โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

อินเตอร์เซกชัน

ดัชนี อินเตอร์เซกชัน

อินเตอร์เซกชัน (intersection) หรือ ส่วนร่วม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการหาสมาชิกทั้งหมดที่เหมือนกันในเซตต้นแบบ เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U กลับหัว).

14 ความสัมพันธ์: กฎเดอมอร์แกนการดำเนินการ (คณิตศาสตร์)การดำเนินการทวิภาควนซ้ำยูเนียนสมบัติการสลับที่สมบัติการแจกแจงสมบัติการเปลี่ยนหมู่สมาชิกเอกลักษณ์ส่วนเติมเต็มอนุกรมจำนวนธรรมชาติเซต (แก้ความกำกวม)เซตว่างU

กฎเดอมอร์แกน

กฎเดอมอร์แกนหรือกฎของเดอมอร์กอง(อ่านตามภาษาฝรั่งเศส) (De Morgan's laws) หรือ ทฤษฎีบทเดอมอร์แกน (De Morgan's theorem) เป็นกฎในวิชาตรรกศาสตร์ คือ ชุดของกฎในสาขาตรรกศาสตร์รูปนัยซึ่งแสดงความสัมพันธ์อย่างเป็นระบบระหว่างคู่ของตัวดำเนินการเชิงตรรกที่คู่กัน โดยแสดงในรูปนิเสธ ความสัมพันธ์เช่นนี้เรียกว่าภาวะคู่กันเดอมอร์แกน (De Morgan duality) กฎนี้แสดงว่าประพจน์ทางซ้ายมือต่อไปนี้แต่ละตัวสมมูลเชิงตรรกกับประพจน์ทางขวามือที่คู่กัน และเราสามารถแปลงประพจน์จากข้างหนึ่งไปเป็นอีกข้างหนึ่งได้ ไม่ว่าในทิศทางใดก็ตาม.

ใหม่!!: อินเตอร์เซกชันและกฎเดอมอร์แกน · ดูเพิ่มเติม »

การดำเนินการ (คณิตศาสตร์)

การดำเนินการ (Operation) ในทางคณิตศาสตร์และตรรกศาสตร์ หมายถึง การกระทำหรือลำดับขั้นตอนซึ่งสร้างค่าใหม่ขึ้นเป็นผลลัพธ์ โดยการรับค่าเข้าไปหนึ่งตัวหรือมากกว่า การดำเนินการสามารถแบ่งได้เป็นสองประเภทใหญ่ ๆ ได้แก่ การดำเนินการเอกภาคและการดำเนินการทวิภาค การดำเนินการเอกภาคจะใช้ค่าที่ป้อนเข้าไปเพียงหนึ่งค่าเช่น นิเสธ ฟังก์ชันตรีโกณมิติ ส่วนการดำเนินการทวิภาคจะใช้สองค่าเช่น การบวก การลบ การคูณ การหาร การยกกำลัง การดำเนินการสามารถเกี่ยวข้องกับวัตถุทางคณิตศาสตร์อย่างอื่นที่นอกเหนือจากจำนวนก็ได้ ตัวอย่างเช่น ค่าเชิงตรรกะ จริง และ เท็จ สามารถใช้กับตัวดำเนินการทางตรรกศาสตร์อย่าง and, or, not; เวกเตอร์สามารถบวกและลบกันได้; ฟังก์ชันประกอบสามารถใช้เป็นการหมุนของวัตถุหลาย ๆ ครั้งได้; การดำเนินการของเซตมีทั้งแบบทวิภาคคือยูเนียน อินเตอร์เซกชัน และแบบเอกภาคคือคอมพลีเมนต์ เป็นต้น การดำเนินการบางอย่างอาจไม่สามารถนิยามได้บนทุก ๆ ค่าที่เป็นไปได้ เช่น ในจำนวนจริง เราจะไม่สามารถหารด้วยศูนย์หรือถอดรากที่สองจากจำนวนลบ ค่าเริ่มต้นสำหรับการดำเนินการได้นิยามมาจากเซตเซตหนึ่งที่เรียกว่าโดเมน และเซตที่เป็นผลลัพธ์เรียกว่าโคโดเมน แต่ค่าที่แท้จริงที่เกิดจากการดำเนินการนั้นอาจออกมาเป็นเรนจ์ อาทิการถอดรากที่สองในจำนวนจริงจะให้ผลลัพธ์เพียงจำนวนที่ไม่เป็นลบ ดังนั้นโคโดเมนคือเซตของจำนวนจริง แต่เรนจ์คือเซตของจำนวนที่ไม่เป็นลบเท่านั้น การดำเนินการอาจเกี่ยวข้องกับวัตถุสองชนิดที่ต่างกันก็ได้ ตัวอย่างเช่น เราสามารถคูณเวกเตอร์ด้วยปริมาณสเกลาร์เพื่อเปลี่ยนขนาดของเวกเตอร์ และผลคูณภายใน (inner product) ของสองเวกเตอร์จะให้ผลลัพธ์ออกมาเป็นสเกลาร์ การดำเนินการหนึ่ง ๆ อาจจะมีหรือไม่มีสมบัติบางอย่าง เช่นสมบัติการเปลี่ยนกลุ่ม การสลับที่ และอื่น ๆ ค่าที่ใส่เข้ามาในการดำเนินการอาจเรียกว่า ตัวถูกดำเนินการ, อาร์กิวเมนต์, ค่ารับเข้า ส่วนค่าที่ได้ออกไปจากการดำเนินการเรียกว่า ค่า, ผลลัพธ์, ค่าส่งออก การดำเนินการสามารถมีตัวถูกดำเนินการหนึ่งค่า สองค่า หรือมากกว่าก็ได้ การดำเนินการนั้นคล้ายกับตัวดำเนินการแต่ต่างกันที่มุมมอง ตัวอย่างเช่น หากใครคนหนึ่งกล่าวว่า "การดำเนินการของการบวก" จะเป็นการเน้นจุดสนใจไปที่ตัวถูกดำเนินการและผลลัพธ์ ในขณะที่อีกคนหนึ่งกล่าวว่า "ตัวดำเนินการของการบวก" จะเป็นการมุ่งประเด็นไปที่กระบวนการที่จะทำให้เกิดผลลัพธ์ หรือหมายถึงฟังก์ชัน +: S × S → S ซึ่งเป็นมุมมองนามธรรม.

ใหม่!!: อินเตอร์เซกชันและการดำเนินการ (คณิตศาสตร์) · ดูเพิ่มเติม »

การดำเนินการทวิภาควนซ้ำ

ในทางคณิตศาสตร์ การดำเนินการทวิภาควนซ้ำ คือการขยายการดำเนินการทวิภาคบนเซต S ไปยังฟังก์ชันบนลำดับจำกัด ที่มีสมาชิกเป็นสมาชิกของ S ด้วยวิธีดำเนินการวนซ้ำ ตัวอย่างของการดำเนินการทวิภาควนซ้ำเช่น การขยายการบวก ไปเป็นการดำเนินการผลรวม (summation) และการขยายการคูณ ไปเป็นการดำเนินการผลคูณ (product) สำหรับการดำเนินการอย่างอื่นก็สามารถวนซ้ำได้ อาทิยูเนียนและอินเตอร์เซกชันของเซต แต่การดำเนินการเหล่านั้นก็ไม่มีชื่อเรียกให้ต่างออกไป ผลรวมและผลคูณสามารถนำเสนอได้ด้วยสัญลักษณ์พิเศษในการพิมพ์ แต่สำหรับการดำเนินการทวิภาควนซ้ำอย่างอื่นจะใช้สัญลักษณ์ที่มีขนาดใหญ่ขึ้นแทนตัวดำเนินการธรรมดา ดังนั้นการวนซ้ำของการดำเนินการสี่อย่างข้างต้นจึงสามารถเขียนแทนได้เป็น ในกรณีทั่วไป มีหลายวิธีการที่จะขยายการดำเนินการทวิภาคเพื่อที่จะนำไปใช้บนลำดับจำกัด ขึ้นอยู่กับว่าตัวดำเนินการนั้นมีสมบัติการเปลี่ยนหมู่หรือไม่ และมีสมาชิกเอกลักษณ์หรือไม.

ใหม่!!: อินเตอร์เซกชันและการดำเนินการทวิภาควนซ้ำ · ดูเพิ่มเติม »

ยูเนียน

ูเนียน (union) หรือ ส่วนรวม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการรวมสมาชิกทั้งหมดของเซตต้นแบบเข้าด้วยกัน เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U).

ใหม่!!: อินเตอร์เซกชันและยูเนียน · ดูเพิ่มเติม »

สมบัติการสลับที่

ตัวอย่างแสดงสมบัติการสลับที่ของการบวก (3 + 2.

ใหม่!!: อินเตอร์เซกชันและสมบัติการสลับที่ · ดูเพิ่มเติม »

สมบัติการแจกแจง

ในทางคณิตศาสตร์ สมบัติการแจกแจง (distributivity) คือสมบัติหนึ่งที่สามารถมีได้บนการดำเนินการทวิภาค ซึ่งเป็นกรณีทั่วไปของกฎการแจกแจงจากพีชคณิตมูลฐาน ตัวอย่างเช่น ข้างซ้ายของสมการข้างต้น 2 คูณเข้ากับผลบวกของ 1 กับ 3 ส่วนข้างขวา 2 คูณเข้ากับ 1 และ 3 แต่ละตัวแยกกัน แล้วค่อยนำผลคูณเข้ามาบวก เนื่องจากตัวอย่างข้างต้นให้ผลลัพธ์เท่ากันคือ 8 เราจึงกล่าวว่า การคูณด้วย 2 แจกแจงได้ (distribute) บนการบวกของ 1 กับ 3 เราสามารถแทนที่จำนวนเหล่านั้นด้วยจำนวนจริงใดๆ แล้วทำให้สมการยังคงเป็นจริง เราจึงกล่าวว่า การคูณของจำนวนจริง แจกแจงได้บนการบวกของจำนวนจริง สมบัติการแจกแจงจึงต้องเกี่ยวข้องกับการดำเนินการสองชน.

ใหม่!!: อินเตอร์เซกชันและสมบัติการแจกแจง · ดูเพิ่มเติม »

สมบัติการเปลี่ยนหมู่

ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (associativity) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใดๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative) ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้ ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร.

ใหม่!!: อินเตอร์เซกชันและสมบัติการเปลี่ยนหมู่ · ดูเพิ่มเติม »

สมาชิกเอกลักษณ์

ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.

ใหม่!!: อินเตอร์เซกชันและสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

ส่วนเติมเต็ม

วนเติมเต็ม หรือ คอมพลีเมนต์ (complement) คือแนวคิดหนึ่งที่ใช้ในการเปรียบเทียบเซต เพื่อที่จะให้ทราบว่า เมื่อเซตหนึ่งสัมพันธ์กับอีกเซตหนึ่ง มีสมาชิกใดบ้างที่อยู่ภายใต้เซตเพียงเซตเดียว แบ่งออกตามการใช้งานเป็น ส่วนเติมเต็มสัมบูรณ์ (absolute complement) กับ ส่วนเติมเต็มสัมพัทธ์ (relative complement) ซึ่งแนวคิดแรกหมายถึงส่วนเติมเต็มที่เกี่ยวข้องกับเอกภพสัมพัทธ์ (universal set) ส่วนแนวคิดหลังเกี่ยวข้องกับเซตตัวอื่น.

ใหม่!!: อินเตอร์เซกชันและส่วนเติมเต็ม · ดูเพิ่มเติม »

อนุกรม

ในทางคณิตศาสตร์ อนุกรม คือผลจากการบวกสมาชิกทุกตัวของลำดับไม่จำกัดเข้าด้วยกัน หากกำหนดให้ลำดับของจำนวนเป็น \.

ใหม่!!: อินเตอร์เซกชันและอนุกรม · ดูเพิ่มเติม »

จำนวนธรรมชาติ

ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.

ใหม่!!: อินเตอร์เซกชันและจำนวนธรรมชาติ · ดูเพิ่มเติม »

เซต (แก้ความกำกวม)

ซต สามารถหมายถึง.

ใหม่!!: อินเตอร์เซกชันและเซต (แก้ความกำกวม) · ดูเพิ่มเติม »

เซตว่าง

ัญลักษณ์แทนเซตว่าง เซตว่าง (empty set) ในทางคณิตศาสตร์ และที่เจาะจงกว่าคือทฤษฎีเซตหมายถึง เซตเพียงหนึ่งเดียวที่ไม่มีสมาชิก หรือเรียกได้ว่ามีสมาชิก 0 ตัว เซตว่างสามารถเขียนแทนได้ด้วยสัญลักษณ์ "∅" หรือ "\emptyset" ซึ่งมีต้นกำเนิดมาจากอักษร Ø ในภาษาเดนมาร์กและภาษานอร์เวย์ เสนอโดยกลุ่มของ Nicolas Bourbaki (โดยเฉพาะ André Weil) ในปี ค.ศ. 1939 สัญกรณ์แบบอื่นที่นิยมใช้ตัวอย่างเช่น "", "Λ" และ "0" ทฤษฎีเซตเชิงสัจพจน์ (axiomatic set theory) ได้ตั้งสมมติฐานไว้ว่า เซตว่างจำเป็นต้องมีขึ้นเนื่องจากสัจพจน์ของเซตว่าง (axiom of empty set) บางครั้งเซตว่างก็ถูกเรียกว่าเป็น เซตนัลล์ (null set) แต่เซตนัลล์มีความหมายอื่นในเรื่องของทฤษฎีเมเชอร์ ดังนั้นจึงควรหลีกเลี่ยงในการใช้คำนี้.

ใหม่!!: อินเตอร์เซกชันและเซตว่าง · ดูเพิ่มเติม »

U

U (ตัวใหญ่:U ตัวเล็ก:u) เป็นอักษรละตินลำดับที่ 21 ซึ่งในภาษาอังกฤษอ่านว่า "ยู" ในขณะที่เยอรมัน อิตาลี สเปน และฝรั่งเศส เรียกว่า "อู" ในขณะเดียวกันในประเทศไทยนิยมเรียกว่า "ยู" เช่นเดียวกับใน ภาษาญี่ปุ่น เรียกว่า "ยู" (ユー).

ใหม่!!: อินเตอร์เซกชันและU · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Intersectionส่วนร่วมอินเทอร์เซกชัน

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »