โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

ทฤษฎีระบบควบคุม

ดัชนี ทฤษฎีระบบควบคุม

ระบบควบคุมมีความสำคัญอย่างมากในการปล่อยจรวดและยานอวกาศ ทฤษฎีระบบควบคุม (control theory) เป็นสาขาหนึ่งของคณิตศาสตร์และวิศวกรรมศาสตร์ ในที่นี้ การควบคุมหมายถึง การควบคุมระบบพลศาสตร์ ให้มีค่าเอาต์พุตที่ต้องการ โดยการป้อนค่าอินพุตที่เหมาะสมให้กับระบบ ตัวอย่างที่เห็นได้ทั่วไป เช่น ระบบควบคุมอุณหภูมิห้องของเครื่องปรับอากาศ หรือ แม้แต่ลูกลอยในโถส้วม ที่เปิดน้ำปิดน้ำโดยอัตโนมัติเมื่อน้ำหมดและน้ำเต็ม การควบคุมการขับเคลื่อนยานพาหนะ เช่น รถยนต์ ก็ถือเป็นการควบคุมชนิดหนึ่ง โดยผู้ขับขี่เป็นผู้ควบคุมทิศทางและความเร็ว ซึ่งระบบควบคุมประเภทที่ต้องมีคนเข้ามาเกี่ยวข้องนี้ถือว่าเป็น ระบบควบคุมไม่อัตโนมัติ (manual control) แต่ทฤษฎีระบบควบคุมจะครอบคลุมเฉพาะการวิเคราะห์และออกแบบ ระบบควบคุมอัตโนมัติ (automatic control) เท่านั้น เช่น ระบบขับเคลื่อนอัตโนมัติ (cruise control) ระบบควบคุมยังอาจแบ่งออกได้เป็นระบบควบคุมวงเปิด (open-loop control) คือ ระบบควบคุมที่ไม่ได้ใช้สัญญาณจากเอาต์พุต มาบ่งชี้ถึงลักษณะการควบคุม ส่วนระบบควบคุมวงปิด (closed-loop control) หรือ ระบบป้อนกลับ (feedback control) นั้นจะใช้ค่าที่วัดจากเอาต์พุต มาคำนวณค่าการควบคุม นอกจากนี้ยังอาจแบ่งได้ตามคุณลักษณะของระบบ เช่น เป็นเชิงเส้น (linear) / ไม่เป็นเชิงเส้น (nonlinear), แปรเปลี่ยนตามเวลา (time-varying) / ไม่เปลี่ยนแปลงตามเวลา (time-invariant) และเวลาต่อเนื่อง (Continuous time) / เวลาไม่ต่อเนื่อง (Discontinuous time).

89 ความสัมพันธ์: ฟังก์ชันเลียปูนอฟพ.ศ. 2239พ.ศ. 2331พ.ศ. 2383พ.ศ. 2400พ.ศ. 2411พ.ศ. 2432พ.ศ. 2435พ.ศ. 2437พ.ศ. 2441พ.ศ. 2446พ.ศ. 2451พ.ศ. 2455พ.ศ. 2461พ.ศ. 2463พ.ศ. 2465พ.ศ. 2470พ.ศ. 2473พ.ศ. 2475พ.ศ. 2477พ.ศ. 2483พ.ศ. 2484พ.ศ. 2491พ.ศ. 2492พ.ศ. 2495พ.ศ. 2500พ.ศ. 2501พ.ศ. 2503พ.ศ. 2507พ.ศ. 2519พ.ศ. 2526พ.ศ. 2527พ.ศ. 2530พ.ศ. 2531กรีกการสงครามต่อสู้อากาศยานการป้อนกลับสถานะแบบเต็มการป้อนกลับเชิงลบการแปลง Z ขั้นสูงการแปลงฟูรีเยการแปลงลาปลาสกำหนดการพลวัตมหาวิทยาลัยคาร์เนกีเมลลอนมหาวิทยาลัยโคลัมเบียยานพาหนะระบบอัตโนมัติระบบควบคุมพีไอดีรัฐเท็กซัสรูดอล์ฟ อีมิว คาลมานรถยนต์...วิศวกรรมศาสตร์วิศวกรรมแมคคาทรอนิกส์และหุ่นยนต์วิทยาการหุ่นยนต์สมการเชิงอนุพันธ์สมการเลียปูนอฟสหภาพโซเวียตสถาบันเทคโนโลยีแมสซาชูเซตส์สงครามโลกครั้งที่สองหุ่นยนต์หุ่นยนต์ฮิวแมนนอยด์อันเดรย์ คอลโมโกรอฟอาซิโมอนุพันธ์อเล็กซานเดอร์ เลียปูนอฟจอร์จ แอรีจอห์น รากัซซินีขนาด (คณิตศาสตร์)ดวงจันทร์ดับเบิล อินทิเกรตเตอร์ดิจิทัลคริสต์ทศวรรษ 1890คอมพิวเตอร์คิวริโอคณิตศาสตร์ตัวกรองคาลมานปริพันธ์นักดาราศาสตร์นาฬิกาน้ำแฮร์รี่ ไนควิสต์แฮโรลด์ สตีเฟน แบล็กโครงการอะพอลโลไอน้ำเพนดูลัมผกผันเรดาร์เฮนดริค เวด โบดีเจมส์ วัตต์เจมส์ เคลิร์ก แมกซ์เวลล์เครื่องจักรไอน้ำเครื่องปรับอากาศ ขยายดัชนี (39 มากกว่า) »

ฟังก์ชันเลียปูนอฟ

ฟังก์ชันเลียปูนอฟ (Lyapunov function) เป็นฟังก์ชันที่ใช้ในการการหาเสถียรภาพของระบบพลวัตในทฤษฎีเสถียรภาพของเลียปูนอฟ โดยตั้งตามชื่อของ อเล็กซานเดอร์ มิคาอิลโลวิช เลียปูนอฟ นักคณิตศาสตร์ชาวรัสเซีย (6 มิถุนายน ค.ศ. 1857 – 3 พฤศจิกายน ค.ศ. 1918) ฟังก์ชันนี้มีบทบาทสำคัญมากในทฤษฎีเสถียรภาพ และ ทฤษฎีระบบควบคุม ในขณะนี้ยังไม่มีวิธีการทั่วไปในการหาฟังก์ชันเลียปูนอฟของระบบในกรณีทั่วไป เพราะในทฤษฎีเสถียรภาพของเลียปูนอฟสามารถบอกได้เพียงว่า ถ้าหากฟังก์ชันเลียปูนอฟสอดคล้องกับเกณฑ์ของเสถียรภาพจึงสามารถสรุปได้ว่าระบบนั้นมีเสถียรภาพ แต่ในทางกลับกัน ระบบที่มีเสถียรภาพไม่สามารถบ่งบอกได้ว่าฟังก์ชันแบบใดที่เป็นฟังก์ชันเลียปูนอฟได้ ดังนั้นในการพิสูจน์เสถียรภาพของระบบ จะกระทำโดยการสร้างฟังก์ชันที่มีคุณสมบัติตรงตามคุณสมบัติฟังก์ชันที่เข้าเกณฑ์การเป็นฟังก์เลียปูนอฟจะเรียกว่า ฟังก์ชันพลังงาน เดวิด บรรเจิดพงศ์ชัย, "ระบบควบคุมพลวัต การวิเคราะห์ การออกแบบ และการประยุกต์ (Dynamical Control Systems Analysis, Design and Applications)" สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย 2551 (ISBN 978-974-03-2205-4) (Energy function หรือ Lyapunov-candidate-functions) กล่าวคือ การที่ไม่สามารถหาฟังก์ชันเลียปูนอฟได้นันไม่ได้เป็นการพิสูจน์ได้ว่าระบบนั้นไม่ได้มีเสถียรภาพ แต่การที่สามารถหาฟังก์ชันเลียปูนอฟมาพิสูจน์เสถียรภาพได้เป็นการพิสูจน์ได้ว่าระบบนั้นๆมีเสถียรภาพ ในทางปฏิบัติสำหรับระบบพลวัตทางฟิสิกส์ มักนิยมใช้กฎอนุรักษ์ต่างๆในการสร้างฟังก์ชันพลังงานได้.

ใหม่!!: ทฤษฎีระบบควบคุมและฟังก์ชันเลียปูนอฟ · ดูเพิ่มเติม »

พ.ศ. 2239

ทธศักราช 2239 ใกล้เคียงกั.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2239 · ดูเพิ่มเติม »

พ.ศ. 2331

ทธศักราช 2331 ใกล้เคียงกั.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2331 · ดูเพิ่มเติม »

พ.ศ. 2383

ทธศักราช 2383 ตรงกับปีคริสต์ศักราช 1840.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2383 · ดูเพิ่มเติม »

พ.ศ. 2400

ทธศักราช 2400 ตรงกั.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2400 · ดูเพิ่มเติม »

พ.ศ. 2411

ทธศักราช 2411 ตรงกั.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2411 · ดูเพิ่มเติม »

พ.ศ. 2432

ทธศักราช 2432 ตรงกับปีคริสต์ศักราช 1889 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2432 · ดูเพิ่มเติม »

พ.ศ. 2435

ทธศักราช 2435 ตรงกับปีคริสต์ศักราช 1892 เป็นปีอธิกสุรทินที่วันแรกเป็นวันศุกร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2435 · ดูเพิ่มเติม »

พ.ศ. 2437

ทธศักราช 2437 ตรงกับปีคริสต์ศักราช 1894 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2437 · ดูเพิ่มเติม »

พ.ศ. 2441

ทธศักราช 2441 ตรงกับปีคริสต์ศักราช 1898 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2441 · ดูเพิ่มเติม »

พ.ศ. 2446

ทธศักราช 2446 ตรงกับปีคริสต์ศักราช 1903 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2446 · ดูเพิ่มเติม »

พ.ศ. 2451

ทธศักราช 2451 ตรงกับปีคริสต์ศักราช 1908 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2451 · ดูเพิ่มเติม »

พ.ศ. 2455

ทธศักราช 2455 ตรงกับปีคริสต์ศักราช 1912 เป็นปีอธิกสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2455 · ดูเพิ่มเติม »

พ.ศ. 2461

ทธศักราช 2461 ตรงกับปีคริสต์ศักราช 1918 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน หรือ ปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินจูเลียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2461 · ดูเพิ่มเติม »

พ.ศ. 2463

ทธศักราช 2463 ตรงกับปีคริสต์ศักราช 1920 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2463 · ดูเพิ่มเติม »

พ.ศ. 2465

ทธศักราช 2465 ตรงกับปีคริสต์ศักราช 1922 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2465 · ดูเพิ่มเติม »

พ.ศ. 2470

ทธศักราช 2470 ตรงกับปีคริสต์ศักราช 1927 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2470 · ดูเพิ่มเติม »

พ.ศ. 2473

ทธศักราช 2473 ตรงกับปีคริสต์ศักราช 1930 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2473 · ดูเพิ่มเติม »

พ.ศ. 2475

ทธศักราช 2475 ตรงกั.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2475 · ดูเพิ่มเติม »

พ.ศ. 2477

ทธศักราช 2477 ตรงกับปีคริสต์ศักราช 1934ยวห.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2477 · ดูเพิ่มเติม »

พ.ศ. 2483

ทธศักราช 2483 ตรงกับปีคริสต์ศักราช 1940 เป็นปีอธิกสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2483 · ดูเพิ่มเติม »

พ.ศ. 2484

ทธศักราช 2484 ตรงกับปีคริสต์ศักราช 1941 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2484 · ดูเพิ่มเติม »

พ.ศ. 2491

ทธศักราช 2491 ตรงกับปีคริสต์ศักราช 1948.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2491 · ดูเพิ่มเติม »

พ.ศ. 2492

ทธศักราช 2492 ตรงกับปีคริสต์ศักราช 1949.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2492 · ดูเพิ่มเติม »

พ.ศ. 2495

ทธศักราช 2495 ตรงกับปีคริสต์ศักราช 1952.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2495 · ดูเพิ่มเติม »

พ.ศ. 2500

ทธศักราช 2500 ตรงกับปีคริสต์ศักราช 1957 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคารตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2500 · ดูเพิ่มเติม »

พ.ศ. 2501

ทธศักราช 2501 ตรงกับปีคริสต์ศักราช 1958 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2501 · ดูเพิ่มเติม »

พ.ศ. 2503

ทธศักราช 2503 ตรงกับปีคริสต์ศักราช 1960 เป็นปีอธิกสุรทินที่วันแรกเป็นวันศุกร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2503 · ดูเพิ่มเติม »

พ.ศ. 2507

ทธศักราช 2507 ตรงกับปีคริสต์ศักราช 1964 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2507 · ดูเพิ่มเติม »

พ.ศ. 2519

ทธศักราช 2519 ตรงกับปีคริสต์ศักราช 1976 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2519 · ดูเพิ่มเติม »

พ.ศ. 2526

ทธศักราช 2526 ตรงกับปีคริสต์ศักราช 1983 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2526 · ดูเพิ่มเติม »

พ.ศ. 2527

ทธศักราช 2527 ตรงกับปีคริสต์ศักราช 1984 เป็นปีอธิกสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2527 · ดูเพิ่มเติม »

พ.ศ. 2530

ทธศักราช 2530 ตรงกับปีคริสต์ศักราช 1987 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดีตามปฏิทินเกรกอเรียน.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2530 · ดูเพิ่มเติม »

พ.ศ. 2531

ทธศักราช 2531 ตรงกับปีคริสต์ศักราช 1988 เป็นปีอธิกสุรทินที่วันแรกเป็นวันศุกร์ (ลิงก์ไปยังปฏิทิน) ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: ทฤษฎีระบบควบคุมและพ.ศ. 2531 · ดูเพิ่มเติม »

กรีก

กรีก (Greek) อาจหมายถึง.

ใหม่!!: ทฤษฎีระบบควบคุมและกรีก · ดูเพิ่มเติม »

การสงครามต่อสู้อากาศยาน

องค์การสนธิสัญญาป้องกันแอตแลนติกเหนือนิยามการป้องกันภัยทางอากาศ (air defence) ว่าเป็น "มาตรการใด ๆ ที่ออกแบบมาเพื่อลดหรือทำให้ประสิทธิภาพการปฏิบัติทางอากาศของฝ่ายข้าศึกหมดไป"AAP-6 มาตรการเหล่านี้รวมไปถึงระบบอาวุธภาคพื้นและอากาศ ระบบเซ็นเซอร์ที่สัมพันธ์กัน การจัดการบังคับบัญชาและควบคุม และมาตรการเชิงรับ มาตรการเหล่านี้อาจใช้เพื่อค้มครองกำลังทางทะเล ภาคพื้นหรือทางอากาศไม่ว่าจะอยู่ที่ใดก็ตาม อย่างไรก็ดี สำหรับประเทศส่วนใหญ่แล้ว ความพยายามหลักมีแนวโน้มเป็น "การป้องกันมาตุภูมิ" นาโต้กล่าวถึงการป้องกันภัยทางอากาศจากอากาศ (airborne air defence) ว่า การต่อต้านทางอากาศ (counter-air) และการป้องกันภัยทางอากาศจากเรือ (naval air defence) ว่า การสงครามต่อสู้อากาศยาน การป้องกันภัยขีปนาวุธเป็นส่วนขยายจากการป้องกันภัยทางอากาศ เพราะเป็นการริเริ่มเพื่อดัดแปลงการป้องกันภัยทางอากาศไปยังภารกิจขัดขวางโพรเจกไทล์ใด ๆ ที่บินอยู.

ใหม่!!: ทฤษฎีระบบควบคุมและการสงครามต่อสู้อากาศยาน · ดูเพิ่มเติม »

การป้อนกลับสถานะแบบเต็ม

การป้อนกลับสถานะแบบเต็ม (Full state feedback; FSF) หรือ การวางขั้ว (pole placement) ซึ่งเป็นวิธีการออกแบบตัวควบคุมสำหรับป้อนกลับในทฤษฎีระบบควบคุม เพื่อวางขั้วของระบบวงปิดในเป็นไปในตำแหน่งที่ผู้ออกแบบต้องการในระนาบของผลการแปลงลาปลาซ (s-plane) * โดยการวางขั้วในที่นี้หมายถึงการกำหนดค่าลักษณะเฉพาะของตัวระบบ (ค่าลักษณะเฉพาะเมทริกซ์ A ในสมการแบบจำลองปริภูมิสถานะ) นั้นมีความเกี่ยวพันกับเสถียรภาพของตัวระบบโดยตรงตามทฤษฎีระบบควบคุมเชิงเส้น และวิธีการนี้ใช้ได้กับเฉพาะระบบที่มีสภาพควบคุมได้เท่านั้น ซึ่งนั้นหมายความว่าในที่นี้เราถือว่าเราสามารถวัดค่าสถานะได้ทุกค่าจากตัวตรวจวัด ซึ่งเป็นกรณีที่อุดมคติมากในความเป็นจริง.

ใหม่!!: ทฤษฎีระบบควบคุมและการป้อนกลับสถานะแบบเต็ม · ดูเพิ่มเติม »

การป้อนกลับเชิงลบ

Simple feedback model. The feedback is negative if AB การป้อนกลับเชิงลบ คือการที่ความต่างระหว่างค่าจริงกับค่าอ้างอิงของระบบ ไปส่งผลให้ความต่างนั้นลดขนาดลง การเปลี่ยนแปลงใดๆ ที่ทำให้ค่าจริงเคลื่อนออกจากค่าอ้างอิงจะถูกควบคุม ระบบที่มีดัชนีการป้อนกลับทางลบสูงมีแนวโน้มจะมีความเสถียรมาก.

ใหม่!!: ทฤษฎีระบบควบคุมและการป้อนกลับเชิงลบ · ดูเพิ่มเติม »

การแปลง Z ขั้นสูง

การแปลง Z ขั้นสูง (advanced Z-transform หรือ modified Z-transform) เป็นการแปลง Z ที่ได้ผนวกผลของการหน่วง (delay) ที่ไม่ได้เป็นพหุคูณของอัตราการชักตัวอย่าง (sampling rate) บนโดเมนเวลาของสัญญาณ การแปลง Z ขั้นสูงถูกประยุกต์ใช้กันอย่างมากในการประมวลผลสัญญาณ (signal processing) และการควบคุมดิจิทัล (digital control) ตัวอย่างเช่น การสร้างแบบจำลองการประมวลผลสัญญาณที่รวมผลของการหน่วงเชิงเวลาแบบแม่นยำ เป็นต้น การแปลง Z ขั้นสูง ถูกเสนอโดย จูรี่ (Eliahu Ibraham Jury) นักทฤษฎีระบบควบคุมผู้ได้รับรางวัล Richard E. Bellman Control Heritage Award ประจำปี..

ใหม่!!: ทฤษฎีระบบควบคุมและการแปลง Z ขั้นสูง · ดูเพิ่มเติม »

การแปลงฟูรีเย

การแปลงฟูรีเย (Fourier transform) ตั้งชื่อตาม โฌแซ็ฟ ฟูรีเย หมายถึงการแปลงเชิงปริพันธ์ โดยเป็นการเขียนแทนฟังก์ชันใดๆ ในรูปผลบวก หรือปริพันธ์ ของฐาน ที่เป็นฟังก์ชันรูปคลื่น ไซน์หรือ โคไซน.

ใหม่!!: ทฤษฎีระบบควบคุมและการแปลงฟูรีเย · ดูเพิ่มเติม »

การแปลงลาปลาส

ในทางคณิตศาสตร์ การแปลงลาปลาส (Laplace transform) คือการแปลงเชิงปริพันธ์ที่ใช้กันอย่างกว้างขวาง แสดงอยู่ในรูป \displaystyle\mathcal \left\ การแปลงลาปลาสจะทำให้เกิดความเป็นเชิงเส้นของ f(t) ซึ่งค่า t เป็นอาร์กิวเมนต์จริง(t ≥ 0) จะแปลงไปอยู่ในรูปฟังก์ชัน F(s) โดย s เป็นอาร์กิวเมนต์เชิงซ้อน การแปลงนี้เป็นการทำฟังก์ชันหนึ่งต่อหนึ่งที่สำคัญมากในการใช้งานในทางปฏิบัติ คู่ฟังก์ชัน f(t) กับ F(s) นั้นจับคู่กันในตาราง การแปลงลาปลาสถูกใช้ประโยชน์จากคุณสมบัติที่มันมีความสัมพันธ์และการดำเนินการของฟังกันดังเดิม f(t) น้นสอดคล้องกับความสัมพันธ์กับการดำเนินการในรูปของ F(s) การแปลงลาปลาสถูกประยุกต์ใช้ในงานสำคัญมากมายที่เป็นแนวคิดทางวิทยาศาสตร์ สำหรับชื่อลาปลาสนี้มาจากชื่อของปีแยร์-ซีมง ลาปลาส ผู้ที่นำการแปลงนี้ไปใช้ในทฤษฎีความน่าจะเป็น การแปลงลาปลาสเกี่ยวข้องกับการแปลงฟูรีเย แต่ขณะที่การแปลงฟูรีเยนั้นใช้ในการแก้ฟังก์ชันหรือสัญญาณในโหมดของการสั่นสะเทือน.

ใหม่!!: ทฤษฎีระบบควบคุมและการแปลงลาปลาส · ดูเพิ่มเติม »

กำหนดการพลวัต

ในคณิตศาสตร์ วิทยาการคอมพิวเตอร์ และเศรษฐศาสตร์ กำหนดการพลวัต (dynamic programming) คือกระบวนการในการแก้ไขปัญหาที่ซับซ้อนโดยการแบ่งปัญหาให้เป็นปัญหาย่อยที่สามารถแก้ได้ง่ายกว่า คุณสมบัติพื้นฐานของปัญหาที่จะใช้กำหนดการพลวัตได้คือจะต้องมีปัญหาย่อยที่ทับซ้อนกัน (overlapping subproblem) และโครงสร้างย่อยที่เหมาะสมที่สุด (optimal substructure) ปัญหาที่ใช้กำหนดการพลวัตในการแก้ปัญหาจะใช้เวลาแก้รวดเร็วกว่าการแก้ปัญหาโดยตรงเป็นอย่างมาก หลักสำคัญของกำหนดการพลวัตมาจากการสังเกตว่าในการแก้ปัญหาที่ซับซ้อนนั้น จำเป็นที่จะต้องแก้ปัญหาที่เล็กกว่า (ปัญหาย่อย) และนำคำตอบของปัญหาย่อยเหล่านั้นมารวมกันเป็นคำตอบของปัญหาใหญ่ และในการดำเนินการแก้ปัญหาย่อยนี้ มีหลายปัญหาที่ปัญหาย่อยบางส่วนเหมือนกันทุกประการ ดังนั้นแทนที่จะแก้ไขปัญหาย่อยเหล่านี้ซ้ำอีกรอบ กระบวนการกำหนดการพลวัตจะใช้วิธีแก้ไขปัญหาย่อยเหล่านี้เพียงแค่ครั้งเดียว และเก็บคำตอบไว้ หรือที่เรียกว่าการจำ (memoization; ระวังสะกดเป็น memorization) เมื่อพบปัญหาย่อยดังกล่าวอีกครั้งก็ไม่จำเป็นต้องคำนวณซ้ำใหม่ แต่สามารถเรียกคำตอบที่เก็บไว้มาใช้ได้เลย กระบวนการนี้จะมีประสิทธิภาพดีเป็นอย่างยิ่งเมื่อปัญหาที่จะแก้มีจำนวนปัญหาย่อยที่ทับซ้อนกันเป็นจำนวนมาก ซึ่งหากไม่ได้ใช้กำหนดการพลวัตจะทำให้จำนวนครั้งในการแก้ปัญหาย่อยเติบโตแบบฟังก์ชันเลขชี้กำลัง ส่งผลให้เวลาในการแก้ไขปัญหาเพิ่มขึ้นเป็นอย่างมาก.

ใหม่!!: ทฤษฎีระบบควบคุมและกำหนดการพลวัต · ดูเพิ่มเติม »

มหาวิทยาลัยคาร์เนกีเมลลอน

อาคารเรียนคณะวิทยาการคอมพิวเตอร์ แอนดรูว์ คาร์เนกี ผู้ก่อตั้งวิทยาลัยเทคนิคคาร์เนกี มหาวิทยาลัยคาร์เนกีเมลลอน (Carnegie Mellon University) เป็นมหาวิทยาลัยเอกชน ตั้งอยู่ในเมืองพิตซ์เบิร์ก รัฐเพนซิลเวเนีย ประเทศสหรัฐอเมริกา ก่อตั้งในปี พ.ศ. 2510 โดยสถาบันเทคโนโลยีคาร์เนกี และสถาบันวิจัยอุตสาหกรรมเมลลอน คาร์เนกีเมลลอนรู้จักในชื่อมหาวิทยาลัยชั้นนำแห่งหนึ่งในโลกในด้านวิทยาการคอมพิวเตอร์ วิศวกรรมคอมพิวเตอร์ และการแสดง บุคลากรจากคาร์เนกีเมลลอนได้รับรางวัลโนเบล 13 รางวัล รางวัลทัวริง 8 รางวัล รางวัลเอมมี 7 รางวัล รางวัลออสการ์ 3 รางวัล และ รางวัลโทนี 4 รางวัล.

ใหม่!!: ทฤษฎีระบบควบคุมและมหาวิทยาลัยคาร์เนกีเมลลอน · ดูเพิ่มเติม »

มหาวิทยาลัยโคลัมเบีย

Alma Mater มหาวิทยาลัยโคลัมเบีย (Columbia University in the City of New York) เป็นหนึ่งในมหาวิทยาลัยในกลุ่มไอวีลีก ได้ขึ้นชื่อว่าเป็นหนึ่งในมหาวิทยาลัยที่มีชื่อเสียงของโลกแห่งหนึ่ง เป็นมหาวิทยาลัยแห่งแรกของนครนิวยอร์กและเก่าแก่ที่สุดอันดับที่ห้าของสหรัฐอเมริกา ตั้งอยู่ที่นิวยอร์กซิตี ในรัฐนิวยอร์กในส่วนของชุมชนมอร์นิงไซด์บริเวณส่วนเหนือของเกาะแมนแฮตตัน ก่อตั้งก่อนการประกาศอิสรภาพของประเทศในปี พ.ศ. 2297 (ค.ศ. 1754) ในชื่อของ วิทยาลัยคิงส์ (King's College) โดยได้รับเงินสนับสนุนจากสมเด็จพระเจ้าจอร์จที่ 2 แห่งอังกฤษ ภายหลังสหรัฐอเมริกาปฏิวัติ โคลัมเบียได้รับการสนับสนุนในฐานะเอกลักษณ์ทางปรัชญาของรัฐตั้งแต่ปี 2327 - 2330 ผู้ได้รับรางวัลโนเบล ทั้งที่เป็นศิษย์เก่าและคณาจารย์ของมหาวิทยาลัยทั้งสิ้น 102 ท่าน ถือว่ามากที่สุดอันดับ 2 ของโลก ศิษย์เก่าที่เป็นประธานาธิบดีและนากยกรัฐมนตรีจากทั่วโลกจำนวน 29 ท่าน ศิษย์เก่าที่ดำรงตำแหน่ง CEO ของบริษัทยักษ์ใหญ่ของโลก (Fortune Global 500) จำนวน 45 ท่าน และมีผู้ชนะรางวัลออสการ์ 28 ท่าน นอกจากนี้มหาวิทยาลัยยังเป็นผู้มอบรางวัลพูลิตเซอร์ แก่ผู้ได้รับเกียรติสูงสุดระดับชาติในวงการสิ่งพิมพ์ การบรรลุความสำเร็จทางวรรณกรรม และการประพันธ์เพลงในสาขาวารสารศาสตร์ เมื่อกว่า 100 ปีมาแล้ว ซึ่งวิทยาลัยวิชาการหนังสือพิมพ์ของโคลัมเบียนับได้ว่าโดดเด่นมากที่สุดของโลกในปัจจุบัน last.

ใหม่!!: ทฤษฎีระบบควบคุมและมหาวิทยาลัยโคลัมเบีย · ดูเพิ่มเติม »

ยานพาหนะ

ักรยานยนต์เป็นยานพาหนะชนิดหนึ่ง ยานลอยตัวเป็นพาหนะชนิดหนึ่ง ยานพาหนะ หมายถึงวัตถุหรือสิ่งประดิษฐ์ที่ไม่ใช่สิ่งมีชีวิตซึ่งสามารถเคลื่อนย้ายขนส่งไปได้ ยานพาหนะส่วนใหญ่สร้างขึ้นโดยมนุษย์ อาทิ จักรยาน รถยนต์ จักรยานยนต์ รถไฟ เรือ และเครื่องบิน เป็นต้น หรือไม่ได้สร้างขึ้นโดยมนุษย์แต่สามารถเคลื่อนย้ายขนส่งไปได้ เช่น ภูเขาน้ำแข็งหรือท่อนซุงลอยน้ำ เป็นต้น ยานพาหนะสามารถชักจูงโดยสัตว์ เช่น รถม้าหรือเกวียนเทียมวัว อย่างไรก็ตามตัวสัตว์เองนั้นก็ไม่ได้เรียกว่าเป็นยานพาหนะ ซึ่งรวมไปถึงมนุษย์ที่เคลื่อนย้ายขนส่งมนุษย์ด้วยกันเอง (คนอุ้มคน) ก็ไม่ได้เรียกว่าเป็นยานพาหนะ แต่สัตว์และมนุษย์เหล่านั้นจะเรียกว่าเป็น พาหนะ (ไม่มีคำว่ายาน) ยานพาหนะแบ่งตามการเคลื่อนย้ายได้ 2 ประเภทใหญ่ๆ คือ ยานพาหนะส่วนใหญ่ที่เคลื่อนย้ายขนส่งบนพื้นจะมีล้อ เช่น เกวียน, จักรยาน,รถยนต์ และรถไฟ และส่วนยานพาหนะที่ไม่ได้เคลื่อนที่บนพื้นมักถูกเรียกว่า craft เช่น watercraft, sailcraft, aircraft (อากาศยาน), hovercraft (ยานสะเทินน้ำสะเทินบก) และ spacecraft (ยานอวกาศ).

ใหม่!!: ทฤษฎีระบบควบคุมและยานพาหนะ · ดูเพิ่มเติม »

ระบบอัตโนมัติ

ระบบอัตโนมัติ คือ ระบบใดๆ หรือ กลไก ที่สามารถเริ่มทำงานได้ด้วยตัวเอง โดยทำงานตามโปรแกรมที่วางไว้ เช่นระบบรดน้ำอัตโนมัติ ระบบตอบรับโทรศัพท์อัตโนมัติ ระบบอัตโนมัติ อาจเป็นการใช้ กลไก คอมพิวเตอร์ หรือ อุปกรณ์อิเล็คทรอนิกส์ ควบคุม จะทำงานถูกต้องต่อเมื่อมีการวางแผน หรือ โปรแกรมโดยมนุษย์ทั้งสิ้น.

ใหม่!!: ทฤษฎีระบบควบคุมและระบบอัตโนมัติ · ดูเพิ่มเติม »

ระบบควบคุมพีไอดี

ระบบควบคุมแบบสัดส่วน-ปริพันธ์-อนุพันธ์ (PID controller) เป็นระบบควบคุมแบบป้อนกลับที่ใช้กันอย่างกว้างขวาง ซึ่งค่าที่นำไปใช้ในการคำนวณเป็นค่าความผิดพลาดที่หามาจากความแตกต่างของตัวแปรในกระบวนการและค่าที่ต้องการ ตัวควบคุมจะพยายามลดค่าผิดพลาดให้เหลือน้อยที่สุดด้วยการปรับค่าสัญญาณขาเข้าของกระบวนการ ค่าตัวแปรของ PID ที่ใช้จะปรับเปลี่ยนตามธรรมชาติของระบบ แผนภาพบล็อกของการควบคุมแบบพีไอดี วิธีคำนวณของ PID ขึ้นอยู่กับสามตัวแปรคือค่าสัดส่วน, ปริพันธ์ และ อนุพันธ์ ค่าสัดส่วนกำหนดจากผลของความผิดพลาดในปัจจุบัน, ค่าปริพันธ์กำหนดจากผลบนพื้นฐานของผลรวมความผิดพลาดที่ซึ่งพึ่งผ่านพ้นไป, และค่าอนุพันธ์กำหนดจากผลบนพื้นฐานของอัตราการเปลี่ยนแปลงของค่าความผิดพลาด น้ำหนักที่เกิดจากการรวมกันของทั้งสามนี้จะใช้ในการปรับกระบวนการ โดยการปรับค่าคงที่ใน PID ตัวควบคุมสามารถปรับรูปแบบการควบคุมให้เหมาะกับที่กระบวนการต้องการได้ การตอบสนองของตัวควบคุมจะอยู่ในรูปของการไหวตัวของตัวควบคุมจนถึงค่าความผิดพลาด ค่าโอเวอร์ชูต (overshoots) และ ค่าแกว่งของระบบ (oscillation) วิธี PID ไม่รับประกันได้ว่าจะเป็นระบบควบคุมที่เหมาะสมที่สุดหรือสามารถทำให้กระบวนการมีความเสถียรแน่นอน การประยุกต์ใช้งานบางครั้งอาจใช้เพียงหนึ่งถึงสองรูปแบบ ขึ้นอยู่กับกระบวนการเป็นสำคัญ พีไอดีบางครั้งจะถูกเรียกว่าการควบคุมแบบ PI, PD, P หรือ I ขึ้นอยู่กับว่าใช้รูปแบบใดบ้าง.

ใหม่!!: ทฤษฎีระบบควบคุมและระบบควบคุมพีไอดี · ดูเพิ่มเติม »

รัฐเท็กซัส

ท็กซัส (Texas) เป็นรัฐที่อยู่ทางใต้และตะวันตกเฉียงใต้ของสหรัฐอเมริกา มีพื้นที่ทั้งหมด 695,622 ตารางกิโลเมตร และมีประชากร 22.8 ล้านคน เท็กซัสเป็นรัฐที่ใหญ่เป็นอันดับสองทั้งพื้นที่และประชากร รวมเข้ากับสหรัฐอเมริกาเป็นลำดับที่ 28 ในปี พ.ศ. 2388 อักษรย่อของที่ทำการไปรษณีย์สหรัฐคือ TX.

ใหม่!!: ทฤษฎีระบบควบคุมและรัฐเท็กซัส · ดูเพิ่มเติม »

รูดอล์ฟ อีมิว คาลมาน

รูดอล์ฟ (รูดี้) อีมิว คาลมาน (Rudolf (Rudy) Emil Kálmán; เกิด 19 พฤษภาคม ค.ศ. 1930 – ปัจจุบัน) เป็นวิศวกรไฟฟ้า นักทฤษฎีระบบเชิงคณิตศาสตร์ และผู้พัฒนาตัวกรองคาลมาน (Kalman filter) และเป็นผู้นำเสนอแบบจำลองปริภูมิสถานะ และนำเสนอแนวคิดเรื่องสภาพควบคุมได้และสภาพสังเกตได้ มาใช้ในการสร้างแบบจำลองทางคณิตศาสตร์ของระบบ อันเป็นการนำองค์ความรู้ของทฤษฎีระบบควบคุมไปสู่ยุคใหม่ ที่เรียกว่า ทฤษฎีระบบควบคุมสมัยใหม่ (modern control theory).

ใหม่!!: ทฤษฎีระบบควบคุมและรูดอล์ฟ อีมิว คาลมาน · ดูเพิ่มเติม »

รถยนต์

องรถยนต์และรถบรรทุกยุคใหม่กำลังขับอยู่บนทางด่วนสายหนึ่ง รถสปอร์ตยุคใหม่ รถยนต์หมายถึง ยานพาหนะทางบกที่ขับเคลื่อนที่ด้วยพลังงานอย่างใดอย่างหนึ่งและถ่ายทอดลงสู่ล้อ เพื่อพาผู้ขับ ผู้โดยสาร หรือสิ่งของ ไปยังจุดหมายปลายทาง ปัจจุบัน รถยนต์โดยส่วนมากได้รับการออกแบบอย่างซับซ้อนในทางวิศวกรรม และหลากหลายประเภท ตามความเหมาะสมของการใช้งาน หรือใช้สำหรับงานเฉพาะกิจ ทั้งนี้เว้นแต่รถไฟ.

ใหม่!!: ทฤษฎีระบบควบคุมและรถยนต์ · ดูเพิ่มเติม »

วิศวกรรมศาสตร์

การจะออกแบบสร้างกังหันลมในทะเลต้องใช้ความรู้ทางวิศวกรรมในหลายๆสาขาประกอบเข้าด้วยกัน วิศวกรรมอาจจะหมายถึงพระวิศวกรรม วิศวกรรมศาสตร์ เป็นสาขาความรู้และวิชาชีพเกี่ยวกับการประยุกต์ใช้ประยุกตวิทยา (เทคโนโลยี), วิทยาศาสตร์และความรู้ทางคณิตศาสตร์เพื่อการใช้ประโยชน์จากกฎทางธรรมชาติและทรัพยากรทางกายภาพให้เกิดประโยชน์สูงสุด, เพื่อช่วยในการออกแบบและประยุกต์ใช้ วัสดุ, โครงสร้าง, เครื่องจักร, เครื่องมือ, ระบบ และ กระบวนการ เพื่อการตอบสนองต่อจุดประสงค์ที่ต้องการได้อย่างปลอดภัยและเชื่อถือได้ American Engineers' Council for Professional Development (ECPD, ซึ่งต่อมาคือ ABET) ได้ให้นิยามเกี่ยวกับวิศวกรรมศาสตร์เอาไว้ดังนี้.

ใหม่!!: ทฤษฎีระบบควบคุมและวิศวกรรมศาสตร์ · ดูเพิ่มเติม »

วิศวกรรมแมคคาทรอนิกส์และหุ่นยนต์

วิศวกรรมเมคคาทรอนิกส์ เป็นสหวิทยาการอันประกอบด้วยองค์ความรู้หลากหลายสาขา วิศวกรรมเมคคาทรอนิกส์ (Mechatronics Engineering) เป็นสหวิทยาการเชิงประยุกต์ ที่นำวิชาพื้นฐานหลักว่าด้วย วิศวกรรมเครื่องกล วิศวกรรมอิเล็กทรอนิกส์ วิศวกรรมการควบคุมอัตโนมัติ วิทยาการคอมพิวเตอร์ และเทคโนโลยีสารสนเทศ มาบูรณาการเข้าด้วยกันเพื่อการออกแบบและสร้างผลิตชิ้นส่วนและผลิตภัณฑ์ เมื่อ เทคโนโลยี ก้าวหน้าขึ้น, สาขาย่อยของ วิศวกรรม ก็ขยายและพัฒนk จุดประสงค์ของแมคคาทรอนิกส์จึงเป็นกระบวนการออกแบบที่รวมเป็นหนึ่งเดียวของสาขาย่อยเหล่านี้ แต่เดิม แมคคาทรอนิกส์ได้รวมแค่แมคคานิกส์และอิเล็กทรอนิกส์เท่านั้น ดังนั้นคำว่าแมคคาทรอนิกส์จึงเป็นคำผสมของ แมคคา และ ทรอนิกส์; อย่างไรก็ตาม เมื่อระบบด้านเทคนิคมีความซับซ้อนมากยิ่งขึ้นเรื่อย ๆ คำ ๆ นี้จึงถูกขยายความให้รวมถึงพื้นที่ทางเทคนิคมากยิ่งขึ้น คำว่า "แมคคาทรอนิกส์" มีจุดเริ่มต้นในภาษา Japanese-English และถูกริเริ่มโดยนาย Tetsuro Mori, วิศวกรจากบริษัท Yaskawa Electric Corporation คำนี้ถูกลงทะเบียนเป็น เครื่องหมายการค้า โดยบริษัทในญี่ปุ่นด้วยทะเบียนหมายเลข "46-32714" ในปี 1971 อย่างไรก็ตาม หลังจากนั้นบริษัทได้สละสิทธ์การใช้ในสาธารณะ คำนี้จึงขยายออกไปทั่วโลก ในปัจจุบันคำนี้ถูกแปลเป็นภาษาอื่นและได้รับการพิจารณาว่าเป็นคำสำคัญในอุตสาหกรรม มาตรฐานของฝรั่งเศส NF E 01-010 ให้คำนิยามต่อไปนี้: “ดำเนินการในจุดประสงค์เพื่อบูรณาการอย่างเสริมประสานกันของทฤษฎีกลไก, อิเล็กทรอนิกส์, ควบคุม, และวิทยาการคอมพิวเตอร์ภายในการออกแบบและการผลิตผลิตภัณฑ์, เพื่อที่จะปรับปรุงและ/หรือให้ประโยชน์สูงสุดของหน้าที่การทำงานของมัน" คนจำนวนมากปฏิบัติต่อ "แมคคาทรอนิกส์" เหมือนกับเป็นคำศัพท์เฉพาะที่ทันสมัยที่พ้องกับคำว่า "วิศวกรรมไฟฟ้าเครื่องกล" หุ่นยนต์เป็นอีกหนึ่งตัวอย่างของการประยุกต์ใช้แมคคาทรอนิกส์ ตัวอย่างผลงานที่สร้างจากสาขาวิชานี้ได้แก่ “ระบบอัจฉริยะ” (Intelligent Systems) ซึ่งมีกลไกที่สามารถทำงานด้วยตัวเองโดยอัตโนมัติ ตามความต้องการที่กำหนดไว้ได้อย่างรวดเร็ว ถูกต้องและแม่นยำ ตัวอย่างของระบบที่มีระบบเมคคาทรอนิกส์เป็นส่วนประกอบ เช่น หุ่นยนต์อุตสาหกรรม หุ่นยนต์กู้ภัย และอาคารอัจฉริยะ เป็นต้น.

ใหม่!!: ทฤษฎีระบบควบคุมและวิศวกรรมแมคคาทรอนิกส์และหุ่นยนต์ · ดูเพิ่มเติม »

วิทยาการหุ่นยนต์

ว์ มือหุ่นยนต์ วิทยาการหุ่นยนต์ เป็นศาสตร์ทางวิทยาศาสตร์และเทคโนโลยีที่ศึกษาเกี่ยวกับการออกแบบ การผลิต และการประยุกต์ใช้งานหุ่นยนต์ วิทยาการหุ่นยนต์เกี่ยวข้องกับ อิเล็กทรอนิกส์, กลศาสตร์, และ ซอฟต์แวร.

ใหม่!!: ทฤษฎีระบบควบคุมและวิทยาการหุ่นยนต์ · ดูเพิ่มเติม »

สมการเชิงอนุพันธ์

มการเชิงอนุพันธ์ (Differential equation) หมายถึง สมการที่มีอนุพันธ์ต่างๆของฟังก์ชันที่ไม่ทราบค่า (unknown function) หนึ่งฟังก์ชันหรือมากกว่าหนึ่งฟังก์ชันปรากฏอยู่ คำว่า Differential equation (aequatio differentialis) เริ่มใช้โดย ไลน์นิตซ์ ในปี..

ใหม่!!: ทฤษฎีระบบควบคุมและสมการเชิงอนุพันธ์ · ดูเพิ่มเติม »

สมการเลียปูนอฟ

ในทฤษฎีระบบควบคุม สมการเลียปูนอฟไม่ต่อเนื่อง (discrete Lyapunov equation) คือสมการในรูปแบบ โดยที Q คือ เมทริกซ์เอร์มีเชียน (Hermitian matrix) และ A^H คือ เมทริกซ์สลับเปลี่ยนสังยุค (conjugate transpose) ของ A ในขณะที่ สมการเลียปูนอฟต่อเนื่อง (continuous Lyapunov equation) คือสมการในรูปแบบ สมการเลียปูนอฟมักถูกใช้ในหลายสาขาของทฤษฎีระบบควบคุมเช่น ในการวิเคราะห์เสถียรภาพ และการควบคุมแบบเหมาะสมที่สุด (optimal control) โดยชื่อของสมการนี้ตั้งตามชื่อของ อเล็กซานเดอร์ มิคาอิลโลวิช เลียปูนอฟ นักคณิตศาสตร์ชาวรัสเซีย (6 มิถุนายน ค.ศ. 1857 – 3 พฤศจิกายน ค.ศ. 1918).

ใหม่!!: ทฤษฎีระบบควบคุมและสมการเลียปูนอฟ · ดูเพิ่มเติม »

สหภาพโซเวียต

หภาพสาธารณรัฐสังคมนิยมโซเวียต (Сою́з Сове́тских Социалисти́ческих Респу́блик - CCCP; Union of Soviet Socialist Republics - USSR) หรือย่อเป็น สหภาพโซเวียต (Soviet Union) เป็นประเทศอภิมหาอำนาจในอดีตบนทวีปยูเรเชีย ระหว่างปี..

ใหม่!!: ทฤษฎีระบบควบคุมและสหภาพโซเวียต · ดูเพิ่มเติม »

สถาบันเทคโนโลยีแมสซาชูเซตส์

ันเทคโนโลยีแมสซาชูเซตส์ (Massachusetts Institute of Technology, ตัวย่อ เอ็มไอที, เรียกโดยชุมชน MIT ว่า "the Institute แปลว่า สถาบัน") เป็นมหาวิทยาลัยเอกชนในเมืองเคมบริดจ์ รัฐแมสซาชูเซตส์ สหรัฐอเมริกา ที่มีชื่อเสียงมานานในเรื่องงานวิจัยและการศึกษาในสาขาเคมี ฟิสิกส์ และวิศวกรรมศาสตร์สาขาต่าง ๆ แล้วเริ่มมีชื่อเสียงมากขึ้นต่อ ๆ มาในสาขาชีววิทยา เศรษฐศาสตร์ ภาษาศาสตร์ และการจัดการ MIT ตั้งขึ้นในปี..

ใหม่!!: ทฤษฎีระบบควบคุมและสถาบันเทคโนโลยีแมสซาชูเซตส์ · ดูเพิ่มเติม »

สงครามโลกครั้งที่สอง

งครามโลกครั้งที่สอง (World War II หรือ Second World Warคำว่าสงครามโลกครั้งที่สองในภาษาอังกฤษนั้น ในเอกสารประวัติศาสตร์อย่างเป็นทางการของสหราชอาณาจักรและชาติตะวันตกใช้คำว่า "Second World War" ส่วนในสหรัฐใช้คำว่า "World War II" (ย่อเป็น "WWII" หรือ "WW2") ซึ่งเอกสารประวัติศาสตร์อย่างเป็นทางการในประเทศส่วนใหญ่มักจะใช้ภาษาอังกฤษว่า "Second World War" (เช่น Zweiter Weltkrieg ในภาษาเยอรมัน; Segunda Guerra mundial ในภาษาสเปน; Seconde Guerre mondiale ในภาษาฝรั่งเศส) แต่ทั้งสองคำนี้โดยทั่วไปแล้วสามารถใช้แทนกันได้; แม้ในประวัติศาสตร์การทหารอย่างเป็นทางการ คำว่า "Second World War" ถูกสร้างขึ้นโดย แฟรงก์ บี. เคลล็อก รัฐมนตรีว่าการกระทรวงการต่างประเทศสหรัฐอเมริกา; ส่วนคำว่า "World War II" พบใช้เป็นครั้งแรกในนิตยสาร ไทมส์ เมื่อวันที่ 12 มิถุนายน ค.ศ. 1939 ซึ่งเป็นผู้ประดิษฐ์คำว่า "World War I" ขึ้นในอีกสามเดือนต่อมา; มักย่อเป็น WWII หรือ WW2) เป็นสงครามทั่วโลกกินเวลาตั้งแต่ปี 1939 ถึง 1945 ประเทศส่วนใหญ่ในโลกมีส่วนเกี่ยวข้อง รวมทั้งรัฐมหาอำนาจทั้งหมด แบ่งเป็นพันธมิตรทางทหารคู่สงครามสองฝ่าย คือ ฝ่ายสัมพันธมิตรและฝ่ายอักษะ เป็นสงครามที่กว้างขวางที่สุดในประวัติศาสตร์ มีทหารกว่า 100 ล้านนายจากกว่า 30 ประเทศเข้าร่วมโดยตรง สงครามนี้มีลักษณะเป็น "สงครามเบ็ดเสร็จ" คือ ประเทศผู้ร่วมสงครามหลักทุ่มขีดความสามารถทางเศรษฐกิจ อุตสาหกรรมและวิทยาศาสตร์ทั้งหมดเพื่อความพยายามของสงคราม โดยลบเส้นแบ่งระหว่างทรัพยากรของพลเรือนและทหาร ประเมินกันว่าสงครามมีมูลค่าราว 1 ล้านล้านดอลลาร์สหรัฐ ประเมินกันว่ามีผู้เสียชีวิตระหว่าง 50 ถึง 85 ล้านคน ด้วยประการทั้งปวง สงครามโลกครั้งที่สองจึงนับว่าเป็นสงครามขนาดใหญ่ที่สุด ใช้เงินทุนมากที่สุด และมีผู้เสียชีวิตสูงสุดในประวัติศาสตร์มนุษยชาติ จักรวรรดิญี่ปุ่นซึ่งมีเป้าหมายครอบงำทวีปเอเชียและแปซิฟิกและทำสงครามกับจีนมาตั้งแต่ปี 1937 แล้ว แต่โดยทั่วไปถือว่าสงครามโลกครั้งที่สองเริ่มตั้งแต่การบุกครองโปแลนด์ของเยอรมนีในวันที่ 1 กันยายน 1939 นำไปสู่การประกาศสงครามต่อเยอรมนีของประเทศฝรั่งเศสและสหราชอาณาจักร ตั้งแต่ปลายปี 1939 ถึงต้นปี 1941 ในการทัพและสนธิสัญญาต่าง ๆ ประเทศเยอรมนีพิชิตหรือควบคุมยุโรปภาคพื้นทวีปได้ส่วนใหญ่ และตั้งพันธมิตรอักษะกับอิตาลีและญี่ปุ่น ภายใต้สนธิสัญญาโมโลตอฟ–ริบเบนทรอพเมื่อเดือนสิงหาคม 1939 เยอรมนีและสหภาพโซเวียตแบ่งแลผนวกดินแดนประเทศเพื่อนบ้านยุโรปของตน ได้แก่ โปแลนด์ ฟินแลนด์ โรมาเนียและรัฐบอลติก สงครามดำเนินต่อส่วนใหญ่ระหว่างชาติฝ่ายอักษะยุโรปและแนวร่วมสหราชอาณาจักรและเครือจักรภพบริติช โดยมีการทัพอย่างการทัพแอฟริกาเหนือและแอฟริกาตะวันออก ยุทธการที่บริเตนซึ่งเป็นการสู้รบทางอากาศ การทัพทิ้งระเบิดเดอะบลิตซ์ การทัพบอลข่าน ตลอดจนยุทธการที่แอตแลนติกที่ยืดเยื้อ ในเดือนมิถุนายน 1941 ชาติอักษะยุโรปบุกครองสหภาพโซเวียต เปิดฉากเขตสงครามภาคพื้นดินที่ใหญ่ที่สุดในประวัติศาสตร์ ซึ่งทำให้กำลังทหารสำคัญของฝ่ายอักษะตกอยู่ในสงครามบั่นทอนกำลัง ในเดือนธันวาคม 1941 ญี่ปุ่นโจมตีสหรัฐและอาณานิคมยุโรปในมหาสมุทรแปซิฟิก และพิชิตมหาสมุทรแปซิฟิกตะวันตกส่วนมากได้อย่างรวดเร็ว การรุกของฝ่ายอักษะยุติลงในปี 1942 หลังญี่ปุ่นปราชัยในยุทธนาวีที่มิดเวย์ใกล้กับฮาวายที่สำคัญ และเยอรมนีปราชัยในแอฟริกาเหนือและจากนั้นที่สตาลินกราดในสหภาพโซเวียต ในปี 1943 จากความปราชัยของเยอรมนีติด ๆ กันที่เคิสก์ในยุโรปตะวันออก การบุกครองอิตาลีของฝ่ายสัมพันธมิตรซึ่งนำให้อิตาลียอมจำนน จนถึงชัยของฝ่ายสัมพันธมิตรในมหาสมุทรแปซิฟิก ฝ่ายอักษะเสียการริเริ่มและต้องล่าถอยทางยุทธศาสตร์ในทุกแนวรบ ในปี 1944 ฝ่ายสัมพันธมิตรบุกครองฝรั่งเศสในการยึดครองของเยอรมนี ขณะเดียวกันกับที่สหภาพโซเวียตยึดดินแดนที่เสียไปทั้งหมดคืนและบุกครองเยอรมนีและพันธมิตร ระหว่างปี 1944 และ 1945 ญี่ปุ่นปราชัยสำคัญในทวีปเอเชียในภาคกลางและภาคใต้ของจีนและพม่า ขณะที่ฝ่ายสัมพันธมิตรก่อความเสียหายต่อกองทัพเรือญี่ปุ่นและยึดหมู่เกาะแปซิฟิกตะวันตกที่สำคัญ สงครามในยุโรปยุติลงหลังกองทัพแดงยึดกรุงเบอร์ลินได้ และการยอมจำนนอย่างไม่มีเงื่อนไขของเยอรมนีเมื่อวันที่ 8 สิงหาคม 1945 แม้จะถูกโดดเดี่ยวและตกอยู่ในสภาพเสียเปรียบอย่างยิ่ง ญี่ปุ่นยังปฏิเสธที่จะยอมจำนน กระทั่งมีการทิ้งระเบิดนิวเคลียร์สองลูกถล่มญี่ปุ่น และการบุกครองแมนจูเรีย จึงได้นำไปสู่การยอมจำนนอย่างเป็นทางการของญี่ปุ่นเมื่อวันที่ 2 กันยายน 1945 สงครามยุติลงด้วยชัยชนะของฝ่ายสัมพันธมิตร ผลของสงครามได้เปลี่ยนแปลงการวางแนวทางการเมืองและโครงสร้างสังคมของโลก สหประชาชาติถูกสถาปนาขึ้น เพื่อส่งเสริมความร่วมมือระหว่างประเทศและเพื่อป้องกันความขัดแย้งในอนาคต สหรัฐอเมริกากับสหภาพโซเวียตก้าวเป็นอภิมหาอำนาจของโลกอันเป็นคู่ปรปักษ์กัน นำไปสู่ความขัดแย้งบนเวทีแห่งสงครามเย็น ซึ่งได้ดำเนินต่อมาอีก 46 ปีหลังสงคราม ขณะเดียวกัน การยอมรับหลักการการกำหนดการปกครองด้วยตนเอง เร่งให้เกิดการเคลื่อนไหวเพื่อเรียกร้องเอกราชในทวีปเอเชียและทวีปแอฟริกา พร้อม ๆ กับที่หลายประเทศได้มุ่งหน้าฟื้นฟูเศรษฐกิจซึ่งอุตสาหกรรมได้รับความเสียหายระหว่างสงคราม และบูรณาการทางการเมืองได้เกิดขึ้นทั่วโลกในความพยายามที่จะรักษาเสถียรภาพความสัมพันธ์หลังสงคราม.

ใหม่!!: ทฤษฎีระบบควบคุมและสงครามโลกครั้งที่สอง · ดูเพิ่มเติม »

หุ่นยนต์

อาซีโม คือ android หุ่นยนต์เลียนแบบมนุษย์ของบริษัทฮอนด้า ชนิดหนึ่งที่มีลักษณะโครงสร้างและรูปร่างแตกต่างกันและคล้ายคลึงกับมนุษย์ หุ่นยนต์ในแต่ละประเภทจะมีหน้าที่การทำงานในด้านต่าง ๆ ตามการควบคุมโดยตรงของมนุษย์ การควบคุมระบบต่าง ๆ ในการสั่งงานระหว่างหุ่นยนต์และมนุษย์ สามารถทำได้โดยทางอ้อมและอัตโนมัติ โดยทั่วไปหุ่นยนต์ถูกสร้างขึ้นเพื่อสำหรับงานที่มีความยากลำบากเช่น งานสำรวจในพื้นที่บริเวณแคบหรืองานสำรวจดวงจันทร์ดาวเคราะห์ที่ไม่มีสิ่งมีชีวิต ปัจจุบันเทคโนโลยีของหุ่นยนต์เจริญก้าวหน้าอย่างรวดเร็ว เริ่มเข้ามามีบทบาทกับชีวิตของมนุษย์ในด้านต่าง ๆ เช่น ด้านอุตสาหกรรมการผลิต แตกต่างจากเมื่อก่อนที่หุ่นยนต์มักถูกนำไปใช้ ในงานอุตสาหกรรมเป็นส่วนใหญ่ ปัจจุบันมีการนำหุ่นยนต์มาใช้งานมากขึ้น เช่น หุ่นยนต์ที่ใช้ในทางการแพทย์ หุ่นยนต์สำหรับงานสำรวจ หุ่นยนต์ที่ใช้งานในอวกาศ หรือแม้แต่หุ่นยนต์ที่ถูกสร้างขึ้นเพื่อเป็นเครื่องเล่นของมนุษย์ จนกระทั่งในปัจจุบันนี้ได้มีการพัฒนาให้หุ่นยนต์นั้นมีลักษณะที่คล้ายมนุษย์ เพื่อให้อาศัยอยู่ร่วมกันกับมนุษย์ ให้ได้ในชีวิตประจำวันได้ หุ่นยนต์ถูกแบ่งออกเป็น 2 ประเภทตามลักษณะการใช้งาน คือ 1.หุ่นยนต์ชนิดที่ติดตั้งอยู่กับที่ (fixed robot) เป็นหุ่นยนต์ที่ไม่สามารถเคลื่อนที่ไปไหนได้ด้วยตัวเอง มีลักษณะเป็นแขนกล สามารถขยับและเคลื่อนไหวได้เฉพาะแต่ละข้อต่อ ภายในตัวเองเท่านั้น มักนำไปใช้ในโรงงานอุตสาหกรรม เช่นโรงงานประกอบรถยนต์ 2.

ใหม่!!: ทฤษฎีระบบควบคุมและหุ่นยนต์ · ดูเพิ่มเติม »

หุ่นยนต์ฮิวแมนนอยด์

อาซิโม ของฮอนด้า ตัวอย่างหนึ่งของหุ่นยนต์ฮิวแมนนอยด์ หุ่นยนต์ฮิวแมนนอยด์ (อังกฤษ: humanoid robot) คือหุ่นยนต์ที่ออกแบบขึ้นมาโดยมีพื้นฐานมาจากร่างกายมนุษย์ โดยทั่วไปแล้วหุ่นยนต์ฮิวแมนนอยด์มีลำตัวพร้อมหัว สองแขน และสองขา แม้หุ่นยนต์ฮิวแมนนอยด์บางรูปแบบจะจำลองเฉพาะบางส่วนของร่างกายเท่านั้น ตัวอย่างเช่น ตัวแต่เอวขึ้นไป หุ่นยนต์ฮิวแมนนอยด์บางตัวยังอาจมี 'ใบหน้า' พร้อม 'ตา' และ 'ปาก' อีกด้วย แอนดรอยด์ (android) คือหุ่นยนต์ฮิวแมนนอยด์ที่สร้างเลียนแบบมนุษย์เพศชาย และ gynoid คือหุ่นยนต์ฮิวแมนนอยด์ที่สร้างเลียนแบบมนุษย์เพศหญิง หุ่นยนต์ฮิวแมนนอยด์เป็นหุ่นยนต์อัตโนมัติ เนื่องจากมันสามารถปรับตัวเข้ากับการเปลี่ยนแปลงของสภาพแวดล้อมหรือตัวมันเอง และยังคงทำงานต่อเพื่อบรรลุเป้าหมาย สิ่งนี้เป็นข้อแตกต่างหลักระหว่างฮิวแมนนอยด์และหุ่นยนต์ชนิดอื่น เช่นหุ่นยนต์อุตสาหกรรม ที่ใช้ปฏิบัติภารกิจในสภาพแวดล้อมที่มีโครงสร้างชัดเจนมาก ในบริบทนี้ ความสามารถของหุ่นยนต์ฮิวแมนนอยด์อาจรวมถึง แต่ไม่จำกัดแค่สิ่งเหล่านี้.

ใหม่!!: ทฤษฎีระบบควบคุมและหุ่นยนต์ฮิวแมนนอยด์ · ดูเพิ่มเติม »

อันเดรย์ คอลโมโกรอฟ

อันเดรย์ นิโคลาเยวิช คอลโมโกรอฟ อันเดรย์ นิโคลาเยวิช คอลโมโกรอฟ (รัสเซีย: Андре́й Никола́евич Колмого́ров; อังกฤษ: Andrey Nikolaevich Kolmogorov), เกิดเมื่อวันที่ 25 เมษายน ค.ศ. 1903 เสียชีวิต 20 ตุลาคม ค.ศ. 1987, เป็นนักคณิตศาสตร์ชาวรัสเซีย ยักษ์ใหญ่ในวงการคณิตศาสตร์ในคริสต์ศตวรรษที่ 20 โดยมีผลงานโดดเด่นมากในงาน ทฤษฎีความน่าจะเป็นและทอพอโลยี.

ใหม่!!: ทฤษฎีระบบควบคุมและอันเดรย์ คอลโมโกรอฟ · ดูเพิ่มเติม »

อาซิโม

อาซิโม (ASIMO) คือหุ่นยนต์ฮิวแมนนอยด์ หรือหุ่นยนต์เลียนแบบมนุษย์ของบริษัทฮอนด้า ประเทศญี่ปุ่น สร้างเสร็จเมื่อวันที่ 31 ตุลาคม พ.ศ. 2543 พัฒนาโดยทีมวิศวกรเยอรมนี โดยพัฒนาจากหุ่นยนต์ทดลองและหุ่นยนต์ต้นแบบจนทำให้มีขนาดเล็กและน้ำหนักเบา เทคโนโลยี i-WALK ช่วยให้อาซิโมสามารถเดินและวิ่งได้อย่างอิสรเสรี ขึ้นบันไดและเต้นรำได้ มีระบบบันทึกเสียงเพื่อตอบสนองคำสั่งของมนุษย์ สามารถจดจำใบหน้าคู่สนทนาได้อย่างแม่นยำ ซึ่งคุณสมบัติดังกล่าวถูกสร้างขึ้นเพื่อให้อาซิโมมีขีดความสามารถรอบด้าน และรองรับความต้องการของมนุษย์ในอนาคต บริษัทฮอนด้าได้ให้คำนิยามของชื่อ ASIMO ว่าย่อมาจาก Advanced Step in Innovative Mobility หมายถึง นวัตกรรมแห่งการเคลื่อนที่อันล้ำสมัย ซึ่งไม่ได้เกี่ยวข้องกับชื่อสกุลของไอแซค อสิมอฟ (アジモフ) นักวิทยาศาสตร์ด้านหุ่นยนต์ชื่อดังแต่อย่างใด แม้ว่าชื่อในภาษาญี่ปุ่นของอาซิโมและอสิมอฟจะสะกดใกล้เคียงกันมาก นอกจากนี้ยังไปพ้องเสียงกับคำว่า อะชิโมะ ที่แปลว่า "มีขาด้วย" อาซิโมได้รับการออกแบบให้สามารถใช้งานได้อย่างง่ายดาย ไม่ว่าจะเป็นการควบคุมด้วยคอมพิวเตอร์แบบตั้งโต๊ะหรือการควบคุมระยะไกล ทีมวิศวกรเริ่มต้นคิดค้น พัฒนาศึกษาวิจัยหุ่นยนต์ฮิวแมนนอยด์ตั้งแต่ปี พ.ศ. 2529 โดยเริ่มจากการสร้างหุ่นยนต์ต้นแบบ พีทู (P2) ในปี พ.ศ. 2539 และต่อด้วยหุ่นยนต์ต้นแบบ พีทรี (P3) ในปี พ.ศ. 2540 จนกระทั่งมาถึงหุ่นยนต์อาซิโมในปี พ.ศ. 2543 ปัจจุบันฮอนด้าได้เปิดโอกาสให้เช่าอาซิโมเพื่อใช้งานในประเทศญี่ปุ่น.

ใหม่!!: ทฤษฎีระบบควบคุมและอาซิโม · ดูเพิ่มเติม »

อนุพันธ์

กราฟของฟังก์ชันแสดงด้วยเส้นสีดำ และเส้นสัมผัสแสดงด้วยเส้นสีแดง ความชันของเส้นสัมผัสมีค่าเท่ากับอนุพันธ์ของฟังก์ชันที่จุดสีแดง ในวิชาคณิตศาสตร์ อนุพันธ์ของฟังก์ชันของตัวแปรจริงเป็นการวัดการเปลี่ยนแปลงของค่าของฟังก์ชันเทียบกับการเปลี่ยนแปลงของอาร์กิวเมนต์ (ค่าที่ป้อนเข้าหรือตัวแปรต้น) อนุพันธ์เป็นเครื่องมือพื้นฐานของแคลคูลัส ตัวอย่างเช่น อนุพันธ์ของตำแหน่งของวัตถุที่กำลังเคลื่อนที่เทียบกับเวลา คือ ความเร็วของวัตถุนั้น ซึ่งเป็นการวัดว่าตำแหน่งของวัตถุมีการเปลี่ยนแปลงอย่างรวดเร็วเพียงใดเมื่อเวลาผ่านไป อนุพันธ์ของฟังก์ชันตัวแปรเดียวที่ตัวแปรต้นใด ๆ คือความชันของเส้นสัมผัสที่สัมผัสกับกราฟของฟังก์ชันที่จุดนั้น เส้นสัมผัสคือการประมาณเชิงเส้นของฟังก์ชันที่ดีที่สุดใกล้กับตัวแปรต้นนั้น ด้วยเหตุนี้ อนุพันธ์มักอธิบายได้ว่าเป็น "อัตราการเปลี่ยนแปลงขณะใดขณะหนึ่ง" ซึ่งก็คืออัตราส่วนของการเปลี่ยนแปลงขณะใดขณะหนึ่งของตัวแปรตามต่อตัวแปรต้นหรือตัวแปรอิสระ กระบวนการหาอนุพันธ์เรียกว่า การหาอนุพันธ์ (differentiation หรือ การดิฟเฟอเรนชิเอต) ส่วนกระบวนการที่กลับกันเรียกว่า การหาปฏิยานุพันธ์ (antidifferentiation) ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่าการหาปฏิยานุพันธ์เหมือนกันกับการหาปริพันธ์ (integration หรือ การอินทิเกรต) การหาอนุพันธ์และการหาปริพันธ์เป็นตัวดำเนินการพื้นฐานในแคลคูลัสตัวแปรเดียว อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์).

ใหม่!!: ทฤษฎีระบบควบคุมและอนุพันธ์ · ดูเพิ่มเติม »

อเล็กซานเดอร์ เลียปูนอฟ

อเล็กซานเดอร์ มิคาอิลโลวิช เลียปูนอฟ (Алекса́ндр Миха́йлович Ляпуно́в, Aleksandr Mikhailovich Lyapunov; 6 มิถุนายน ค.ศ. 1857 – 3 พฤศจิกายน ค.ศ. 1918) เป็นนักคณิตศาสตร์ ช่างเครื่องกล และนักฟิสิกส์ชาวรัสเซีย นามสกุลของเขาอาจเขียนเป็นอักษรโรมันได้หลายแบบคือ Ljapunov, Liapunov หรือ Ljapunow เลียปูนอฟเป็นที่รู้จักการงานพัฒนาทฤษฎีเสถียรภาพของระบบพลศาสตร์ และการมีส่วนร่วมมากมายในสาขาฟิสิกส์เชิงคณิตศาสตร์และทฤษฎีความน่าจะเป็น.

ใหม่!!: ทฤษฎีระบบควบคุมและอเล็กซานเดอร์ เลียปูนอฟ · ดูเพิ่มเติม »

จอร์จ แอรี

ซอร์จอร์จ บิดเดลล์ แอรี (Sir George Biddell Airy PRS KCB; 27 กรกฎาคม ค.ศ. 1801 – 2 มกราคม ค.ศ. 1892) เป็นนักคณิตศาสตร์และนักดาราศาสตร์ชาวอังกฤษ สมาชิกราชสมาคมดาราศาสตร์ตั้งแต..

ใหม่!!: ทฤษฎีระบบควบคุมและจอร์จ แอรี · ดูเพิ่มเติม »

จอห์น รากัซซินี

อห์น ราล์ฟ รากัซซินี (John Ralph Ragazzini; ค.ศ. 1912 — 22 พฤศจิกายน ค.ศ. 1988) เป็นวิศวกรไฟฟ้าชาวอเมริกัน และศาสตราจารย์ทางด้านวิศวกรรมไฟฟ้า ผลงานของ รากัซซินีในเรื่องการแปลง Z มีส่วนสำคัญอย่างมากในพัฒนาสาขาการประมวลผลสัญญาณ (signal processing) และการควบคุมดิจิทัล (digital control).

ใหม่!!: ทฤษฎีระบบควบคุมและจอห์น รากัซซินี · ดูเพิ่มเติม »

ขนาด (คณิตศาสตร์)

ในทางคณิตศาสตร์ ขนาด (magnitude) คือสมบัติอย่างหนึ่งของวัตถุที่ใช้เปรียบเทียบว่า สิ่งใดใหญ่กว่าหรือเล็กกว่าสิ่งใดในวัตถุชนิดเดียวกัน ในทางเทคนิคคือการจัดอันดับของวัตถุ ในชีวิตจริงมีการใช้ขนาดในการจัดอันดับของวัตถุต่างๆ เช่น ความดังของเสียง (เดซิเบล) ความสว่างของดาวฤกษ์ หรือมาตราริกเตอร์บนระดับความรุนแรงของแผ่นดินไหว เป็นต้น ชาวกรีกได้มีการแยกแยะขนาดไว้เป็นหลายประเภท รวมทั้ง.

ใหม่!!: ทฤษฎีระบบควบคุมและขนาด (คณิตศาสตร์) · ดูเพิ่มเติม »

ดวงจันทร์

วงจันทร์เป็นวัตถุดาราศาสตร์ที่โคจรรอบโลก เป็นดาวบริวารถาวรดวงเดียวของโลก เป็นดาวบริวารใหญ่ที่สุดอันดับที่ 5 ในระบบสุริยะ และเป็นดาวบริวารขนาดใหญ่สุดเมื่อเทียบกับกขนาดของดาวเคราะห์ที่โคจร ดวงจันทร์เป็นดาวบริวารที่มีความหนาแน่นที่สุดเป็นอันดับที่ 2 รองจากไอโอของดาวพฤหัสบดี ซึ่งบางส่วนไม่ทราบความหนาแน่น คาดว่าดวงจันทร์ก่อกำเนิดประมาณ 4.51 พันล้านปีก่อน ไม่นานหลังจากโลก คำอธิบายที่ได้รับการยอมรับกว้างขวางที่สุดคือดวงจันทร์ก่อกำเนิดจากเศษที่เหลือจากการชนขนาดยักษ์ระหว่างโลกกับเทห์ขนาดประมาณดาวอังคารชื่อเธียอา ดวงจันทร์หมุนรอบโลกแบบประสานเวลา จะหันด้านเดียวเข้าหาโลกเสมอคือด้านใกล้ที่มีลักษณะเป็นทะเลภูเขาไฟมืด ๆ ซึ่งเติมที่ว่างระหว่างที่สูงเปลือกโบราณสว่างและหลุมอุกกาบาตที่เห็นได้ชัดเจน เมื่อสังเกตจากโลก เป็นเทห์ฟ้าที่เห็นได้เป็นประจำสว่างที่สุดอันดับสองในท้องฟ้าของโลกรองจากดวงอาทิตย์ พื้นผิวแท้จริงแล้วมืด แม้เทียบกับท้องฟ้าราตรีแล้วจะดูสว่างมาก โดยมีการสะท้อนสูงกว่าแอสฟอลต์เสื่อมเล็กน้อย อิทธิพลความโน้มถ่วงของดวงจันทร์ทำให้เกิดน้ำขึ้นลงมหาสมุทร และทำให้หนึ่งวันยาวขึ้นเล็กน้อย มีระยะห่างจากโลกเฉลี่ยนับจากศูนย์กลางถึงศูนย์กลางประมาณ 384,403 กิโลเมตร เทียบเท่ากับ 30 เท่าของเส้นผ่านศูนย์กลางของโลก จุดศูนย์กลางมวลร่วมของระบบตั้งอยู่ที่ตำแหน่ง 1700 กิโลเมตรใต้ผิวโลก หรือประมาณ 1 ใน 4 ของรัศมีของโลก ดวงจันทร์โคจรรอบโลกในเวลาประมาณ 27.3 วันตัวเลขอย่างละเอียดคือ คาบโคจรแท้จริงเฉลี่ยของดวงจันทร์ (sideral orbit) คือ 27.321661 วัน (27 วัน 7 ชั่วโมง 43 นาที 11.5วินาที) และคาบโคจรเฉลี่ยแบบทรอปิคัล (tropical orbit) อยู่ที่ 27.321582 วัน (27 วัน 7 ชั่วโมง 43 นาที 4.7 วินาที) (Explanatory Supplement to the Astronomical Ephemeris, 1961, at p.107).

ใหม่!!: ทฤษฎีระบบควบคุมและดวงจันทร์ · ดูเพิ่มเติม »

ดับเบิล อินทิเกรตเตอร์

ใน ทฤษฎีระบบควบคุม ดับเบิล อินทิเกรตเตอร์ (double integrator) คือตัวอย่างหนึ่งของแบบจำลองระบบควบคุมอันดับสอง โดยแบบจำลองนี้สามารถอธิบายพลวัตของมวลที่เคลื่อนที่ในปริภูมิหนึ่งมิติภายใต้อิทธิพลของสัญญาณขาเข้าแปรตามเวลา \textbf (t).

ใหม่!!: ทฤษฎีระบบควบคุมและดับเบิล อินทิเกรตเตอร์ · ดูเพิ่มเติม »

ดิจิทัล

ทัล (digital), เฉพาะชื่อเฉพาะอาจสะกดเป็น ดิจิทอล หรือ ดิจิตอล) หรือในศัพท์บัญญัติว่า เชิงเลข ในทฤษฎีข้อมูลหรือระบบข้อมูล เป็นวิธีแทนความหมายของข้อมูลหรือชิ้นงานต่างๆในรูปแบบของตัวเลข โดยเฉพาะเลขฐานสอง ที่ไม่ต่อเนื่องกัน ซึ่งต่างจากระบบแอนะล็อกที่ใช้ค่าต่อเนื่องหรือสัญญาณแอนะล็อกซึ่งเป็นค่าต่อเนื่อง หรือแทนความหมายของข้อมูลโดยการใช้ฟังชั่นที่ต่อเนื่อง ถึงแม้ว่า การแทนความหมายเป็นดิจิทัลจะไม่ต่อเนื่อง ข้อมูลที่ถูกแปลความหมายนั้นสามารถเป็นได้ทั้งไม่ต่อเนื่อง (เช่นตัวเลขหรือตัวหนังสือ) หรือต่อเนื่อง (เช่นเสียง,ภาพและการวัดอื่นๆ) คำว่าดิจิทัลที่มาจากแหล่งเดียวกันกับคำว่า digit และ digitus (ภาษาละตินแปลว่านิ้ว) เพราะนิ้วมือมักจะใช้สำหรับการนับที่ไม่ต่อเนื่อง นักคณิตศาสตร์ จอร์จ CStibitz ของห้องปฏิบัติการโทรศัพท์เบลล์ ใช้คำว่าดิจิทัลในการอ้างอิงถึงพัลส์ไฟฟ้าเร็วที่ปล่อยออกมาจากอุปกรณ์ที่ออกแบบเพื่อเล็งและยิงปืนต่อต้านอากาศยานในปี 1942 มันเป็นที่นิยมใช้มากที่สุดในการระบบคำนวณและระบบอิเล็กทรอนิกส์โดยเฉพาะอย่างยิ่งเมื่อข้อมูลในโลกแห่งความเป็นจริงจะถูกแปลงเป็นรูปแบบตัวเลขฐานสองเช่นในเสียงออดิโอดิจิทัลและการถ่ายภาพดิจิทัล.

ใหม่!!: ทฤษฎีระบบควบคุมและดิจิทัล · ดูเพิ่มเติม »

คริสต์ทศวรรษ 1890

ไม่มีคำอธิบาย.

ใหม่!!: ทฤษฎีระบบควบคุมและคริสต์ทศวรรษ 1890 · ดูเพิ่มเติม »

คอมพิวเตอร์

อบีเอ็ม โรดรันเนอร์ - ซูเปอร์คอมพิวเตอร์ที่เร็วที่สุดในโลกผลิตโดยไอบีเอ็มและสถาบันวิจัยแห่งชาติลอสอะลาโมส (2551) http://www.cnn.com/2008/TECH/06/09/fastest.computer.ap/ Government unveils world's fastest computer จากซีเอ็นเอ็น คอมพิวเตอร์ (computer) หรือในภาษาไทยว่า คณิตกรณ์ เป็นเครื่องจักรแบบสั่งการได้ที่ออกแบบมาเพื่อดำเนินการกับลำดับตัวดำเนินการทางตรรกศาสตร์หรือคณิตศาสตร์ โดยอนุกรมนี้อาจเปลี่ยนแปลงได้เมื่อพร้อม ส่งผลให้คอมพิวเตอร์สามารถแก้ปัญหาได้มากมาย คอมพิวเตอร์ถูกประดิษฐ์ออกมาให้ประกอบไปด้วยความจำรูปแบบต่าง ๆ เพื่อเก็บข้อมูล อย่างน้อยหนึ่งส่วนที่มีหน้าที่ดำเนินการคำนวณเกี่ยวกับตัวดำเนินการทางตรรกศาสตร์ และตัวดำเนินการทางคณิตศาสตร์ และส่วนควบคุมที่ใช้เปลี่ยนแปลงลำดับของตัวดำเนินการโดยยึดสารสนเทศที่ถูกเก็บไว้เป็นหลัก อุปกรณ์เหล่านี้จะยอมให้นำเข้าข้อมูลจากแหล่งภายนอก และส่งผลจากการคำนวณตัวดำเนินการออกไป หน่วยประมวลผลของคอมพิวเตอร์มีหน้าที่ดำเนินการกับคำสั่งต่าง ๆ ที่คอยสั่งให้อ่าน ประมวล และเก็บข้อมูลไว้ คำสั่งต่าง ๆ ที่มีเงื่อนไขจะแปลงชุดคำสั่งให้ระบบและสิ่งแวดล้อมรอบ ๆ เป็นฟังก์ชันที่สถานะปัจจุบัน คอมพิวเตอร์อิเล็กทรอนิกส์เครื่องแรกถูกพัฒนาขึ้นในช่วงกลางคริสต์ศตวรรษที่ 20 (ค.ศ. 1940 – ค.ศ. 1945) แรกเริ่มนั้น คอมพิวเตอร์มีขนาดเท่ากับห้องขนาดใหญ่ ซึ่งใช้พลังงานมากเท่ากับเครื่องคอมพิวเตอร์ส่วนบุคคล (พีซี) สมัยใหม่หลายร้อยเครื่องรวมกัน คอมพิวเตอร์ในสมัยใหม่นี้ผลิตขึ้นโดยใช้วงจรรวม หรือวงจรไอซี (Integrated circuit) โดยมีความจุมากกว่าสมัยก่อนล้านถึงพันล้านเท่า และขนาดของตัวเครื่องใช้พื้นที่เพียงเศษส่วนเล็กน้อยเท่านั้น คอมพิวเตอร์อย่างง่ายมีขนาดเล็กพอที่จะถูกบรรจุไว้ในอุปกรณ์โทรศัพท์มือถือ และคอมพิวเตอร์มือถือนี้ใช้พลังงานจากแบตเตอรี่ขนาดเล็ก และหากจะมีคนพูดถึงคำว่า "คอมพิวเตอร์" มักจะหมายถึงคอมพิวเตอร์ส่วนบุคคลซึ่งถือเป็นสัญลักษณ์ของยุคสารสนเทศ อย่างไรก็ดี ยังมีคอมพิวเตอร์ชนิดฝังอีกมากมายที่พบได้ตั้งแต่ในเครื่องเล่นเอ็มพีสามจนถึงเครื่องบินบังคับ และของเล่นชนิดต่าง ๆ จนถึงหุ่นยนต์อุตสาหกรรม.

ใหม่!!: ทฤษฎีระบบควบคุมและคอมพิวเตอร์ · ดูเพิ่มเติม »

คิวริโอ

QRIO หุ่นยนต์เลียนแบบมนุษย์ของบริษัทโซนี่ คิวริโอ (Qrio เป็นชื่อย่อจากคำว่า Quest for cuRIOsity) เป็นหุ่นยนต์เลียนแบบมนุษย์หรือหุ่นยนต์ฮิวแมนนอยด์ของบริษัทโซนี่ ถูกสร้างขึ้นเพื่อใช้เป็นหุ่นยนต์สำหรับการทูตสันถวไมตรีเพื่อเชื่อมความสัมพันธ์และประชาสัมพันธ์ของบริษัทโซนี่ คิวริโอเป็นหุ่นยนต์เลียนแบบมนุษย์ที่ได้รับการพัฒนาต่อจากหุ่นยนต์สุนัข ไอโบ (Aibo) เปิดตัวให้สาธารณชนได้รู้จักในวันที่ 2 สิงหาคม พ.ศ. 2547 โดยมีความสามารถในการเดิน 2 ขา วิ่ง นอนและนั่ง สนทนาด้วยประโยคสั้น ๆ ร้องเพลงและเต้นรำได้คล้ายกับมนุษย์ คิวริโอเป็นหุ่นยนต์ฮิวแมนนอยด์ที่บริษัทโซนี่สร้างขึ้นเพื่อความบันเทิงและเป็นเพื่อนแก่มนุษย์โดยเฉพาะ มีความสูง 2 ฟุต หรือประมาณ 60 เซนติเมตร และมีน้ำหนัก7 กิโลกรัม คิวริโอมีความสามารถในการรับรู้และทำความเข้าใจประโยคการสนทนาสั้น ๆ ระหว่างคู่สนทนาได้ด้วยคลื่นเสียง พร้อมกับโต้ตอบด้วยท่าทางต่าง ๆ จดจำใบหน้าและแยกแยะใบหน้าคู่สนทนาได้ด้วยระบบปัญญาประดิษฐ์ทำให้คิวริโอมีความรู้สึกและอารมณ์ใกล้เคียงกับมนุษย์มากที่สุด สามารถมองเห็นได้ 180 องศาในรูปแบบของ 3 มิติในการคำนวณและวิเคราะห์ระยะทางหรือในด้านของวัตถุที่มองเห็น และที่สำคัญคือคิวริโอนั้นเป็นหุ่นยนต์ขนาดเล็ก จึงเป็นเพื่อนเล่นให้แก่เด็ก ๆ ได้เป็นอย่างดี ชื่อของ Qrio นั้นเป็นคำย่อมาจากคำว่า Quest for Curiosity แปลโดยตรงว่า "ช่างสงสัย หรืออยากใคร่รู้ในเรื่องต่าง ๆ" ซึ่งทางบริษัทโซนี่ได้ตั้งชื่อให้กับคิวริโอโดยดูจากลักษณะภายนอกของคิวริโอที่มีความสนุกสนาน ร่าเริงภายในตัว แต่เดิมนั้นคิวริโอไม่มีชื่อเรียกอย่างเป็นทางการ จึงถูกเรียกชื่อโดยเรียกตามลักษณะการออกแบบและโครงสร้างหุ่นยนต์ของทางบริษัทโซนี่ว่า หุ่นยนต์ในฝันของบริษัทโซนี่ (Sony Dream Robot) และได้รับการตั้งชื่อ Qrio ในเดือนตุลาคม พ.ศ. 2546.

ใหม่!!: ทฤษฎีระบบควบคุมและคิวริโอ · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

ใหม่!!: ทฤษฎีระบบควบคุมและคณิตศาสตร์ · ดูเพิ่มเติม »

ตัวกรองคาลมาน

k-1 แทนความไม่แน่นอนในตัวระบบ ตัวกรองคาลมาน (Kalman Filter) เป็นที่รู้จักกันว่าคือการประมาณค่าของสมการกำลังสองเชิงเส้น (linear quadratic estimation หรือ LQE) เป็นขั้นตอนวิธีแบบเวียนบังเกิดในการประมาณตัวแปรสถานะของระบบพลวัต โดยการประมาณตัวแปรสถานะของระบบพลวัตนี้อาจจะประยุกต์ใช้ในกรณีที่ต้องการประมาณตัวแปรสถานะที่ถูกสัญญาณรบกวนหรือเกิดจากข้อจำกัดในการตรวจวัดตัวแปรสถานะนั้นๆ หรือในบางกรณีก็ใช้ร่วมกับข้อมูลของตัวแปรสถานะที่ได้รับมาจากเซ็นเซอร์ซึ่งทำให้ข้อมูลของตัวแปรสถานะมีความแม่นยำมากขึ้นกว่าการเลือกใช้ข้อมูลจากเซ็นเซอร์เพียงอย่างเดียว ตัวกรองคาลมานถูกนำเสนอครั้งแรกโดย รูดอล์ฟ อีมิว คาลมาน ในปี..

ใหม่!!: ทฤษฎีระบบควบคุมและตัวกรองคาลมาน · ดูเพิ่มเติม »

ปริพันธ์

ปริพันธ์ (integral) คือ ฟังก์ชันที่ใช้หา พื้นที่, มวล, ปริมาตร หรือผลรวมต่าง.

ใหม่!!: ทฤษฎีระบบควบคุมและปริพันธ์ · ดูเพิ่มเติม »

นักดาราศาสตร์

''กาลิเลโอ'' ผู้ได้รับยกย่องทั่วไปว่าเป็นบิดาของนักดาราศาสตร์ยุคใหม่ นักดาราศาสตร์ เป็นนักวิทยาศาสตร์ที่ทำการค้นคว้าหาข้อเท็จจริงเกี่ยวกับดาราศาสตร์หรือฟิสิกส์ดาราศาสตร์ แต่เดิมมาในอดีตกาล นักดาราศาสตร์ นักฟิสิกส์ หรือนักปรัชญา มักจะเป็นบุคคลคนเดียวกัน เพราะเป็นผู้สืบหาข้อเท็จจริงเกี่ยวกับธรรมชาติ ต่อมาผู้ที่ให้ความสนใจกับปรากฏการณ์บนท้องฟ้าเป็นพิเศษ จึงเรียกเฉพาะเจาะจงไปว่าเป็น "นักดาราศาสตร์" หมวดหมู่:อาชีพ.

ใหม่!!: ทฤษฎีระบบควบคุมและนักดาราศาสตร์ · ดูเพิ่มเติม »

นาฬิกาน้ำ

นาฬิกาน้ำ คำว่า clepsydra มีรากศัพท์มาจากคำว่า clep ซึ่งมีความหมายว่า ขโมย และคำว่า sydra ที่หมายถึง น้ำ) ชาวกรีกโบราณใช้หลักการทำงานโดยการใช้ภาชนะดินเผาบรรจุน้ำ และเมื่อถูกเจาะมาที่ก้น น้ำจะค่อย ๆ ไหลออกทีละเล็ก ทีละน้อย เหมือนกับการขโมยน้ำ โดยชาวกรีกกำหนดระยะเวลาที่น้ำไหลออกจากภาชนะจนหมดว่า 1 clepsydra แต่นาฬิกาน้ำจะต้องทำการเติมน้ำใหม่ทุกครั้งที่หมดเวลา 1 clepsydra และไม่สามารถใช้ในช่วงฤดูหนาวได้เนื่องจากน้ำจะแข็งตัว.

ใหม่!!: ทฤษฎีระบบควบคุมและนาฬิกาน้ำ · ดูเพิ่มเติม »

แฮร์รี่ ไนควิสต์

แฮร์รี่ ไนควิสต์ (Harry Nyquist; 7 กุมภาพันธ์ ค.ศ. 1889 – 4 เมษายน ค.ศ. 1976) เป็นผู้มีส่วนอย่างสำคัญต่อการพัฒนาทฤษฎีข้อมูล (information theory) ไนควิสต์เกิดที่ประเทศสวีเดนเมื่อปี..

ใหม่!!: ทฤษฎีระบบควบคุมและแฮร์รี่ ไนควิสต์ · ดูเพิ่มเติม »

แฮโรลด์ สตีเฟน แบล็ก

แฮโรลด์ สตีเฟน แบล็ก (Harold Stephen Black; 14 เมษายน ค.ศ. 1898 – 11 ธันวาคม ค.ศ. 1983) เป็นวิศวกรไฟฟ้าชาวอเมริกัน ผู้ปฏิวัติสาขาอิเล็กทรอนิกส์ประยุกต์ด้วยการประดิษฐ์วงจรขยายสัญญาณการป้อนกลับแบบลบ (negative feedback amplifier) ในปี..

ใหม่!!: ทฤษฎีระบบควบคุมและแฮโรลด์ สตีเฟน แบล็ก · ดูเพิ่มเติม »

โครงการอะพอลโล

ตราโครงการอะพอลโล โครงการอะพอลโล เป็นโครงการที่ 3 ต่อเนื่องมาจากเมอร์คิวรีและเจมินี มีเป้าหมายสำคัญคือ จะนำมนุษย์ลงไปสำรวจดวงจันทร์ ใช้มนุษย์อวกาศขึ้นไปครั้งละ 3 คน ตัวยานอวกาศประกอบด้วยส่วนสำคัญ 3 ส่วนคือ.

ใหม่!!: ทฤษฎีระบบควบคุมและโครงการอะพอลโล · ดูเพิ่มเติม »

ไอน้ำ

กราฟแสดงความสัมพันธ์ของเอนโทรปีและอุณหภูมิ ของไอน้ำ ไอน้ำ มักจะหมายถึงน้ำที่ระเหย ซึ่งมีลักษณะบริสุทธิ์และไม่มีสีซึ่งมีลักษณะใกล้เคียงกับหมอก ที่ความดันปกติ น้ำจะกลายเป็นไอน้ำ ที่อุณหภูมิ 100 องศาเซลเซียส และมีปริมาตรขยายเพิ่มประมาณ 1,600 เท่าของปริมาตรน้ำ ไอน้ำสามารถมีอุณหภูมิได้สูงมาก (มากกว่า 100 องศาเซลเซียส) ซึ่งจะถูกเรียกว่า ไอน้ำซูเปอร์ฮีต (superheated steam) เมื่อน้ำในสภาวะของเหลวได้มีการสัมผัสกับวัตถุที่มีความร้อนสูง เช่นโลหะร้อน หรือลาวา น้ำสามารถกลายเป็นไอทันที หมวดหมู่:แก๊สเรือนกระจก หมวดหมู่:ธรรมชาติ หมวดหมู่:รูปแบบของน้ำ.

ใหม่!!: ทฤษฎีระบบควบคุมและไอน้ำ · ดูเพิ่มเติม »

เพนดูลัมผกผัน

Segway)ได้ เพนดูลัมผกผัน (Inverted pendulum) เป็นปัญหาพื้นฐานที่ใช้ในการเรียนการสอนและในการสาธิตการประยุกต์ทฤษฎีระบบควบคุม เพนดูลัมผกผันเป็นระบบที่มีจุดสมดุลอยู่รอบแกนหมุนด้วยกันสองจุด ได้แก่จุดที่เพนดูลัมตั้งตรงอยู่ในแนวดิ่ง และจุดที่เพนดูลัมอยู่ทิ้งตัวลงในดิ่ง แต่จุดที่มีเสถียรภาพเมื่อไม่มีตัวควบคุมนั้นจะมีจุดเดียวคือ จุดที่แกนทิ้งตัวลงเท่านั้น ไม่ว่าเราจะปล่อยเพนดูลัมที่จุดใดก็ตาม เพนดูลัมจะตกลงสู่จุดนี้เสมอ การที่จะทำให้เพนดูลัมนี้สามารถตั้งตรงในแนวดิ่งได้นั้นขึ้นกับการใส่ตัวควบคุมที่เหมาะสมเข้าไปในระบบซึ่งมีได้หลากหลายวิธี และอีกทั้งยังสามารถออกแบบตัวควบคุมให้เป็นเชิงเส้น หรือแบบไม่เชิงเส้นก็ได้ ทั้งนี้ขึ้นอยู่กับความต้องการของผู้ออกแบบและความเหมะสม.

ใหม่!!: ทฤษฎีระบบควบคุมและเพนดูลัมผกผัน · ดูเพิ่มเติม »

เรดาร์

รดาร์ที่ศูนย์อวกาศเคนเนดีขององค์การนาซา เสาอากาศเรดาร์ระยะไกลที่เรียกว่า Altair ที่ใช้ในการตรวจจับและติดตามวัตถุในพื้นที่ร่วมกับการทดสอบ ABM ที่ไซต์ทดสอบโรนัลด์ เรแกนบนเกาะควาจาลีน (Kwajalein) เรดาร์ (radar) เป็นระบบที่ใช้คลื่นแม่เหล็กไฟฟ้าเป็นเครื่องมือในการระบุระยะ (range), ความสูง (altitude) รวมถึงทิศทางหรือความเร็วในการเคลื่อนที่ของวัตถุ เดิมทีตั้งแต่ปี..

ใหม่!!: ทฤษฎีระบบควบคุมและเรดาร์ · ดูเพิ่มเติม »

เฮนดริค เวด โบดี

นดริค เวด โบดี (Hendrik Wade BodeVan Valkenburg, M. E. University of Illinois at Urbana-Champaign, "In memoriam: Hendrik W. Bode (1905-1982)", IEEE Transactions on Automatic Control, Vol. AC-29, No 3., March 1984, pp. 193-194. Quote: "Something should be said about his name. To his colleagues at Bell Laboratories and the generations of engineers that have followed, the pronunciation is boh-dee. The Bode family preferred that the original Dutch be used as boh-dah."; 24 ธันวาคม ค.ศ. 1905 – 21 มิถุนายน ค.ศ. 1982) เป็นวิศวกร นักวิจัย นักประดิษฐ์ นักเขียน และนักวิทยาศาสตร์ชาวอเมริกันเชื้อสายดัทช์ เป็นผู้บุกเบิกทฤษฎีระบบควบคุมยุคใหม่และระบบโทรคมนาคมทางอิเล็กทรอนิกส์ ซึ่งได้ปฏิวัติทั้งเนื้อหาและกระบวนวิธีในการทำวิจัย ผลงานวิจัยของเขาส่งผลกระทบอย่างมากต่อสาขาวิชาทางวิศวกรรมจำนวนมาก และเป็นรากฐานให้แก่นวัตกรรมยุคใหม่ เช่น คอมพิวเตอร์ หุ่นยนต์ และโทรศัพท์เคลื่อนที่ เป็นต้น โบดีเป็นหนึ่งในนักปรัชญาวิศวกรรมที่ยิ่งใหญ่ที่สุดในยุคของเขา ได้รับความยกย่องในแวดวงวิชาการทั่วโลกมาอย่างยาวนาน (via Internet archive) เขายังมีชื่อเสียงในหมู่นักศึกษาวิศวกรรมยุคใหม่ โดยเฉพาะในการพัฒนาวิธีวิเคราะห์ขนาดและมุมแบบอะซิมโทติก ซึ่งตั้งชื่อตามชื่อของเขาว่า โบดีพล็อต.

ใหม่!!: ทฤษฎีระบบควบคุมและเฮนดริค เวด โบดี · ดูเพิ่มเติม »

เจมส์ วัตต์

มส์ วัตต์ (James Watt) (19 มกราคม ค.ศ. 1736 - 19 สิงหาคม ค.ศ. 1819) วิศวกรและนักประดิษฐ์ ชาวสกอตแลนด์ ผู้ปรับปรุงเครื่องปั่นด้าย Spinning Jenny จนนำสหราชอาณาจักรไปสู่ยุคของการปฏิวัติอุตสาหกรรม โดยเฉพาะอุตสาหกรรมการผลิตและการต่อเรือ และทำให้สหราชอาณาจักรเป็นเจ้าอาณานิคมในเวลาต่อมา เครื่องจักรของวัตต์เป็นต้นแบบของเครื่องจักรที่ใช้น้ำมันในปัจจุบัน เขาเป็นผู้บัญญัติศัพท์ แรงม้า เป็นวิธีคำนวณประสิทธิภาพการทำงานของเครื่องจักร และชื่อของเขาได้รับไปตั้งเป็น หน่วยกำลังไฟฟ้า ในระบบหน่วยเอสไอ.

ใหม่!!: ทฤษฎีระบบควบคุมและเจมส์ วัตต์ · ดูเพิ่มเติม »

เจมส์ เคลิร์ก แมกซ์เวลล์

เจมส์ เคลิร์ก แมกซ์เวลล์ นักฟิสิกส์ เจมส์ เคลิร์ก แมกซ์เวลล์ (James Clerk Maxwell พ.ศ. 2374-2422) นักฟิสิกส์ เกิดที่เมืองเอดินเบิร์ก สกอตแลนด์ สหราชอาณาจักร ได้รับการศึกษาจากมหาวิทยาลัยเอดินเบิร์กและเคมบริดจ์ และเป็นศาสตราจารย์ที่มหาวิทยาลัยอาเบอร์ดีน (พ.ศ. 2399) และมหาวิทยาลัยลอนดอน (พ.ศ. 2403) แมกซ์เวลล์เป็นศาสตราจารย์ด้านฟิสิกส์เชิงทดลอง (Experimental Physics) คนแรกของมหาวิทยาลัยเคมบริดจ์ (พ.ศ. 2414) โดยเป็นผู้ก่อตั้งห้องทดลองคาเวนดิช (Cavendish Laboratory) ที่มีชื่อเสียง แมกซ์เวลล์ได้ตีพิมพ์หนังสือเล่มสำคัญชื่อ "เรื่องราวว่าด้วยไฟฟ้าและแม่เหล็ก" (Treatise on Electricity and magnetism) ในปี พ.ศ. 2416 ซึ่งเป็นการให้วิธีการทางคณิตศาสตร์เพื่ออธิบายทฤษฎีของฟาราเดย์เกี่ยวกับไฟฟ้าและแรงของแม่เหล็ก นอกจากนี้ แมกซ์เวลล์ยังได้ให้คำอธิบายเกี่ยวกับการมองเห็นสี จลนะ หรือ การเคลื่อนไหวของก๊าซ แต่งานที่ยิ่งใหญ่ที่สุดของเขาได้แก่ทฤษฎีว่าด้วยการแผ่รังสีของแม่เหล็กไฟฟ้า ซึ่งทำให้แมกซ์เวลล์ได้รับการยกย่องให้เป็นนักทฤษฎีฟิสิกส์ชั้นนำแห่งศตวรรษ จเมส์ คเลิร์ก มแกซ์วเลล์ จเมส์ คเลิร์ก มแกซ์วเลล์ หมวดหมู่:บุคคลจากเอดินบะระ.

ใหม่!!: ทฤษฎีระบบควบคุมและเจมส์ เคลิร์ก แมกซ์เวลล์ · ดูเพิ่มเติม »

เครื่องจักรไอน้ำ

รื่องจักรไอน้ำ เครื่องจักรไอน้ำ (Steam engine) ประดิษฐ์โดย โทมัส นิวโคเมน (Thomas Newcomen) เมื่อ พ.ศ. 2248 (ค.ศ. 1705) ต่อมา เจมส์ วัตต์ ได้พัฒนาเครื่องจักรไอน้ำขึ้น ซึ่งหลังจากนั้น ได้มีการนำเอาชื่อท่านมาตั้งเป็นหน่วยของกำลังไฟฟ้า เช่น กำลังไฟฟ้า 400 วัตต์ เป็นต้น เครื่องจักรไอน้ำเป็นเครื่องจักรแรกๆ ที่มนุษย์สร้างขึ้น เช่น รถจักรไอน้ำ เรือกลไฟ ฯลฯ เครื่องจักรไอน้ำ เป็นเครื่องจักรประเภท สันดาปภายนอก ที่ให้ความร้อนผ่านของเหลว (น้ำ) และทำการเปลี่ยนไอของของเหลวเป็นพลังงานกล ซึ่งสามารถนำมาเปลี่ยนเป็นพลังงานไฟฟ้าได้ โดยการนำไอน้ำมาหมุนกังหันของ เครื่องปั่นไฟ (ไดนาโม) เครื่องจักรไอน้ำต้องมีหม้อต้มในการต้มน้ำในการทำให้เกิดไอน้ำ ไอน้ำที่ได้จากการต้ม จะนำไปเป็นแรงในการดันกระบอกสูบหรือกังหัน ข้อดีของเครื่องจักรไอน้ำประการหนึ่งคือการที่สามารถใช้แหล่งความร้อนจากอะไรก็ได้ เช่น ถ่านหิน, ฟืน, น้ำมันปิโตรเลียม หรือกระทั่ง นิวเคลียร์ และแม้แต่ในปัจจุบัน เครื่องจักรไอน้ำหรือกลไกที่ถูกพัฒนาขึ้นจากเครื่องจักรไอน้ำยังคงปรากฏซ่อนอยู่ในเครื่องจักรเครื่องกลแทบทุกประเภท เช่น โรงไฟฟ้าพลังงานความร้อน จนถึง กระบอกสูบในรถยนต์ หรือในเครื่องบินในปัจจุบันนั้นมีการค้นพบรูปแบบใหม่ๆในการนำเครื่องจักรไอน้ำไปใช้งาน การค้นพบครั้งล่าสุดถูกค้นพอโดนลูกชายของโทมัส นิวโครแมน โดยชื่อที่ใช้ในการค้นพบคือ อเล็กซ์ซี่ นิวโครแมน ซึ่งถูกค้นพบเมื่อวันที่ 13 ธันวาคม..

ใหม่!!: ทฤษฎีระบบควบคุมและเครื่องจักรไอน้ำ · ดูเพิ่มเติม »

เครื่องปรับอากาศ

รื่องปรับอาก.หรือภาษาปากว่า แอร์กี่(Air conditioner, aircon) คือเครื่องใช้ไฟฟ้าที่ใช้ปรับอุณหภูมิของอากาศในเคหสถาน เพื่อให้มนุษย์ได้อาศัยอยู่ในที่ที่ไม่ร้อนหรือไม่เย็นจนเกินไป หรือใช้รักษาภาวะอากาศให้คงที่เพื่อจุดประสงค์อื่น เคหสถานในเขตศูนย์สูตรหรือเขตร้อนชื้นมักมีการติดตั้งเครื่องปรับอากาศเพื่อลดอุณหภูมิให้เย็นลง ตรงข้ามกับในเขตอบอุ่นหรือเขตขั้วโลกใช้เพื่อเพิ่มอุณหภูมิให้สูงขึ้น (อาจเรียกว่า เครื่องทำความร้อน) เครื่องปรับอากาศมีทั้งแบบตั้งพื้น ติดผนัง และแขวนเพดาน ทำงานด้วยหลักการการถ่ายเทความร้อน กล่าวคือ เมื่อความร้อนถ่ายเทออกไปข้างนอก อากาศภายในห้องจะมีอุณหภูมิลดลง เป็นต้น และเครื่องปรับอากาศอาจมีความสามารถในการลดความชื้นหรือการฟอกอากาศให้บริสุทธิ์ด้ว.

ใหม่!!: ทฤษฎีระบบควบคุมและเครื่องปรับอากาศ · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Control theoryระบบควบคุม

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »