สารบัญ
21 ความสัมพันธ์: บิกแบงบิกแบงนิวคลีโอซินทีสิสการสลายให้อนุภาคบีตาการหลอมนิวเคลียสการแบ่งแยกนิวเคลียสมหานวดาราลิเทียมวิวัฒนาการของดาวฤกษ์สสารมืดอะตอมฮีเลียมดาวฤกษ์คาร์บอนนิวคลีออนนิวตรอนนิวเคลียสแคลิฟอร์เนียมโปรตอนไฮโดรเจนเบริลเลียมเอกภพ
- ฟิสิกส์ดาราศาสตร์
- ฟิสิกส์นิวเคลียร์
บิกแบง
ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา บิกแบง (Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี..
ดู การสังเคราะห์นิวเคลียสและบิกแบง
บิกแบงนิวคลีโอซินทีสิส
ในการศึกษาจักรวาลวิทยาเชิงกายภาพ บิกแบงนิวคลีโอซินทีสิส (Big Bang nucleosynthesis; BBN) หรือ นิวคลีโอซินทีสิสเริ่มแรก เป็นการอธิบายถึงกระบวนการกำเนิดนิวเคลียสต่างๆ นอกเหนือไปจากนิวเคลียสของ H-1 (เช่น ไอโซโทปแสงของไฮโดรเจน ซึ่งนิวเคลียสประกอบด้วยโปรตอนเดี่ยว) ระหว่างช่วงยุคต้นของการเกิดเอกภพ นิวคลีโอซินทีสิสแรกเริ่มนี้เกิดขึ้นในเวลาไม่กี่นาทีหลังจากเกิดบิกแบง เชื่อกันว่าเป็นต้นเหตุของการก่อตัวของไอโซโทปธาตุหนักของไฮโดรเจน ที่รู้จักกันในชื่อ ดิวเทอเรียม (H-2 หรือ D), ฮีเลียมไอโซโทป He-3 และ He-4, และ ลิเทียมไอโซโทป Li-6 และ Li-7 นอกจากนิวเคลียสที่เสถียรเหล่านี้ ยังมีพวกที่ไม่เสถียรอยู่ด้วย หรือพวกไอโซโทปกัมมันตรังสี (Radionuclide) เช่น ทริเทียม H-3, เบอริลเลียม Be-7 และ เบอริลเลียม Be-8 ไอโซโทปที่ไม่เสถียรเหล่านี้อาจเสื่อมสลายไปหรือรวมตัวเข้ากับนิวเคลียสอื่นๆ และกลายเป็นหนึ่งในบรรดาไอโซโทปเสถียร.
ดู การสังเคราะห์นิวเคลียสและบิกแบงนิวคลีโอซินทีสิส
การสลายให้อนุภาคบีตา
ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.
ดู การสังเคราะห์นิวเคลียสและการสลายให้อนุภาคบีตา
การหลอมนิวเคลียส
้นโค้งพลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที การหลอมนิวเคลียส (nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike) การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้.
ดู การสังเคราะห์นิวเคลียสและการหลอมนิวเคลียส
การแบ่งแยกนิวเคลียส
prompt gamma rays) ออกมาด่วย (ไม่ได้แสดงในภาพ) การแบ่งแยกนิวเคลียส หรือ นิวเคลียร์ฟิชชัน (nuclear fission) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์หรือกระบวนการการสลายกัมมันตรังสีอย่างหนึ่งที่นิวเคลียสของอะตอม แตกออกเป็นชิ้นขนาดเล็ก (นิวเคลียสที่เบากว่า) กระบวนการฟิชชันมักจะผลิตนิวตรอนและโปรตอนอิสระ (ในรูปของรังสีแกมมา) พร้อมทั้งปลดปล่อยพลังงานออกมาจำนวนมาก แม้ว่าจะเป็นการปลดปล่อยจากการสลายกัมมันตรังสีก็ตาม นิวเคลียร์ฟิชชันของธาตุหนักถูกค้นพบเมื่อวันที่ 17 ธันวาคม 1938 โดยชาวเยอรมัน นายอ็อตโต ฮาห์นและผู้ช่วยของเขา นายฟริตซ์ Strassmann และได้รับการอธิบายในทางทฤษฎีในเดือนมกราคมปี 1939 โดยนาง Lise Meitner และหลานชายของเธอ นายอ็อตโต โรเบิร์ต Frisch.
ดู การสังเคราะห์นิวเคลียสและการแบ่งแยกนิวเคลียส
มหานวดารา
ำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง มหานวดารา นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม.
ดู การสังเคราะห์นิวเคลียสและมหานวดารา
ลิเทียม
ลิเทียม (Lithium) เป็นธาตุมีสัญลักษณ์ Li และเลขอะตอม 3 ในตารางธาตุ ตั้งอยู่ในกลุ่ม 1 ในกลุ่มโลหะอัลคาไล ลิเทียมบริสุทธิ์ เป็นโลหะที่อ่อนนุ่ม และมีสีขาวเงิน ซึ่งถูกออกซิไดส์เร็วในอากาศและน้ำ ลิเทียมเป็นธาตุของแข็ง ที่เบาที่สุด และใช้มากในโลหะผสมสำหรับการนำความร้อน ในถ่านไฟฉายและเป็นส่วนผสมในยาบางชนิดที่เรียกว่า "mood stabilizer".
ดู การสังเคราะห์นิวเคลียสและลิเทียม
วิวัฒนาการของดาวฤกษ์
้นเวลาแสดงอายุของดวงอาทิตย์ วิวัฒนาการของดาวฤกษ์ เป็นกระบวนการที่ดาวฤกษ์เปลี่ยนแปลงองค์ประกอบภายในตามลำดับไปในช่วงอายุของมัน ซึ่งจะมีลักษณะแตกต่างกันตามขนาดของมวลของดาวฤกษ์นั้นๆ อายุของดาวฤกษ์มีตั้งแต่ไม่กี่ล้านปี (สำหรับดาวฤกษ์ที่มีมวลมากๆ) ไปจนถึงหลายล้านล้านปี (สำหรับดาวฤกษ์ที่มีมวลน้อย) ซึ่งอาจจะมากกว่าอายุของเอกภพเสียอีก การศึกษาวิวัฒนาการของดาวฤกษ์มิได้ทำเพียงการเฝ้าสังเกตดาวดวงหนึ่งดวงใด ดาวฤกษ์ส่วนใหญ่มีการเปลี่ยนแปลงอย่างช้ามากจนยากจะตรวจจับได้แม้เวลาจะผ่านไปหลายศตวรรษ นักฟิสิกส์ดาราศาสตร์ทำความเข้าใจกับวิวัฒนาการของดาวฤกษ์โดยการสังเกตการณ์ดาวจำนวนมาก โดยที่แต่ละดวงอยู่ที่ช่วงอายุแตกต่างกัน แล้วทำการจำลองโครงสร้างของดาวออกมาโดยใช้แบบจำลองคอมพิวเตอร์ช่ว.
ดู การสังเคราะห์นิวเคลียสและวิวัฒนาการของดาวฤกษ์
สสารมืด
รมืด (Dark Matter) สสารมืดคือสสารในจักรวาลที่เรามองไม่เห็นแต่รู้ว่ามีอยู่ เพราะอิทธิพลจากแรงโน้มถ่วงของมันต่อสสารปกติในกาแล็กซี่ สสารมืดเป็นองค์ประกอบในอวกาศชนิดหนึ่งซึ่งเป็นเพียงสมมุติฐานทางด้านฟิสิกส์ดาราศาสตร์และจักรวาลวิทยา ว่ามันเป็นสสารซึ่งไม่สามารถส่องแสงหรือสะท้อนแสงได้เพียงพอที่ระบบตรวจจับการแผ่รังสีของคลื่นแม่เหล็กไฟฟ้าจะสามารถตรวจจับได้โดยตรง แต่การมีอยู่ของมันศึกษาได้จากการสำรวจทางอินฟราเรดจากผลกระทบของแรงโน้มถ่วงรวมที่มีต่อวัตถุท้องฟ้าที่เรามองเห็น จากการสังเกตการณ์โครงสร้างขนาดใหญ่ในอวกาศที่ใหญ่กว่าดาราจักรในปัจจุบัน ตลอดจนถึงทฤษฎีบิกแบง นับได้ว่าสสารมืดเป็นส่วนประกอบของมวลจำนวนมากในเอกภพในสังเกตการณ์ของเรา ปรากฏการณ์ที่ตรวจพบอันเกี่ยวข้องกับสสารมืด เช่น ความเร็วในการหมุนตัวของดาราจักร ความเร็วในการโคจรของดาราจักรในกระจุกดาราจักร รวมถึงการกระจายอุณหภูมิของแก๊สร้อนในดาราจักรและในคลัสเตอร์ของดาราจักร สสารมืดยังมีบทบาทอย่างมากในการก่อตัวและการพัฒนาการของดาราจักร ผลการศึกษาด้านต่างๆ ล้วนบ่งชี้ว่า ในกระจุกดาราจักรและเอกภพโดยรวม ยังคงมีสสารชนิดอื่นอีกนอกเหนือจากสิ่งที่ตอบสนองต่อคลื่นแม่เหล็กไฟฟ้า เรียกสสารโดยรวมเหล่านั้นว่า "สสารมืด" สสารปกติจะถูกตรวจจับได้จากการแผ่พลังงานออกมา เนบิวลา กาแล็กซี ดาวฤกษ์ ดาวเคราะห์ ต้นไม้ หรือแม้กระทั่งจุลชีพเล็กๆ จะถูกตรวจจับได้จากรังสีแม่เหล็กไฟฟ้าชนิดใดชนิดหนึ่งที่แผ่ออกมา ทว่าสสารมืดจะไม่แผ่พลังงานเพียงพอที่จะตรวจจับได้โดยตรง นักวิทยาศาสตร์รู้ว่าในจักรวาลมีสสารมืดตั้งแต่ปี 1933 เมื่อ ฟริตซ์ ซวิคกี้ นักฟิสิกส์ดาราศาสตร์ของสถาบันเทคโนโลยีแห่งแคลิฟอร์เนีย ศึกษากระจุกกาแล็กซีโคมา โดยวัดมวลทั้งหมดของกระจุกกาแล็กซีนี้บนพื้นฐานการศึกษาการเคลื่อนที่ของกาแล็กซีบริเวณขอบของกระจุกกาแล็กซี สสารมืด มีมวลมากกว่าที่มองเห็น จากการประมาณค่าพบว่าการแผ่รังสีทั้งหมดในจักรวาลพบว่า 4% เป็นของวัตถุที่สามารถมองเห็นได้ 22% มาจากสสารมืด 74% มาจากพลังงานมืด แต่เป็นการยากมากที่จะทดสอบได้ว่าสสารมืดเกิดจากอะไร แต่เชื่อว่าน่าจะมาจากการประกอบกันของส่วนเล็ก ๆ ของ baryons จนเกิดเป็นสสารมืดขึ้น ซึ่งปัญหานี้เป็นปัญหาใหญ่ในการศึกษาด้านอนุภาคทางฟิสิกส์เนื่องจากมีมวลบางส่วนของระบบที่ศึกษาหายไป สสารมืด จึงเป็นสิ่งที่น่าสนใจในการศึกษาอย่างยิ่ง.
ดู การสังเคราะห์นิวเคลียสและสสารมืด
อะตอม
อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..
ดู การสังเคราะห์นิวเคลียสและอะตอม
ฮีเลียม
ีเลียม (Helium) เป็นธาตุเคมีที่มีสัญลักษณ์ว่า He และมีเลขอะตอมเท่ากับ 2 ฮีเลียมเป็นแก๊สไม่มีสี ไม่มีกลิ่น ไม่มีรส ไม่เป็นพิษ เฉื่อย มีอะตอมเดี่ยวซึ่งถูกจัดให้อยู่ในหมู่แก๊สมีตระกูลบนตารางธาตุ จุดเดือดและจุดหลอมเหลวของฮีเลียม มีค่าต่ำสุดกว่าบรรดาธาตุทั้งหมดในตารางธาตุ และมันจะปรากฏในอยู่รูปของแก๊สเท่านั้น ยกเว้นในสภาวะที่เย็นยิ่งยว.
ดู การสังเคราะห์นิวเคลียสและฮีเลียม
ดาวฤกษ์
นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.
ดู การสังเคราะห์นิวเคลียสและดาวฤกษ์
คาร์บอน
ร์บอน (Carbon) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ C และเลขอะตอม 6 เป็นธาตุอโลหะที่มีอยู่มาก มีวาเลนซ์ 4 และมีหลายอัญรูป.
ดู การสังเคราะห์นิวเคลียสและคาร์บอน
นิวคลีออน
นิวเคลียสอะตอมประกอบด้วยอนุภาคอัดแน่นของนิวคลีออน 2 ประเภท คือโปรตอน (สีแดง) กับนิวตรอน (สีน้ำเงิน) ในภาพนี้ โปรตอนกับนิวตรอนดูเหมือนลูกบอลเล็กๆ ที่ติดแน่นอยู่ด้วยกัน แต่ในนิวเคลียสจริงๆ ตามความเข้าใจของวิชาฟิสิกส์นิวเคลียร์ยุคใหม่ไม่ได้มีหน้าตาแบบนี้ เราพรรณนาภาพนิวเคลียสจริงๆ อย่างถูกต้องได้เพียงอาศัยกลศาสตร์ควอนตัมเท่านั้น ตัวอย่างเช่น ในนิวเคลียสจริงๆ นิวคลีออนแต่ละตัวจะอยู่ในหลายๆ ตำแหน่งในเวลาเดียวกัน กระจายไปทั่วตลอดนิวเคลียส นิวคลีออน (Nucleon) คือหนึ่งในหลายอนุภาคที่ประกอบขึ้นเป็นนิวเคลียสของอะตอม นิวเคลียสของอะตอมแต่ละตัวประกอบด้วยนิวคลีออนหนึ่งตัวหรือมากกว่านั้น ดังนั้นอะตอมแต่ละตัวจึงประกอบด้วยกลุ่มของนิวคลีออนที่ล้อมรอบด้วยอิเล็กตรอนหนึ่งตัวหรือมากกว่านั้น นิวคลีออนมีอยู่ 2 ประเภทคือนิวตรอน และโปรตอน เลขมวลของไอโซโทปอะตอมหนึ่งๆ จะมีค่าเท่ากันกับจำนวนของนิวคลีออนของไอโซโทปอะตอมนั้นๆ ด้วยเหตุนี้ เราจึงสามารถใช้เลขนิวคลีออนแทนที่เลขมวลหรือเลขมวลอะตอมซึ่งเป็นที่นิยมใช้กันอย่างกว้างขวางก็ได้ ก่อนจะถึงทศวรรษ 1960 เคยเชื่อกันว่านิวคลีออนเป็นอนุภาคมูลฐาน ซึ่งไม่อาจประกอบขึ้นจากชิ้นส่วนอื่นใดที่เล็กไปกว่านั้นอีกแล้ว แต่ปัจจุบันเราทราบกันแล้วว่ามันเป็นอนุภาคประกอบ ซึ่งเกิดจากควาร์กสามตัวเกาะเข้าด้วยกันด้วยสิ่งที่เรียกว่าอันตรกิริยาอย่างเข้ม อันตรกิริยาระหว่างนิวคลีออนตั้งแต่ 2 ตัวขึ้นไปเรียกว่า internucleon interaction หรือแรงนิวเคลียร์ ซึ่งเกิดขึ้นจากอันตรกิริยาอย่างเข้มนั่นเอง (แต่เดิมก่อนมีการค้นพบควาร์ก คำว่า "อันตรกิริยาอย่างเข้ม" มีความหมายถึงเพียง internucleon interaction เท่านั้น) ทั้งโปรตอนและนิวตรอนล้วนเป็นแบริออน และก็เป็นเฟอร์มิออนด้วย ตามคำนิยามของฟิสิกส์อนุภาค อนุภาคทั้งสองนี้ประกอบกันเป็น isospin doublet ซึ่งเป็นคำอธิบายว่าทำไมมวลของพวกมันจึงเกือบเท่ากัน โดยที่นิวตรอนหนักกว่าโปรตอนราว 0.1% เท่านั้น.
ดู การสังเคราะห์นิวเคลียสและนิวคลีออน
นิวตรอน
นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ.
ดู การสังเคราะห์นิวเคลียสและนิวตรอน
นิวเคลียส
นิวเคลียส (nucleus, พหูพจน์: nucleuses หรือ nuclei (นิวคลีไอ) มีความหมายว่า ใจกลาง หรือส่วนที่อยู่ตรงกลาง โดยอาจมีความหมายถึงสิ่งต่อไปนี้ โดยคำว่า นิวเคลียส (Nucleus) เป็นคำศัพท์ภาษาละตินใหม่ (New Latin) มาจากคำศัพท์เดิม nux หมายถึง ผลเปลือกแข็งเมล็ดเดียว (nut).
ดู การสังเคราะห์นิวเคลียสและนิวเคลียส
แคลิฟอร์เนียม
แคลิฟอร์เนียม (Californium) คือธาตุที่มีหมายเลขอะตอม 98 และสัญลักษณ์คือ Cf เป็นธาตุโลหะหนักกัมมันตรังสี มีลักษณะสีเงินวาว อยู่ในกลุ่มแอกทิไนด์ (actinide group) แคลิฟอร์เนียมถูกสังเคราะห์ขึ้นครั้งแรกโดยการยิงคูเรียมด้วยอนุภาคแอลฟา (ฮีเลียมไอออน) ธาตุใหม่ที่ได้ตั้งชื่อตามรัฐแคลิฟอร์เนีย Cf-252 เป็นไอโซโทปที่มีครึ่งชีวิตเท่ากับ 2.6 ปี เป็นตัวปลดปล่อยนิวตรอนอย่างรุนแรง และเป็นธาตุกัมมันตรังสีที่อันตรายมาก คลิฟอร์เนียมค้นพบโดย S.G.
ดู การสังเคราะห์นิวเคลียสและแคลิฟอร์เนียม
โปรตอน
| magnetic_moment.
ดู การสังเคราะห์นิวเคลียสและโปรตอน
ไฮโดรเจน
รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..
ดู การสังเคราะห์นิวเคลียสและไฮโดรเจน
เบริลเลียม
ริลเลียม (Beryllium) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ Be และเลขอะตอม 4 เป็นธาตุไบวาเลนต์ที่มีพิษ น้ำหนักอะตอม 9.0122 amu จุดหลอมเหลว 1287°C จุดเดือด (โดยประมาณ) 2970°C ความหนาแน่น (จากการคำนวณ) 1.85 g/cc ที่ 4ํc เลขออกซิเดชันสามัญ + 2 เบริลเลียมเป็นโลหะแอลคาไลน์เอิร์ธ มีสีเทาเหมือนเหล็ก แข็งแรง น้ำหนักเบา แต่เปราะ ซึ่งส่วนใหญ่ใช้เป็นตัวที่ทำให้โลหะผสมแข็งขึ้น (โดยเฉพาะทองแดงเบริลเลียม).
ดู การสังเคราะห์นิวเคลียสและเบริลเลียม
เอกภพ
อวกาศห้วงลึกมากของฮับเบิล ที่ประกอบด้วยกาแล็กซีที่มีอายุ ขนาด รูปร่าง และสีแตกต่างกัน เอกภพ หรือ จักรวาล โดยทั่วไปนิยามว่าเป็นผลรวมของการดำรงอยู่ รวมทั้งดาวเคราะห์ ดาวฤกษ์ ดาราจักร สิ่งที่บรรจุอยู่ในอวกาศระหว่างดาราจักร และสสารและพลังงานทั้งหมด การสังเกตเอกภพทางวิทยาศาสตร์ ซึ่งเชื่อกันว่ามีเส้นผ่านศูนย์กลาง 9,999 ล้านปีแสง นำไปสู่อนุมานขั้นแรกเริ่มของเอกภพ การสังเกตเหล่านี้แนะว่า เอกภพถูกควบคุมด้วยกฎทางฟิสิกส์และค่าคงที่เดียวกันตลอดขนาดและประวัติศาสตร์ส่วนใหญ่ ทฤษฎีบิกแบงเป็นแบบจำลองจักรวาลวิทยาทั่วไปซึ่งอธิบายพัฒนาการแรกเริ่มของเอกภพ ซึ่งในจักรวาลวิทยากายภาพเชื่อว่าเกิดขึ้นเมื่อราว 13,700 ล้านปีก่อน มีนักฟิสิกส์มากมายเชื่อสมมุติฐานเกี่ยวกับพหุภพ ซึ่งกล่าวไว้ว่าเอกภพอาจเป็นหนึ่งในภพจำนวนมากที่มีอยู่เช่นกัน ระยะทางไกลสุดที่เป็นไปได้ทางทฤษฎีแก่มนุษย์ที่จะมองเห็นอธิบายว่าเป็น เอกภพที่สังเกตได้ การสังเกตได้แสดงว่า เอกภพดูจะขยายตัวในอัตราเร่ง และมีหลายแบบจำลองเกิดขึ้นเพื่อพยากรณ์ชะตาสุดท้ายของเอกภพ แผนภาพตำแหน่งของโลกในสถามที่ต่างๆของเอก.
ดู การสังเคราะห์นิวเคลียสและเอกภพ
ดูเพิ่มเติม
ฟิสิกส์ดาราศาสตร์
- การระเหยด้วยแสง
- การสังเคราะห์นิวเคลียส
- การสังเคราะห์นิวเคลียสของดาวฤกษ์
- การสังเคราะห์นิวเคลียสของมหานวดารา
- การแผ่รังสีของวัตถุดำ
- ขอบฟ้าเหตุการณ์
- ขีดจำกัดจันทรเศขร
- ขีดจำกัดฮายาชิ
- ความเป็นโลหะ (ดาราศาสตร์)
- จักรวาลวิทยาเชิงกายภาพ
- พลศาสตร์นิวตันแบบปรับปรุงใหม่
- พลาสมา (สถานะของสสาร)
- ฟิสิกส์ดาราศาสตร์
- วงโคโรนา
- วัตถุดำ
- สภาวะสมดุลอุทกสถิต
- หลุมขาว
- อสมมาตรของแบริออน
- เลนส์ความโน้มถ่วง
- เส้นเวลากราฟิกของจักรวาล
- เส้นเวลากราฟิกของบิกแบง
- เส้นเวลากราฟิกของยุคแห่งดวงดาว
ฟิสิกส์นิวเคลียร์
- การกระเจิง
- การจับยึดนิวตรอน
- การจับยึดอิเล็กตรอน
- การผลิตคู่
- การสลายให้อนุภาคบีตา
- การสลายให้อนุภาคแอลฟา
- การสังเคราะห์นิวเคลียส
- การสังเคราะห์นิวเคลียสของดาวฤกษ์
- การสังเคราะห์นิวเคลียสของมหานวดารา
- การหลอมนิวเคลียส
- การแตกตัวด้วยแสง
- การแบ่งแยกนิวเคลียส
- การแปรนิวเคลียส
- การแปลงภายใน
- กำแพงคูลอมบ์
- จำนวนแบริออน
- ตารางธาตุ (ขยาย)
- ธาตุสังเคราะห์
- ธาตุหลังยูเรเนียม
- นิวเคลียสของอะตอม
- นิวไคลด์
- นิวไคลด์กัมมันตรังสี
- ปฏิกิริยานิวเคลียร์
- ปฏิกิริยาลูกโซ่นิวเคลียร์
- ผลผลิตจากการสลาย
- ผลผลิตจากฟิชชัน
- พลังงานการสลายตัว
- พลังงานยึดเหนี่ยว
- ฟิชชันเกิดเอง
- ฟิสิกส์นิวเคลียร์
- ภาคตัดขวาง (ฟิสิกส์)
- รังสีแกมมา
- วัสดุฟิสไซล์
- หมู่เกาะแห่งเสถียรภาพ
- อันตรกิริยาอย่างเข้ม
- เกรย์ (หน่วยวัด)
- เลขนิวตรอน
- เลขอะตอม
- แบบจำลองชั้นพลังงานของนิวเคลียส
- แรงนิวเคลียร์
- แฮดรอน
- โคเปอร์นิเซียม
- ไอโซโทป
หรือที่รู้จักกันในชื่อ นิวคลีโอซินทีสิส