรัมมีตั้งแต่มีก้อนเกล็ดเลือดเป็นหลัก หรือ "ลิ่มขาว" ไปจนถึงมีก้อนไฟบรินเป็นหลัก หรือ "ลิ่มแดง" หรือแบบผสมที่ตรงแบบกว่า ผลลัพธ์คือ ก้อน บางคนอาจเพิ่มการหดตัวของก้อนและการยับยั้งเกล็ดเลือดในเวลาต่อมาเป็นขั้นที่สี่และห้าเพื่อทำให้กระบวนการสมบูรณ์ และบ้างว่าขั้นที่หกเป็นการซ่อมบาดแผล ภาวะเกล็ดเลือดน้อยเกิดจากมีการผลิตเกล็ดเลือดลดลงหรือมีการทำลายมากขึ้น ภาวะเกล็ดเลือดมากอาจเป็นแต่กำเนิด แบบปฏิกิริยา (ต่อไซโทไคน์) หรือเนื่องจากการผลิตที่ไม่มีการควบคุม อาจเป็นโรคเนื้องอกไมอิโลโปรลิเฟอเรตีฟ (myeloprolerative neoplasm) อย่างหนึ่งหรือเนื้องอกของมัยอีลอยด์อื่นบางอย่าง นอกจากนี้ ยังมีภาวะเกล็ดเลือดทำหน้าที่ผิดปกติ (thrombocytopathy) เกล็ดเลือดปกติสามารถสนองต่อความปกติบนผนังหลอดเลือดมากกว่าการตกเลือด ทำให้มีการยึดเกาะ/การปลุกฤทธิ์ที่ไม่เหมาะสมและภาวะหลอดเลือดมีลิ่มเลือดในภาวะที่หลอดเลือดมิได้ฉีกขาด ภาวะนี้มีกลไกแตกต่างจากก้อนปกติ ตัวอย่าง คือ การขยายก้อนไฟบรินจากภาวะหลอดเลือดดำมีลิ่มเลือด การขยายของพลาก (plaque) หลอดเลือดแดงที่ไม่เสถียรหรือแตก ทำให้เกิดภาวะหลอดเลือดแดงมีลิ่มเลือด และภาวะหลอดเลือดระบบไหลเวียนขนาดเล็กมีลิ่มเลือด (microcirculatory thrombosis) ลิ่มหลอดเลือดแดงอาจอุดกั้นการไหลของเลือดบางส่วน ทำให้มีการขาดเลือดเฉพาะที่ใต้ต่อจุดอุดตัน หรืออุดกั้นสมบูรณ์ ทำให้มีการตายของเนื้อเยื่อใต้ต่อจุดอุดตัน.

ใหม่!!: การถ่ายโอนสัญญาณและเกล็ดเลือด · ดูเพิ่มเติม »

เมแทบอลิซึม

กระบวนการสร้างและสลาย หรือ เมแทบอลิซึม (metabolism) มาจากภาษากรีก μεταβολή ("metabolē") มีความหมายว่า "เปลี่ยนแปลง" เป็นกลุ่มปฏิกิริยาเคมีที่เกิดขึ้นในเซลล์สิ่งมีชีวิตเพื่อค้ำจุนชีวิต วัตถุประสงค์หลักสามประการของเมแทบอลิซึม ได้แก่ การเปลี่ยนอาหารและเชื้อเพลิงให้เป็นพลังงานในการดำเนินกระบวนการของเซลล์ การเปลี่ยนอาหารและเชื้อเพลิงเป็นหน่วยย่อยของโปรตีน ลิพิด กรดนิวคลิอิกและคาร์โบไฮเดรตบางชนิด และการขจัดของเสียไนโตรเจน ปฏิกิริยาเหล่านี้มีเอนไซม์เป็นตัวเร่งปฏิกิริยา เพื่อให้สิ่งมีชีวิตเติบโตและเจริญพันธุ์ คงไว้ซึ่งโครงสร้างและตอบสนองต่อสิ่งแวดล้อม "เมแทบอลิซึม" ยังสามารถหมายถึง ผลรวมของปฏิกิริยาเคมีทั้งหมดที่เกิดในสิ่งมีชีวิต รวมทั้งการย่อยและการขนส่งสสารเข้าสู่เซลล์และระหว่างเซลล์ กลุ่มปฏิกิริยาเหล่านี้เรียกว่า เมแทบอลิซึมสารอินเทอร์มีเดียต (intermediary หรือ intermediate metabolism) โดยปกติ เมแทบอลิซึมแบ่งได้เป็นสองประเภท คือ แคแทบอลิซึม (catabolism) ที่เป็นการสลายสสารอินทรีย์ ตัวอย่างเช่น การสลายกลูโคสให้เป็นไพรูเวต เพื่อให้ได้พลังงานในการหายใจระดับเซลล์ และแอแนบอลิซึม (anabolism) ที่หมายถึงการสร้างส่วนประกอบของเซลล์ เช่น โปรตีนและกรดนิวคลีอิก ทั้งนี้ การเกิดแคแทบอลิซึมส่วนใหญ่มักมีการปลดปล่อยพลังงานออกมา ส่วนการเกิดแอแนบอลิซึมนั้นจะมีการใช้พลังงานเพื่อเกิดปฏิกิริยา ปฏิกิริยาเคมีของเมแทบอลิซึมถูกจัดอยู่ในวิถีเมแทบอลิซึม (metabolic pathway) ซึ่งสารเคมีชนิดหนึ่งๆ จะถูกเปลี่ยนแปลงหลายขั้นตอนจนกลายเป็นสารชนิดอื่น โดยอาศัยการเข้าทำปฏิกิริยาของใช้เอนไซม์หลายชนิด ทั้งนี้ เอนไซม์ชนิดต่างๆ นั้นมีความสำคัญอย่างยิ่งต่อการเกิดเมแทบอลิซึม เพราะเอนไซม์จะเป็นตัวกระตุ้นการเกิดปฏิกิริยาเคมีเหล่านั้น โดยการเข้าจับกับปฏิกิริยาที่เกิดเองได้ (spontaneous process) อยู่แล้วในร่างกาย และหลังการเกิดปฏิกิริยาจะมีปลดปล่อยพลังงานออกมา พลังงานที่เกิดขึ้นนี้จะถูกนำไปใช้ในปฏิกิริยาเคมีอื่นของสิ่งมีชีวิตที่ไม่อาจเกิดขึ้นได้เองหากปราศจากพลังงาน จึงอาจกล่าวได้ว่า เอนไซม์ทำหน้าที่เป็นตัวเร่งปฏิกิริยา ทำให้ปฏิกิริยาเคมีต่างๆ ของร่างกายดำเนินไปอย่างรวดเร็วและมีประสิทธิภาพ นอกจากนี้ เอนไซม์ยังทำหน้าที่ควบคุมวิถีเมแทบอลิซึมในกระบวนการการตอบสนองต่อการเปลี่ยนแปลงในสิ่งแวดล้อมของเซลล์หรือสัญญาณจากเซลล์อื่น ระบบเมแทบอลิซึมของสิ่งมีชีวิตจะเป็นตัวกำหนดว่า สารใดที่มีคุณค่าทางโภชนาการและเป็นพิษสำหรับสิ่งมีชีวิตนั้น ๆ ตัวอย่างเช่น โปรคาริโอตบางชนิดใช้ไฮโดรเจนซัลไฟด์เป็นสารอาหาร ทว่าแก๊สดังกล่าวกลับเป็นสารที่ก่อให้เกิดพิษแก่สัตว์ ทั้งนี้ ความเร็วของเมแทบอลิซึม หรืออัตราเมแทบอลิกนั้น ส่งผลต่อปริมาณอาหารที่สิ่งมีชีวิตต้องการ รวมไปถึงวิธีที่สิ่งมีชีวิตนั้นจะได้อาหารมาด้วย คุณลักษณะที่โดดเด่นของเมแทบอลิซึม คือ ความคล้ายคลึงกันของวิถีเมแทบอลิซึมและส่วนประกอบพื้นฐาน แม้จะในสปีชีส์ที่ต่างกันมากก็ตาม ตัวอย่างเช่น กลุ่มกรดคาร์บอกซิลิกที่ทราบกันดีว่าเป็นสารตัวกลางในวัฏจักรเครปส์นั้นพบได้ในสิ่งมีชีวิตทุกชนิดที่มีการศึกษาในปัจจุบัน ตั้งแต่สิ่งมีชีวิตเซลล์เดียวอย่างแบคทีเรีย Escherichia coli ไปจนถึงสิ่งมีชีวิตหลายเซลล์ขนาดใหญ่อย่างช้าง ความคล้ายคลึงกันอย่างน่าประหลาดใจของวิถีเมแทบอลิซึมเหล่านี้เป็นไปได้ว่าอาจเป็นผลเนื่องมาจากวิถีเมแทบอลิซึมที่ปรากฏขึ้นในช่วงแรกของประวัติศาสตร์วิวัฒนาการ และสืบมาจนถึงปัจจุบันเพราะประสิทธิผลของกระบวนการนี้.

ใหม่!!: การถ่ายโอนสัญญาณและเมแทบอลิซึม · ดูเพิ่มเติม »

เม็ดเลือดขาว

A scanning electron microscope image of normal circulating human blood. In addition to the irregularly shaped leukocytes, both red blood cells and many small disc-shaped platelets are visible เม็ดเลือดขาว (White blood cells - leukocytes) เป็นเซลล์ของระบบภูมิคุ้มกันซึ่งคอยป้องกันร่างกายจากทั้งเชื้อก่อโรคและสารแปลกปลอมต่างๆ เม็ดเลือดขาวมีหลายชนิด ทั้งหมดเจริญมาจาก pluripotent cell ในไขกระดูกที่ชื่อว่า hematopoietic stem cell เซลล์เม็ดเลือดขาวเป็นเซลล์ที่พบได้ทั่วไปในร่างกาย รวมไปถึงในเลือดและในระบบน้ำเหลือง จำนวนของเซลล์เม็ดเลือดขาวในเลือดมักใช้เป็นข้อบ่งชี้ของโรคและการดำเนินไปของโรค โดยปกติแล้วในเลือดหนึ่งลิตรจะมีเซลล์เม็ดเลือดขาวอยู่ประมาณ 4×109 ถึง 11×109 เซลล์ รวมเป็นเซลล์ประมาณ 1% ในเลือดของคนปกติ ในบางสภาวะ เช่น ลูคีเมีย (มะเร็งเม็ดเลือดขาว) จำนวนของเซลล์เม็ดเลือดขาวจะมีปริมาณได้มากกว่าปกติ หรือในภาวะ leukopenia จำนวนของเซลล์เม็ดเลือดขาวก็จะน้อยกว่าปกติ คุณสมบัติทางกายภาพของเซลล์เม็ดเลือดขาว เช่น ปริมาตร conductivity และ granularity อาจเปลี่ยนแปลงไประหว่างการกระตุ้นเซลล์ การเจริญของเซลล์ หรือการมีเซลล์มะเร็งเม็ดเลือดขาว.

ใหม่!!: การถ่ายโอนสัญญาณและเม็ดเลือดขาว · ดูเพิ่มเติม »

เยื่อหุ้มเซลล์

ื่อหุ้มเซลล์ เยื่อหุ้มเซลล์ (plasma membrane) เป็นเยื่อหุ้มที่อยู่ชิดกับผนังเซลล์ อาจมีลักษณะเรียบ หรือพับไปมา เพื่อขยายขนาดเยื่อหุ้มเซลล์เข้าไปในเซลล์ เรียกว่า มีโซโซม (mesosome) หรือที่เรียกกันอีกอย่างว่า "เซลล์คุม" มีหน้าที่ควบคุม การเข้าออกของน้ำ สารอาหาร และอิออนโลหะต่าง ๆ เป็นตัวแสดงขอบเขตของเซลล์ เซลล์ทุกชนิดต้องมีเยื่อหุ้มเซลล์ เยื่อหุ้มเซลล์เป็นเยื่อบาง ๆ ประกอบด้วยสารประกอบสองชนิด คือ ไขมันชนิดฟอสโฟลิปิดกับโปรตีน โดยมีฟอสโฟลิปิดอยู่ตรงกลาง 2 ข้างเป็นโปรตีน โดยมีไขมันหนาประมาณ 35 อังสตรอม และโปรตีนข้างละ 20 อังสตรอม รวมทั้งหมดหนา 75 อังสตรอม ลักษณะที่แสดงส่วนประกอบของเยื่อหุ้มเซลล์นี้ต้องส่องดูด้วยกล้องจุลทรรศน์อิเล็กตรอน จึงจะเห็นได้ เยื่อหุ้มสามารถแตกตัวเป็นทรงกลมเล็ก ๆ เรียกเวสิเคิล (Vesicle) ซึ่งมีช่องว่างภายใน (Lumen) ที่บรรจุสารต่าง ๆ และสามารถเคลื่อนที่ไปหลอมรวมกับเยื่อหุ้มอื่น ๆ ได้ การเกิดเวสิเคิลนี้เกิดขึ้นได้ทั้งกับการขนส่งสารระหว่างออร์แกแนลล์ และการขนส่งสารออกนอกเซลล์ที่เรียกเอกโซไซโทซิส (Exocytosis) ตัวอย่างเช่น การที่รากเจริญไปในดิน เซลล์รากจะสร้างมูซิเลจ (Mucilage) ซึ่งเป็นสารสำหรับหล่อลื่น เซลล์สร้างมูซิเลจบรรจุในเวสิเคิล จากนั้นจะส่งเวสิเคิลนั้นมาหลอมรวมกับเยื่อหุ้มเซลล์เพื่อปล่อยมูสิเลจออกนอกเซลล์ ในกรณีที่มีความต้องการขนส่งสารขนาดใหญ่เข้าสู่เซลล์ เยื่อหุ้มเซลล์จะเว้าเข้าไปด้านใน ก่อตัวเป็นเวสิเคิลหลุดเข้าไปในเซลล์ โดยมีสารที่ต้องการอยู่ภายในช่องว่างของเวสิเคิล การขนส่งแบบนี้เรียกเอ็นโดไซโตซิส (Endocytosis) นอกจากนั้น เยื่อหุ้มยังทำหน้าที่เป็นเยื่อเลือกผ่าน ยอมให้เฉพาะสารที่เซลล์ต้องการหรือจำเป็นต้องใช้เท่านั้นผ่านเข้าออกได้ การแพร่ผ่านเยื่อหุ้มเซลล์เกิดขึ้นได้ดีกับสารที่ละลายในไขมันได้ดี ส่วนสารอื่น ๆ เช่น ธาตุอาหาร เกลือ น้ำตาล ที่แพร่เข้าเซลล์ไม่ได้ จะใช้การขนส่งผ่านโปรตีนที่เยื่อหุ้มเซลล์ ซึ่งเป็นได้ทั้งแบบที่ใช้และไม่ใช้พลังงาน.

ใหม่!!: การถ่ายโอนสัญญาณและเยื่อหุ้มเซลล์ · ดูเพิ่มเติม »

เสียงรบกวน

เสียงรบกวน (noise) หมายความว่า เสียงใด ๆ ที่ไม่เป็นที่ต้องการ เสียงที่ดังเป็นพิเศษซึ่งรบกวนบุคคลหรือทำให้ฟังเสียงที่ต้องการได้ยากจัดเป็นเสียงรบกวน ตัวอย่างเช่น การสนทนากับบุคคลอื่นอาจถือเป็นเสียงรบกวนสำหรับผู้ที่ไม่ได้เกี่ยวข้องกับการสนทนา เสียงที่ไม่เป็นที่ต้องการใด ๆ เช่น สุนัขเห่า เพื่อนบ้านเล่นดนตรีเสียงดัง เลื่อยกลพกพา เสียงการจราจรถนน หรืออากาศยานที่ห่างไกลในชนบทที่เงียบสงบเป็นเสียงรบกวนทั้งสิ้น เสียงรบกวนเป็นอะไรก็ได้ตั้งแต่เสียงที่เงียบแต่น่ารำคาญจนถึงเสียงดังและเป็นโทษ ในด้านหนึ่ง ผู้ใช้การขนส่งสาธารณะบางทีร้องทุกข์เกี่ยวกับเสียงเบา ๆ ที่ดังจากหูฟังสวมศีรษะหรือหูฟัง (earbud) ของบางคนที่กำลังฟังกับเครื่องเล่นเสียงพกพา และในอีกด้านหนึ่ง คือ เสียงดนตรีที่ดังมาก ๆ หรือเสียงเครื่องยนต์เจ็ตในละแวกใกล้ ๆ เป็นต้น สามารถก่อความเสียหายต่อหูอย่างถาวร ที่ระดับกลาง มีฤทธิ์ผลเสียต่อสุขภาพจากเสียงรบกวนมากบ้างน้อยบ้าง "ความวิบัติของพื้นที่มนุษย์อย่างทนไม่ได้" นี้เรียก มลภาวะทางเสียง.

ใหม่!!: การถ่ายโอนสัญญาณและเสียงรบกวน · ดูเพิ่มเติม »

เห็ดรา

ห็ดรา (Fungus) คือสิ่งมีชีวิตใดๆ ในกลุ่มยูแคริโอต ซึ่งประกอบด้วยทั้งสิ่งมีชีวิตขนาดเล็กอย่างยีสต์และรา และสิ่งมีชีวิตขนาดใหญ่ที่ออกผลคล้ายกับพืช เห็ด สิ่งมีชีวิตเหล่านี้ถูกจัดลงอยู่ในอาณาจักรเห็ดรา ซึ่งแยกออกจากสิ่งมีชีวิตหลายเซลล์กลุ่มอื่นๆ ที่เป็นพืชและสัตว์ ลักษณะเฉพาะที่จัดเห็ดราให้อยู่แยกในอาณาจักรอื่นจากพืช แบคทีเรีย และโพรทิสต์บางชนิด คือ ไคตินที่ผนังเซลล์ เห็ดราเหมือนกับสัตว์ตรงที่เป็นสิ่งมีชีวิตเฮเทโรทรอพ กล่าวคือเป็นสิ่งมีชีวิตที่ได้รับอาหารโดยการย่อยโมเลกุลอาหารให้มีขนาดเล็กพอกับเซลล์ และไม่สามารถสังเคราะห์ด้วยแสงได้เช่นกัน การเติบโตของเห็ดราแสดงถึงการเคลื่อนไหวที่ชัดเจน ยกเว้นสปอร์ ที่อาจจะลอยไปตามอากาศหรือน้ำ เห็ดราเป็นผู้ย่อยสลายหลักในระบบนิเวศ ตามปกติเห็ดราโดยทั่วไปที่มีบรรพบุรุษร่วมกัน ที่ไม่ว่าจะอยู่ส่วนไหนในอาณาจักรก็ตาม เรียกว่ายูเมโคตา (Eumycota) กลุ่มเห็ดรานี้แตกต่างจาก ไมเซโตซัว (ราเมือก) และโอไมซีต (ราน้ำ) ที่มีโครงสร้างคล้ายกัน การศึกษาเกี่ยวกับเห็ดรา เรียกว่า กิณวิทยา ในอดีตกิณวิทยาถูกจัดเป็นหนึ่งในสาขาของพฤกษศาสตร์ แม้ว่าทุกวันนี้จะเป็นที่ทราบกันดีแล้วว่า เห็ดรามีความสัมพันธ์ใกล้เคียงกับสัตว์มากกว่าพืช เห็ดราพบได้ทั่วโลก แต่ส่วนมากไม่มีความโดดเด่นเพราะมีขนาดเล็ก และมีการพรางตัวในดินหรือบนสิ่งที่ตายแล้ว เห็ดราบางชนิดยังมีการพึ่งพาอาศัยจากพืช สัตว์ เห็ดราประเภทอื่นหรือกระทั่งปรสิต พวกมันจะเริ่มเป็นที่สังเกตได้เมื่อออกผลแล้ว ไม่ว่าจะเป็นเห็ดหรือราก็ตาม เห็ดรามีบทบาทสำคัญในการย่อยสลายสารอินทรีย์และมีบทบาทโดยพื้นฐานในวัฏจักรสารอาหารและการแลกเปลี่ยนในธรรมชาติ พวกมันยังเป็นแหล่งอาหารโดยตรงมานานแล้ว ในรูปของเห็ด เป็นหัวเชื้อในการทำขนมปัง และในการหมักผลิตภัณฑ์หลายๆ อย่าง เช่น ไวน์ เบียร์ และซีอิ๊ว ตั้งแต่ช่วงคริสตทศวรรษที่ 1940 เห็ดราถูกนำมาใช้ในการแพทย์ เพื่อผลิตยาปฏิชีวนะ และล่าสุด นำมาใช้ผลิตเอนไซม์มากมาย ซึ่งใช้ในอุตสาหกรรมและในผงซักฟอก เห็ดรายังถูกใช้เป็นปราบแมลง โรคในพืช และวัชพืชต่างๆ สายพันธุ์มากมายของเห็ดราผลิตสารประกอบที่ออกฤทธิ์กับสิ่งมีชีวิต เรียกว่า ไมโซโทซิน เช่น อัลคาลอยด์และพอลิเคไทด์ ซึ่งเป็นพิษต่อสัตว์ รวมทั้งมนุษย์ โครงสร้างในบางสายพันธุ์ประกอบด้วยสารประกอบที่ออกฤทธิ์ต่อประสาท และถูกใช้บริโภค หรือในพิธีกรรมทางศาสนาแบบดั้งเดิม เห็ดรายังสามารถทำลายโครงร่างของวัตถุดิบและสิ่งก่อสร้างได้ และกลายเป็นเชื้อโรคแก่มนุษย์หรือสัตว์อื่นๆ การสูญเสียไร่เนื่องจากโรคทางเห็ดรา (เช่น โรคไหม้) หรืออาหารที่เน่าเสียสามารถมีผลกระทบขนาดใหญ่กับคลังอาหารของมนุษย์และระบบนิเวศโดยรอบ อาณาจักรเห็ดราประกอบไปด้วยความหลากหลายมากมายด้วยระบบนิเวศ การดำเนินชีวิต และสัณฐาน ตั้งแต่ไคทริดน้ำเซลล์เดียวไปจนถึงเห็ดขนาดใหญ่ ถึงกระนั้น ความหลากหลายทางชีวภาพที่แท้จริงของอาณาจักรเห็ดรายังไม่มีข้อมูลมากนัก ซึ่งได้มีการประมาณจำนวนสายพันธุ์ไว้ที่ 1.5 - 5 ล้านสายพันธุ์ โดยทีเพียง 5 % เท่านั้นที่ได้รับการจำแนกประเภทแล้ว นับตั้งแต่การสำรวจในคริสต์ศตวรรษที่ 18 และ 19 โดยคาร์ล ลินเนียส คริสเตียน เฮนดริก เพอร์ซูน และเอเลียส แมกนัส ฟรีส์ เห็ดราได้ถูกจำแนกประเภทตามสัณฐาน (เช่นสีของสปอร์ หรือลักษณะในระดับเล็กๆ) หรือรูปร่าง ความก้าวหน้าในอณูพันธุศาสตร์ได้เปิดทางให้สำหรับการวิเคราะห์ดีเอ็นเอ เพื่อจัดลำดับตามอนุกรมวิธาน ซึ่งบางครั้งได้ขัดแย้งกับกลุ่มพันธุ์ที่ได้จัดไว้ก่อนในอดีตแล้ว การศึกษาในไม่กี่คริสต์ศตวรรษที่ผ่านมาได้ช่วยให้มีการตรวจสอบการจัดจำแนกประเภทใหม่ภายในอาณาจักรเห็ดรา ซึ่งได้แบ่งออกเป็นหนึ่งอาณาจักรย่อย เจ็ดไฟลัม และสิบไฟลัมย่อ.

ใหม่!!: การถ่ายโอนสัญญาณและเห็ดรา · ดูเพิ่มเติม »

เอพิเนฟรีน

อพิเนฟรีน (Epinephrine) หรือ อะดรีนาลีน (Adrenaline) หรือศัพท์บัญญัติราชบัณฑิตยสภาว่า ฮอร์โมนเนื้อในต่อมหมวกไต เป็นฮอร์โมนและสารสื่อประสาทชนิดหนึ่ง เอพิเนฟรีนและนอร์เอพิเนฟรีนเป็นฮอร์โมนต่างชนิดแต่คล้ายกัน ซึ่งทั้งคู่หลั่งออกมาจากส่วนในของต่อมหมวกไต นอกจากนี้ ทั้งสองยังผลิตที่ปลายเส้นใยประสาทซิมพาเทติก โดยทำหน้าที่เป็นตัวกลางเคมีสำหรับถ่ายทอดพลักผลักดันประสาทไปยังอวัยวะปฏิบัติงาน (effector organ) การสืบค้นทางเภสัชวิทยาของเอพิเนฟรีนมีส่วนสำคัญทำให้เกิดความเข้าใจระบบประสาทอิสระและหน้าที่ของระบบซิมพาเทติก เอพิเนฟรีนยังเป็นยาที่มีประโยชน์สำหรับข้อบ่งใช้ฉุกเฉินหลายประการ แม้มีฤทธิ์ไม่จำเพาะต่อตัวรับอะดรีเนอจิก (adrenergic receptor) และมีการพัฒนายาจำเพาะหลายชนิดซึ่งออกฤทธิ์ต่อแบบชนิดย่อยของตัวรับอะดรีเนอจิกในเวลาต่อมา ในสำนวนพูดทั่วไป คำว่า "อะดรีนาลีน" ใช้หมายความถึง การปลุกฤทธิ์ระบบซิมพาเทติกซึ่งสัมพันธ์กับพลังงานและการเร้าการสนองสู้หรือหนี อิทธิพลของอะดรีนาลีนจำกัดอยู่ในผลทางเมแทบอลิซึมและการขยายหลอดลมต่ออวัยวะซึ่งไม่มีประสาทซิมพาเทติกไปเลี้ยงโดยตรง ในทางเคมี เอพิเนฟรีนเป็นโมโนเอมีนกลุ่มหนึ่ง เรียก แคทีโคลามีน (catecholamine) ผลิตในบางเซลล์ประสาทของระบบประสาทส่วนกลาง และในเซลล์โครมัฟฟิน (chromaffin cell) ของต่อมหมวกไตส่วนในจากกรดอะมิโน ฟีนิลอะลานีนและไทโรซีน.

ใหม่!!: การถ่ายโอนสัญญาณและเอพิเนฟรีน · ดูเพิ่มเติม »

เอนไซม์

TIM. Factor D enzyme crystal prevents the immune system from inappropriately running out of control. เอนไซม์ (อังกฤษ: enzyme) เป็นโปรตีน 99 เปอร์เซนต์ เป็น ส่วนใหญ่ ที่ทำหน้าที่เร่งปฏิกิริยาเคมี เป็นคำในภาษากรีก ένζυμο หรือ énsymo ซึ่งมาจาก én ("ที่" หรือ "ใน") และ simo (":en:leaven" หรือ ":en:yeast") เอนไซม์มีความสำคัญและจำเป็นสำหรับสิ่งมีชีวิต เพราะว่าปฏิกิริยาเคมีส่วนใหญ่ในเซลล์จะเกิดช้ามาก หรือถ้าไม่มีเอนไซม์อาจทำให้ผลิตภัณฑ์จากปฏิกิริยากลายเป็นสารเคมีชนิดอื่น ซึ่งถ้าขาดเอนไซม์ระบบการทำงานของเซลล์จะผิดปกติ (malfunction) เช่น.

ใหม่!!: การถ่ายโอนสัญญาณและเอนไซม์ · ดูเพิ่มเติม »

เอ็มบริโอ

อ็มบริโอของมนุษย์อายุ 6 สัปดาห์ เอ็มบริโอ (แปลว่า สิ่งที่เติบโต) คือระยะแรกในพัฒนาการของสิ่งมีชีวิตหลายเซลล์จำพวกยูคาริโอต ซึ่งนับตั้งแต่เริ่มมีการแบ่งเซลล์จนกระทั่งเกิด, ฟักออกจากไข่, หรืองอกในกรณีของพืช สำหรับในมนุษย์ระยะเอ็มบริโอเริ่มหลังจากการปฏิสนธิจนกระทั่งสิ้นสุดสัปดาห์ที่ 8 ซึ่งหลังจากนั้นจะเรียกสิ่งมีชีวิตว่าระยะทารกในครรภ์ หรือฟีตัส (fetus).

ใหม่!!: การถ่ายโอนสัญญาณและเอ็มบริโอ · ดูเพิ่มเติม »

เอ็มอาร์เอ็นเอ

วงชีวิตของ '''mRNA''' ในยูคาริโอต เอ็มอาร์เอ็นเอ (Messenger ribonucleic acid; mRNA เป็นโมเลกุลของอาร์เอ็นเอที่บรรจุรหัสหรือพิมพ์เขียวของโปรตีน mRNA สร้างโดยการทรานสคริปชันจากแม่แบบที่เป็นดีเอ็นเอ จากนั้นจะนำข้อมูลทางพันธุกรรมมาสู่การสังเคราะห์โปรตีนโดยไรโบโซม ซึ่งเป็นการเปลี่ยนข้อมูลจากลำดับนิวคลีโอไทด์ไปสู่ลำดับกรดอะมิโน ข้อมูลทางพันธุกรรมใน mRNA จะอยู่ในรูปลำดับเบสของนิวคลีโอไทด์ที่เรียงเป็นรหัสพันธุกรรม ซึ่งหนึ่งรหัสประกอบด้วยนิวคลีโอไทด์สามเบส ซึ่งรหัสพันธุกรรมแต่ละตัวจะกำหนดกรดอะมิโนหนึ่งชนิดยกเว้นรหัสพันธุกรรมหยุด ซึ่งจะทำให้การสังเคราะห์โปรตีนสิ้นสุดลง กระบวนการนี้ต้องทำงานร่วมกับอาร์เอ็นเออีกสองชนิดคือ tRNA ที่จดจำรหัสพันธุกรรมและนำกรดอะมิโนเข้ามาต่อกัน กับ rRNAที่เป็นองค์ประกอบหลักของไรโบโซม โครงสร้างของ mRNA ที่สมบูรณ์ในยูคาริโอต ประกอบด้วย 5' cap, 5' UTR, coding region, 3' UTR, and poly(A) tail.

ใหม่!!: การถ่ายโอนสัญญาณและเอ็มอาร์เอ็นเอ · ดูเพิ่มเติม »

เอ็นดอร์ฟิน

เอ็นดอร์ฟิน (Endorphin) เป็นสารภายในร่างกายมนุษย์ที่หลั่งออกมาเพื่อช่วยบรรเทาความเจ็บปวด ผลิตจากต่อมใต้สมอง และ ไฮโปทาลามัส ในกระดูกสันหลัง สารเอ็นดอร์ฟินมีลักษณะคล้ายคลึงกับ โอปิแอต ในกลุ่มโอปิออยด์ ที่ใช้สำหรับระงับการเจ็บปวด คำว่า "เอ็นดอร์ฟิน" มาจากภาษาอังกฤษคำว่า "เอนโดจีนัส" (endogenous) ที่หมายถึง ผลิตจากภายใน กับ คำว่า "มอร์ฟิน" (morphine) ที่เป็นสารบรรเทาความเจ็บปวด รวมหมายถึง สารบรรเทาความเจ็บปวดที่ผลิตจากภายในร่างกาย หมวดหมู่:ชีววิทยา หมวดหมู่:สารสื่อประสาท หมวดหมู่:โอปิออยด์ หมวดหมู่:ยาบรรเทาปวด.

ใหม่!!: การถ่ายโอนสัญญาณและเอ็นดอร์ฟิน · ดูเพิ่มเติม »

เทสโทสเตอโรน

ทสโทสเตอโรน (Testosterone) เป็นฮอร์โมนหลักในกลุ่มฮอร์โมนเพศชายและสเตอรอยด์การสร้าง (anabolic steroid) ประเภทหนึ่งที่พบในสัตว์มีกระดูกสันหลังโดยมาก มีบทบาทสำคัญในพัฒนาการของเนื้อเยื่อในระบบสืบพันธุ์ชาย เช่น อัณฑะและต่อมลูกหมาก ตลอดจนส่งเสริมลักษณะเฉพาะทางเพศทุติยภูมิ เช่น การเจริญเติบโตของกล้ามเนื้อกับกระดูก และการเกิดขนตัว นอกจากนั้นแล้ว ฮอร์โมนยังเป็นสิ่งที่ขาดไม่ได้ต่อสุขภาพและความอยู่เป็นสุข ตลอดจนป้องกันโรคกระดูกพรุน ระดับฮอร์โมนที่ไม่พอในชาย อาจทำให้เกิดความผิดปกติต่าง ๆ เช่น ความอ่อนแอและการเสียกระดูก ฮอร์โมนอาจใช้เพื่อรักษาอวัยวะเพศชายทำงานไม่พอ (male hypogonadism) และมะเร็งเต้านมบางชนิด เนื่องจากระดับฮอร์โมนจะลดลงเรื่อย ๆ ตามอายุ แพทย์บางครั้งจะให้ฮอร์โมนสังเคราะห์กับชายสูงอายุเพื่อแก้ปัญหาการขาด เทสโทสเตอโรนเป็นสเตอรอยด์ในกลุ่ม androstane ที่มีกลุ่มคีโทนและไฮดรอกซิลที่ตำแหน่ง 3 และ 17 ตามลำดับ ซึ่งสามารถสังเคราะห์จากคอเลสเตอรอลในหลายขั้นตอน และตับจะเปลี่ยนมันเป็นเมแทบอไลต์ที่ไม่มีฤทธิ์ ฮอร์โมนสามารถเข้ายึดและออกฤทธิ์ต่อตัวรับแอนโดรเจน (androgen receptor) ในนิวเคลียสของเซลล์ ในมนุษย์และสัตว์มีกระดูกสันหลังโดยมาก อัณฑะเป็นอวัยวะที่หลั่งฮอร์โมนในชาย และรังไข่ในหญิงแม้ในระดับที่ต่ำกว่า ต่อมหมวกไตก็หลั่งฮอร์โมนแม้เล็กน้อยด้วย โดยเฉลี่ย ในชายผู้ใหญ่ ระดับเทสโทสเตอโรนจะอยู่ที่ 7-8 เท่าของหญิงผู้ใหญ่ เพราะฮอร์โมนมีเมแทบอลิซึมที่สูงกว่าในชาย การผลิตแต่ละวันจะมากกว่าหญิงประมาณ 20 เท่า หญิงยังไวต่อฮอร์โมนมากกว่าชายอีกด้ว.

ใหม่!!: การถ่ายโอนสัญญาณและเทสโทสเตอโรน · ดูเพิ่มเติม »

เดนไดรติก สไปน์

นไดรติกสไปน์ (dendritic spine) เป็นโครงสร้างเยื่อหุ้มเซล์ในส่วนของเดนไดรต์ที่ยื่นออกไปมีลักษณะคล้ายหนามขนาดเล็กทำหน้าที่สร้างไซแนปส์ระหว่างเซลล์ประสาท โครงสร้างเดนไดรติกสไปน์นี้ พบได้ในเดนไดรต์ของเซลล์ประสาทส่วนใหญ่ในสมอง เช่น เซลล์ประสาทรูปปิรามิด (pyramidal neuron) ในสมองส่วนคอร์ติคอล และ เซลล์เปอร์กินเจ (Purkinje cell) ในสมองส่วนซีรีเบลลัม เป็นต้น เดนไดรติก สไปน์เป็นโครงสร้างพิเศษที่ยื่นออกมาจากเดนไดรต์ของเซลล์ประสาท โดยทั่วไปแล้วเดนไดรติก สไปน์ยาวประมาณ 0.5–2 ไมโครเมตร แต่อาจจะยาวถึง 6 ไมโครเมตรก็ได้ซึ่งพบได้ในเซลล์ประสาทบริเวณ CA3 region ของสมองส่วนฮิปโปแคมปัส (hippocampus) ในทุกๆ ความยาวหนึ่งไมโครเมตรของเดนไดรต์เซลล์ประสาทที่โตเต็มที่ จะพบเดนไดรติก สไปน์หนาแน่นประมาณ 1-10 อัน พบว่าเกือบทั้งหมดของไซแนปส์ของสมองสัตว์เลี้ยงลูกด้วยนมชนิดที่มีผลเชิงกระตุ้นเกิดขึ้นที่เดนไดรติก สไปน์ ซึ่งในเดนไดรติก สไปน์ ที่โตเต็มที่จะเกิดเพียงหนึ่งไซแนปส์ที่ส่วนหัว (spine head) ของมัน เซลล์ประสาทชนิดหลักของสมองเกือบทั้งหมดมีโครงสร้างเดนไดรติก สไปน์ ซึ่งได้แก่ เซลล์ประสาทที่หลั่งกลูตาเมต (glutamate) เช่น เซลล์ประสาททรงปิรามิด (pyramidal neuron) เซลล์ประสาทที่หลั่งกาบา (GABA) เช่น เซลล์เปอร์กินเจ (Purkinje neurons) แต่เซลล์ประสาทอีกหลายประเภทก็ไม่มีเดนไดรติก สไปน์ เช่น GABA-releasing interneuron เซลล์ประสาทที่มีเดนไดรติก สไปน์ (Spiny neurons) พบได้น้อยมากในสัตว์ชั้นต่ำ เช่น Drosophila melanogaster และ Caenorhabditis elegans แสดงให้เห็นว่าเดนไดรติก สไปน์ได้ถูกวิวัฒน์ขึ้นเพื่อให้เหมาะแก่การทำงานที่ซับซ้อนของระบบประสาทขั้นสูงในสัตว์เลี้ยงลูกด้วยนม โครงสร้างของเดนไดรติก สไปน์มีความหลากหลายทั้งขนาดและรูปร่าง และมีปริมาตรตั้งแต่ 0.01 ลูกบาศก์ไมโครเมตร ไปจนถึงขนาด 0.8 ลูกบาศก์ไมโครเมตร การศึกษาลักษณะทางกายวิภาคของ fixed brain tissue สามารถระบุรูปร่างเดนไดรติก สไปน์ ออกแป็น 4 แบบ คือ thin, stubby, mushroom และ cup แต่จากการศึกษาด้วยเทคนิค Live Imaging พบว่าเดนไดรติก สไปน์ มีการเปลี่ยนแปลงรูปร่างและขนาดได้มากมายหลายแบบในช่วงเวลงตั้งแต่เป็นวินาทีจนถึงหลายวัน นอกจากนี้ยังมีความแตกต่างทั้งในออร์แกเนลล์และโมเลกุลพิเศษที่เป็นองค์ประกอบภายในเดนไดรติก สไปน์ โดยเดนไดรติก สไปน์ที่มีขนาดใหญ่ก็จะมีขนาดไซแนปส์ที่ใหญ่และมีชนิดของออร์แกเนลล์ที่หลากหลายมากกว่าเดนไดรติก สไปน์ที่มีขนาดเล็ก เดนไดรติกสไปน์มีรูปร่างและขนาดแตกต่างกันซึ่งขึ้นกับระยะในการเจริญเติบโต ชนิดของสารที่มาออกฤทธิ์ที่ไซแนปส์ รวมทั้งความแข็งแรงของโครงสร้างไซแนปส์ เดนไดรติกสไปน์ทำหน้าที่หลายอย่าง เช่น ช่วยจำกัดการแพร่ของไอออนและสารที่ทำหน้าที่เป็นผู้ส่งข่าวตัวที่สองภายในเซลล์ (second messenger) ในบริเวณที่เกิดไซแนปส์ กลไกการทำงานที่สำคัญของเดนไดรติกสไปน์ คือ กระบวนการเรียนรู้และจดจำของเซลล์ประสาท ซึ่งพบว่าบริเวณนี้มีตัวรับสารสื่อประสาทกลูตาเมตทั้งชนิดตัวรับเอ็นเอ็มดีเอ (NMDA receptor) และตัวรับแอมพา (AMPA receptor) ทำงานสอดประสานกันในกระบวนการที่เรียกว่า ลองเทอมโพเทนชิเอชั่น (long-term potentiation) และลองเทอมดีเพรชชั่น (long-term depression).

ใหม่!!: การถ่ายโอนสัญญาณและเดนไดรติก สไปน์ · ดูเพิ่มเติม »

เคมี

มี (chemistry) เป็นวิทยาศาสตร์สาขาหนึ่งที่ศึกษาในเรื่องของสสาร โดยไม่เพียงแต่ศึกษาเฉพาะในเรื่องของปฏิกิริยาเคมี แต่ยังรวมถึงองค์ประกอบ โครงสร้างและคุณสมบัติของสสารอีกด้วย การศึกษาทางด้านเคมีเน้นไปที่อะตอมและปฏิสัมพันธ์ระหว่างอะตอมกับอะตอม และโดยเฉพาะอย่างยิ่งคุณสมบัติของพันธะเคมี บางครั้ง เคมีถูกเรียกว่าเป็นวิทยาศาสตร์ศูนย์กลาง เพราะเป็นวิชาช่วยที่เชื่อมโยงฟิสิกส์เข้ากับวิทยาศาสตร์ธรรมชาติสาขาอื่น เช่น ธรณีวิทยาหรือชีววิทยา ถึงแม้ว่าเคมีจะถือเป็นสาขาหนึ่งของวิทยาศาสตร์กายภาพแต่ก็มีความแตกต่างจากวิชาฟิสิกส์ค่อนข้างมาก มีการถกเถียงกันอย่างมากมายถึงต้นกำเนิดของเคมี สันนิษฐานว่าเคมีน่าจะมีต้นกำเนิดมาจากการเล่นแร่แปรธาตุซึ่งเป็นที่นิยมกันมาอย่างยาวนานหลายสหัสวรรษในหลายส่วนของโลก โดยเฉพาะอย่างยิ่งในตะวันออกกลาง.

ใหม่!!: การถ่ายโอนสัญญาณและเคมี · ดูเพิ่มเติม »

เคลด

แผนภาพวิวัฒนาการชาติพันธุ์ (Cladogram) หรือพงศาวลีของกลุ่มสิ่งมีชีวิต โดยลำต้น (เส้นตั้ง) ที่ฐานแต่ละฐานจะเป็นบรรพบุรุษร่วมกันสุดท้ายของสิ่งมีชีวิตที่เป็นลูกหลานภายในพุ่มไม้ที่อยู่เหนือลำต้นนั้น ๆ กลุ่มย่อยสีน้ำเงินและสีแดง (ซ้ายและขวาสุด) เรียกว่า clade เพราะเป็นกลุ่ม "จากชาติพันธุ์เดียว" (monophyletic) โดยแต่ละกลุ่มจะมีบรรพบุรุษร่วมกันที่ฐาน ส่วนกลุ่มย่อยสีเขียวไม่เรียกว่า clade เพราะเป็นกลุ่ม paraphyletic และไม่รวมเอากลุ่มย่อยสีน้ำเงินแม้จะสืบทอดมาจากบรรพบุรุษร่วมกันซึ่งอยู่ที่ฐานของกลุ่มสีเขียว เคลด (clade จาก κλάδος, klados แปลว่า "สาขา") เป็นกลุ่มสิ่งมีชีวิตที่รวมเอาบรรพบุรุษที่มีร่วมกันและลูกหลานของมันทั้งหมด โดยแสดงเป็น "สาขา" เดียวจากต้นไม้ชีวิต บรรพบุรุษร่วมกันอาจเป็นสิ่งมีชีวิตหนึ่งหน่วย กลุ่มประชากร สปีชีส์ (ไม่ว่าจะสูญพันธุ์ไปแล้วหรือยังมีอยู่) เป็นต้น จนไปถึงระดับอาณาจักร เคลดเป็นโครงสร้างซ้อนใน คือจะมีเคลดภายในเคลดเพราะสาขาใหญ่หนึ่ง ๆ จะแยกออกเป็นสาขาย่อย ๆ การแยกออกจะสะท้อนให้เห็นถึงประวัติวิวัฒนาการ เพราะแสดงกลุ่มประชากรที่แยกจากกันแล้ววิวัฒนาการแยกกันต่างหาก ๆ เคลดจะมาจากชาติพันธุ์เดียว (monophyletic) ในทศวรรษ 2-3 ทศวรรษที่ผ่านมา วิธีการศึกษาแบบแคลดิสติกส์ (คือใช้แนวคิดแบบเคลด) ได้ปฏิวัติการจัดหมวดหมู่สิ่งมีชีวิต และได้แสดงความสัมพันธ์ทางวิวัฒนาการที่น่าทึ่งใจระหว่างสิ่งมีชีวิตต่าง ๆ โดยมีผลเป็นนักอนุกรมวิธานพยายามหลีกเลี่ยงการให้ชื่อกับหน่วยที่ไม่ใช่เคลด คือหน่วยที่ไม่ได้มาจากชาติพันธุ์เดียว (monophyletic).

ใหม่!!: การถ่ายโอนสัญญาณและเคลด · ดูเพิ่มเติม »

เซลล์

ป็นสิ่งสวยงามเซล เซลล์ เซลส์ หรือ เซลล์ส เป็นคำที่เขียนทับศัพท์มาจากคำในภาษาอังกฤษ cell, cel, Cells, sale หรือ Zales; cell: หมายถึงหน่วยย่อยที่มีการกั้นขอบเขต (หรือห้อง) โดยทั่วไปเซลล์จะเป็นส่วนประกอบในโครงสร้างอื่น ๆ ที่ใหญ่กว่า ความหมายขึ้นอยู่กับบริบท.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์ · ดูเพิ่มเติม »

เซลล์รับแสง

ซลล์รับแสง (photoreceptor cell) เป็นเซลล์ประสาท (นิวรอน) พิเศษในจอประสาทตาที่มีสมรรถภาพในการถ่ายโอนแสงไปเป็นพลังประสาท ความสำคัญทางชีวภาพของเซลล์รับแสงก็คือความสามารถในการแปลงแสงที่เห็นได้ไปเป็นสัญญาณที่สามารถเร้ากระบวนการต่าง ๆ ทางชีวภาพ จะกล่าวให้ชัดเจนกว่านี้ก็คือ มีโปรตีนหน่วยรับแสงในเซลล์ที่ดูดซึมโฟตอน ซึ่งนำไปสู่ความเปลี่ยนแปลงในความต่างศักย์ของเยื่อหุ้มเซลล์ เซลล์รับแสงแบบคลาสิกก็คือเซลล์รูปแท่งและเซลล์รูปกรวย แต่ละอย่างล้วนแต่ให้ข้อมูลที่ใช้ในระบบการมองเห็นเพื่อสร้างแบบจำลองของโลกภายนอกที่เห็นทางตา เซลล์รูปแท่งนั้นบางกว่าเซลล์รูปกรวย และมีความกระจัดจายไปในจอประสาทตาที่แตกต่างกัน แม้ว่า กระบวนการเคมีที่ถ่ายโอนแสงไปเป็นพลังประสาทนั้นคล้ายคลึงกัน มีการค้นพบเซลล์รับแสงประเภทที่สามในช่วงคริสต์ทศวรรษ 1990 ซึ่งก็คือ photosensitive retinal ganglion cell เป็นเซลล์ที่ไม่ได้มีส่วนให้เกิดการเห็นโดยตรง แต่เชื่อกันว่า มีส่วนช่วยในระบบควบคุมจังหวะรอบวัน (circadian rhythms) และปฏิกิริยาปรับรูม่านตาแบบรีเฟล็กซ์ เซลล์รูปแท่งและเซลล์รูปกรวยมีหน้าที่แตกต่างกัน คือ เซลล์รูปแท่งไวแสงเป็นพิเศษ มีปฏิกิริยาต่อโฟตอนเพียงแค่ 6 อนุภาค ดังนั้น ในที่มีระดับแสงต่ำ การเห็นเกิดจากสัญญาณที่มาจากเซลล์รูปแท่งเท่านั้น ซึ่งอธิบายว่า ทำไมเราจึงไม่สามารถเห็นภาพสีได้ในที่สลัว ซึ่งก็คือเพราะมีแต่เซลล์รูปแท่งเท่านั้นที่ทำงานได้ในระดับแสงนั้น และเซลล์รูปกรวยเป็นส่วนที่ทำให้เกิดการเห็นภาพสี ส่วนเซลล์รูปกรวยต้องใช้แสงระดับที่สูงกว่ามาก (คือต้องมีโฟตอนมากระทบมากกว่า) ก่อนที่จะเกิดการทำงาน ในมนุษย์ มีเซลล์รูปกรวยสามประเภท จำแนกโดยการตอบสนองต่อความยาวคลื่นแสงที่ต่าง ๆ กัน การเห็นสี (ในภาพ) เป็นการประมวลผลจากสัญญาณที่มาจากเซลล์รูปกรวยสามประเภทเหล่านี้ โดยน่าจะผ่านกระบวนการ opponent process เซลล์รูปกรวยสามอย่างนี้ตอบสนอง (โดยคร่าว ๆ) ต่อแสงที่มีความยาวคลื่นขนาดสั้น (S) ขนาดกลาง (M) และขนาดยาว (L) ให้สังเกตว่า การยิงสัญญาณของเซลล์รับแสงนั้นขึ้นอยู่เพียงกับจำนวนโฟตอนที่ได้รับเท่านั้น (กำหนดโดยทฤษฎี principle of univariance) ส่วนการตอบสนองที่ต่าง ๆ กันของเซลล์รูปกรวยขึ้นอยู่กับความเป็นไปได้ของโปรตีนรับแสงของเซลล์ที่จะดูดซึมแสงที่ความยาวคลื่นนั้น ๆ ยกตัวอย่างเช่น เซลล์รูปกรวยแบบ L มีโปรตีนรับแสงที่ดูดซึมแสงที่มีความยาวคลื่นขนาดยาว (หรือออกสีแดง ๆ) แม้ว่า แสงที่มีความยาวคลื่นสั้นกว่าอาจจะทำให้เกิดการตอบสนองในระดับเดียวกัน แต่จะต้องเป็นแสงที่สว่างกว่ามาก จอประสาทตามมนุษย์มีเซลล์รูปแท่งประมาณ 120 ล้านเซลล์ และมีเซลล์รูปกรวยประมาณ 6 ล้านเซลล์ สัตว์ต่าง ๆ สปีชีส์มีอัตราส่วนของเซลล์รูปแท่งและเซลล์รูปกรวยที่แตกต่างกัน ขึ้นอยู่กับว่า เป็นสัตว์กลางวันหรือสัตว์กลางคืน นอกจากเซลล์รูปแท่งและเซลล์รูปกรวยแล้ว ยังมี retinal ganglion cell (ตัวย่อ RGC) ประมาณ 1.5 เซลล์ในมนุษย์ และมี 1-2% ที่ไวแสง บทความนี้กล่าวถึงเซลล์รับแสงของสัตว์มีกระดูกสันหลัง เซลล์รับแสงของสัตว์ไม่มีกระดูกสันหลัง เช่นแมลงและมอลลัสกามีความแตกต่างจากสัตว์มีกระดูกสันหลังทั้งในโครงสร้างและในกระบวนการเคมีชีว.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์รับแสง · ดูเพิ่มเติม »

เซลล์รูปกรวย

ซลล์รูปกรวย เซลล์รูปกรวย (cone cell) เป็นเซลล์ตัวรับแสงชนิดหนึ่งจากสองชนิดซึ่งอยู่ในจอตา ซึ่งทำหน้าที่เห็นสี เช่นเดียวกับสภาพรู้สึกสีได้ของตา เซลล์รูปกรวยทำหน้าที่ได้ดีที่สุดในแสงค่อนข้างสว่าง ตรงข้ามกับเซลล์รูปแท่งซึ่งทำงานได้ดีกว่าในแสงสลัว เซลล์รูปกรวยอัดแน่นในรอยบุ๋มจอตา อันเป็นพื้นที่ปราศจากเซลล์รูปแท่งเส้นผ่านศูนย์กลาง 0.3 มิลลิเมตรที่มีเซลล์รูปกรวยอัดแน่นบางมากซึ่งลดจำนวนอย่างรวดเร็วเมื่อออกรอบนอกของจอตา ในตามนุษย์มีเซลล์รูปกรวยหกถึงเจ็ดล้านเซลลล์และส่วนมากกระจุกอยู่บริเวณจุดภาพชัด เซลล์รูปกรวยไวต่อแสงน้อยกว่าเซลล์รูปแท่งในจอตา (ซึ่งสนับสนุนการเห็นในระดับแสงต่ำ) แต่ทำให้รับรู้สี นอกจากนี้ ยังสามารถรับรู้รายละเอียดชัดกว่าและการเปลี่ยนแปลงภาพรวดเร็วกว่า เพราะเวลาการสนองต่อสิ่งเร้าเร็วกว่าของเซลล์รูปแท่ง เซลล์รูปกรวยปกติเป็นหนึ่งในสามชนิด แต่ละชนิดมีสารสีต่างกัน คือ เซลล์รูปกรวย-เอส เซลล์รูปกรวย-เอ็ม และเซลล์รูปกรวย-แอล ฉะนั้นเซลล์รูปกรวยแต่ละเซลล์จึงไวต่อความยาวคลื่นของแสงที่มองเห็นได้ซึ่งสอดคล้องกับแสงความยาวคลื่นสั้น ความยาวคลื่นกลางและความยาวคลื่นยาว เนื่องจากมนุษย์ปกติมี่เซลล์รูปกรวยสามชนิดที่มีโฟตอปซิน (photopsin) ต่างกัน ซึ่งมีโค้งการสนองต่างกันแล้วสนองต่อการแปรผันของสีต่างวิธีกัน มนุษย์จึงมีการรับรู้ภาพสี่สี มีการแสดงว่า สามสารสีซึ่งทำหน้าที่ตรวจจับแสงมีองค์ประกอบทางเคมีที่แน่ชัดแปรผันเนื่องจากการกลายพันธุ์ แต่ละปัจเจกบุคคลจึงมีเซลล์รูปกรวยที่ไวต่อสีต่างกัน การทำลายเซลล์รูปกรวยจากโรคจะส่งผลให้ตาบอ.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์รูปกรวย · ดูเพิ่มเติม »

เซลล์รูปแท่ง

ซลล์รูปแท่ง เซลล์รูปแท่ง (rod cell) เป็นตัวรับแสง อยู่ที่จอตาของดวงตา มีความสามารถในการรับแสงมากกว่าเซลล์รูปกรว.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์รูปแท่ง · ดูเพิ่มเติม »

เซลล์ประสาท

ซลล์ประสาท หรือ นิวรอน (neuron,, หรือ) เป็นเซลล์เร้าได้ด้วยพลัง ของเซลล์อสุจิที่ทำหน้าที่ประมวลและส่งข้อมูลผ่านสัญญาณไฟฟ้าและเคมี โดยส่งผ่านจุดประสานประสาท (synapse) ซึ่งเป็นการเชื่อมต่อโดยเฉพาะกับเซลล์อื่น ๆ นิวรอนอาจเชื่อมกันเป็นโครงข่ายประสาท (neural network) และเป็นองค์ประกอบหลักของสมองกับไขสันหลังในระบบประสาทกลาง (CNS) และของปมประสาท (ganglia) ในระบบประสาทนอกส่วนกลาง (PNS) นิวรอนที่ทำหน้าที่โดยเฉพาะ ๆ รวมทั้ง.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์ประสาท · ดูเพิ่มเติม »

เซลล์ประสาทรับความรู้สึก

ซลล์ประสาทรับความรู้สึก หรือ นิวรอนรับความรู้สึก (sensory neuron) เป็นเซลล์ประสาทที่ทำหน้าที่เปลี่ยนตัวกระตุ้นภายนอกต่าง ๆ ที่อยู่ในสิ่งแวดล้อม ให้เป็นตัวกระตุ้นภายใน นิวรอนรับความรู้สึกเริ่มทำงานเมื่อเกิดสัญญาณความรู้สึก แล้วส่งข้อมูลความรู้สึกต่อไปในส่วนต่าง ๆ ของระบบประสาท ซึ่งในที่สุดก็จะไปถึงสมองหรือไขสันหลัง โดยที่ไม่เหมือนเซลล์ประสาทของระบบประสาทกลาง ที่มีสัญญาณเข้ามาจากเซลล์ประสาทอื่น ๆ นิวรอนรับความรู้สึกเริ่มทำงานเพราะรับการกระตุ้นด้วยคุณลักษณะทางกายภาพอย่างหนึ่งของตัวกระตุ้น เป็นต้นว่าแสงที่มองเห็นได้ เสียง ความร้อน และการกระทบทางกาย หรือด้วยคุณลักษณะทางเคมี เช่นในกรณีของกลิ่นและรส ในสิ่งมีชีวิตที่ซับซ้อน ระบบประสาทกลางเป็นจุดหมายปลายทางที่นิวรอนรับความรู้สึกส่งข้อมูลไปหา ส่วนในกรณีของสิ่งมีชีวิตที่ซับซ้อนน้อยกว่า เช่น ตัวไฮดรา นิวรอนรับความรู้สึกส่งข้อมูลไปยังเซลล์ประสาทสั่งการ (motor neurons) หรือปมประสาทสั่งการ ในระดับโมเลกุล หน่วยรับความรู้สึกที่อยู่ที่เยื่อหุ้มเซลล์ของเซลล์ประสาทรับความรู้สึก มีหน้าที่แปลงข้อมูลตัวกระตุ้นให้เป็นพลังประสาทไฟฟ้า ประเภทของหน่วยรับความรู้สึกเป็นตัวตัดสินว่าเซลล์จะมีความไวต่อตัวกระตุ้นแบบไหน ยกตัวอย่างเช่น เซลล์ประสาทที่มีหน่วยรับความรู้สึกเชิงกล อาจจะมีความไวต่อตัวกระตุ้นสัมผัส ในขณะที่หน่วยรับกลิ่นก็จะยังเซลล์ให้ไวต่อกลิ่น.

ใหม่!!: การถ่ายโอนสัญญาณและเซลล์ประสาทรับความรู้สึก · ดูเพิ่มเติม »

เนื้องอก

นื้องอก (neoplasm, tumor) เป็นการเติบโตผิดปกติของเนื้อเยื่อ โดยส่วนมากมักเกิดเป็นก้อนเนื้อ ICD-10 จำแนกเนื้องอกเป็น 4 ประเภท แบ่งเป็น เนื้องอกไม่ร้าย (benign neoplasms) เนื้องอกเฉพาะที่ (in situ neoplasms) เนื้องอกร้าย (malignant neoplasms) และเนื้องอกที่มีพฤติกรรมไม่ชัดเจน เนื้องอกร้ายยังถูกเรียกว่ามะเร็งและเป็นสิ่งที่ถูกศึกษาในวิทยามะเร็ง ก่อนที่เนื้อเยื่อจะเติบโตอย่างผิดปกติ เซลล์มักมีรูปแบบการเติบโตที่ไม่ปกติ เช่น เมตาเพลเซีย (metaplasia) หรือ ดิสเพลเซีย (dysplasia) อย่างไรก็ตาม เมตาเพลเซียหรือดิสเพลเซียอาจไม่ได้พัฒนาเป็นเนื้องอกเสมอไป คำมีที่มาจากภาษากรีกโบราณ νέος- neo "ใหม่" และ πλάσμα plasma "การเกิดขึ้น การสร้างตัว".

ใหม่!!: การถ่ายโอนสัญญาณและเนื้องอก · ดูเพิ่มเติม »

เนื้อเยื่อ

นื้อเยื่อ ในทางชีววิทยาคือกลุ่มของเซลล์ที่ทำหน้าที่ร่วมกันในสิ่งมีชีวิต วิชาการศึกษาเนื้อเยื่อ เรียกว่า มิญชวิทยา (Histology) หรือ จุลกายวิภาคศาสตร์ (Microanatomy) หรือหากเป็นการศึกษาที่เกี่ยวข้องกับโรคเรียกว่า จุลพยาธิวิทยา (histopathology) เครื่องมือที่ใช้ในการศึกษาเนื้อเยื่อโดยทั่วไปคือ แท่งขี้ผึ้ง (wax block), สีย้อมเนื้อเยื่อ (tissue stain), กล้องจุลทรรศน์แบบแสง (optical microscope) ซึ่งต่อมามีการพัฒนาเป็นกล้องจุลทรรศน์อิเล็กตรอน (electron microscopy), immunofluorescence, และการตัดตรวจเนื้อเย็นแข็ง (frozen section) เป็นเทคนิคและความรู้ใหม่ที่เพิ่งกำเนิดขึ้นเมื่อไม่นานมานี้ ด้วยเครื่องมือต่างๆ เหล่านี้เราสามารถตรวจพยาธิสภาพ เพื่อการวินิจฉัยและพยากรณ์โรคได้.

ใหม่!!: การถ่ายโอนสัญญาณและเนื้อเยื่อ · ดูเพิ่มเติม »

เนื้อเยื่อบุผิว

นื้อเยื่อบุผิว (Epithelium) เป็นเนื้อเยื่อพื้นฐานหนึ่งในสี่ชนิดของสัตว์ ร่วมกับเนื้อเยื่อเกี่ยวพัน เนื้อเยื่อกล้ามเนื้อและเนื้อเยื่อประสาท เนื้อเยื่อบุผิวบุโพรงและพื้นผิวของโครงสร้างทั่วร่างกาย และยังเกิดเป็นต่อมจำนวนมาก หน้าที่ของเซลล์บุผิวรวมไปถึงการหลั่ง การเลือกดูดซึม การป้องกัน การขนส่งระหว่างเซลล์และการตรวจจับการรู้สึก ชั้นเนื้อเยื่อบุผิวนั้นไร้หลอดเลือด ฉะนั้น เนื้อเยื่อบุผิวจึงได้รับอาหารผ่านการแพร่ของสสารจากเนื้อเยื่อเกี่ยวพันที่อยู่ข้างใต้ ผ่านเยื่อฐาน เนื้อเยื่อบุผิวสามารถจัดเป็นกลุ่มเซลล์ที่ทำหน้าที่เป็นต่อมมีท่อและต่อมไร้ท่อได้.

ใหม่!!: การถ่ายโอนสัญญาณและเนื้อเยื่อบุผิว · ดูเพิ่มเติม »

Non-coding RNA

non-coding RNA (ncRNA) หรือ RNA ที่ไม่มีการแปลรหัส เป็นส่วนหนึ่งของโมเลกุล RNA ที่จะไม่ถูกแปลเป็นโปรตีน DNA ที่เป็นต้นแบบของ RNA ชนิดนี้ มักถูกเรียกว่า "ยีน RNA" ซึ่ง non-coding RNA นี้ มีหลายชนิด ชนิดที่พบมากที่สุดและอาจถือได้ว่าสำคัญที่สุดคือ tranfer RNA (tRNA) และ ribosomal RNA (rRNA) นอกจากนี้ยังรวมถึง RNA ขนาดเล็กอื่นๆ อีกมาก เช่น microRNA, siRNA, piRNA, snoRNA, snRNA, exRNAs, scaRNAs และ ncRNA ขนาดยาว อื่นๆ เช่น Xist และ HOTAIR.

ใหม่!!: การถ่ายโอนสัญญาณและNon-coding RNA · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Signal transductionSignal transduction pathwaySignaling cascadeการแปรสัญญาณลำดับการส่งสัญญาณลำดับการถ่ายโอนสัญญาณลำดับการแปรสัญญาณวิถีการส่งสัญญาณวิถีการถ่ายโอนสัญญาณวิถีการแปรสัญญาณถ่ายโอนสัญญาณแปรสัญญาณ

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »