ความคล้ายคลึงกันระหว่าง สมบัติการสลับที่และอินเตอร์เซกชัน
สมบัติการสลับที่และอินเตอร์เซกชัน มี 5 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): การดำเนินการ (คณิตศาสตร์)ยูเนียนสมบัติการแจกแจงสมบัติการเปลี่ยนหมู่เซต (แก้ความกำกวม)
การดำเนินการ (คณิตศาสตร์)
การดำเนินการ (Operation) ในทางคณิตศาสตร์และตรรกศาสตร์ หมายถึง การกระทำหรือลำดับขั้นตอนซึ่งสร้างค่าใหม่ขึ้นเป็นผลลัพธ์ โดยการรับค่าเข้าไปหนึ่งตัวหรือมากกว่า การดำเนินการสามารถแบ่งได้เป็นสองประเภทใหญ่ ๆ ได้แก่ การดำเนินการเอกภาคและการดำเนินการทวิภาค การดำเนินการเอกภาคจะใช้ค่าที่ป้อนเข้าไปเพียงหนึ่งค่าเช่น นิเสธ ฟังก์ชันตรีโกณมิติ ส่วนการดำเนินการทวิภาคจะใช้สองค่าเช่น การบวก การลบ การคูณ การหาร การยกกำลัง การดำเนินการสามารถเกี่ยวข้องกับวัตถุทางคณิตศาสตร์อย่างอื่นที่นอกเหนือจากจำนวนก็ได้ ตัวอย่างเช่น ค่าเชิงตรรกะ จริง และ เท็จ สามารถใช้กับตัวดำเนินการทางตรรกศาสตร์อย่าง and, or, not; เวกเตอร์สามารถบวกและลบกันได้; ฟังก์ชันประกอบสามารถใช้เป็นการหมุนของวัตถุหลาย ๆ ครั้งได้; การดำเนินการของเซตมีทั้งแบบทวิภาคคือยูเนียน อินเตอร์เซกชัน และแบบเอกภาคคือคอมพลีเมนต์ เป็นต้น การดำเนินการบางอย่างอาจไม่สามารถนิยามได้บนทุก ๆ ค่าที่เป็นไปได้ เช่น ในจำนวนจริง เราจะไม่สามารถหารด้วยศูนย์หรือถอดรากที่สองจากจำนวนลบ ค่าเริ่มต้นสำหรับการดำเนินการได้นิยามมาจากเซตเซตหนึ่งที่เรียกว่าโดเมน และเซตที่เป็นผลลัพธ์เรียกว่าโคโดเมน แต่ค่าที่แท้จริงที่เกิดจากการดำเนินการนั้นอาจออกมาเป็นเรนจ์ อาทิการถอดรากที่สองในจำนวนจริงจะให้ผลลัพธ์เพียงจำนวนที่ไม่เป็นลบ ดังนั้นโคโดเมนคือเซตของจำนวนจริง แต่เรนจ์คือเซตของจำนวนที่ไม่เป็นลบเท่านั้น การดำเนินการอาจเกี่ยวข้องกับวัตถุสองชนิดที่ต่างกันก็ได้ ตัวอย่างเช่น เราสามารถคูณเวกเตอร์ด้วยปริมาณสเกลาร์เพื่อเปลี่ยนขนาดของเวกเตอร์ และผลคูณภายใน (inner product) ของสองเวกเตอร์จะให้ผลลัพธ์ออกมาเป็นสเกลาร์ การดำเนินการหนึ่ง ๆ อาจจะมีหรือไม่มีสมบัติบางอย่าง เช่นสมบัติการเปลี่ยนกลุ่ม การสลับที่ และอื่น ๆ ค่าที่ใส่เข้ามาในการดำเนินการอาจเรียกว่า ตัวถูกดำเนินการ, อาร์กิวเมนต์, ค่ารับเข้า ส่วนค่าที่ได้ออกไปจากการดำเนินการเรียกว่า ค่า, ผลลัพธ์, ค่าส่งออก การดำเนินการสามารถมีตัวถูกดำเนินการหนึ่งค่า สองค่า หรือมากกว่าก็ได้ การดำเนินการนั้นคล้ายกับตัวดำเนินการแต่ต่างกันที่มุมมอง ตัวอย่างเช่น หากใครคนหนึ่งกล่าวว่า "การดำเนินการของการบวก" จะเป็นการเน้นจุดสนใจไปที่ตัวถูกดำเนินการและผลลัพธ์ ในขณะที่อีกคนหนึ่งกล่าวว่า "ตัวดำเนินการของการบวก" จะเป็นการมุ่งประเด็นไปที่กระบวนการที่จะทำให้เกิดผลลัพธ์ หรือหมายถึงฟังก์ชัน +: S × S → S ซึ่งเป็นมุมมองนามธรรม.
การดำเนินการ (คณิตศาสตร์)และสมบัติการสลับที่ · การดำเนินการ (คณิตศาสตร์)และอินเตอร์เซกชัน ·
ยูเนียน
ูเนียน (union) หรือ ส่วนรวม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการรวมสมาชิกทั้งหมดของเซตต้นแบบเข้าด้วยกัน เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U).
ยูเนียนและสมบัติการสลับที่ · ยูเนียนและอินเตอร์เซกชัน ·
สมบัติการแจกแจง
ในทางคณิตศาสตร์ สมบัติการแจกแจง (distributivity) คือสมบัติหนึ่งที่สามารถมีได้บนการดำเนินการทวิภาค ซึ่งเป็นกรณีทั่วไปของกฎการแจกแจงจากพีชคณิตมูลฐาน ตัวอย่างเช่น ข้างซ้ายของสมการข้างต้น 2 คูณเข้ากับผลบวกของ 1 กับ 3 ส่วนข้างขวา 2 คูณเข้ากับ 1 และ 3 แต่ละตัวแยกกัน แล้วค่อยนำผลคูณเข้ามาบวก เนื่องจากตัวอย่างข้างต้นให้ผลลัพธ์เท่ากันคือ 8 เราจึงกล่าวว่า การคูณด้วย 2 แจกแจงได้ (distribute) บนการบวกของ 1 กับ 3 เราสามารถแทนที่จำนวนเหล่านั้นด้วยจำนวนจริงใดๆ แล้วทำให้สมการยังคงเป็นจริง เราจึงกล่าวว่า การคูณของจำนวนจริง แจกแจงได้บนการบวกของจำนวนจริง สมบัติการแจกแจงจึงต้องเกี่ยวข้องกับการดำเนินการสองชน.
สมบัติการสลับที่และสมบัติการแจกแจง · สมบัติการแจกแจงและอินเตอร์เซกชัน ·
สมบัติการเปลี่ยนหมู่
ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (associativity) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใดๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative) ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้ ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร.
สมบัติการสลับที่และสมบัติการเปลี่ยนหมู่ · สมบัติการเปลี่ยนหมู่และอินเตอร์เซกชัน ·
เซต (แก้ความกำกวม)
ซต สามารถหมายถึง.
สมบัติการสลับที่และเซต (แก้ความกำกวม) · อินเตอร์เซกชันและเซต (แก้ความกำกวม) ·
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ สมบัติการสลับที่และอินเตอร์เซกชัน มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง สมบัติการสลับที่และอินเตอร์เซกชัน
การเปรียบเทียบระหว่าง สมบัติการสลับที่และอินเตอร์เซกชัน
สมบัติการสลับที่ มี 26 ความสัมพันธ์ขณะที่ อินเตอร์เซกชัน มี 14 ขณะที่พวกเขามีเหมือนกัน 5, ดัชนี Jaccard คือ 12.50% = 5 / (26 + 14)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง สมบัติการสลับที่และอินเตอร์เซกชัน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: