เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ผลิกศาสตร์

ดัชนี ผลิกศาสตร์

ผลิกศาสตร์ (Crystallography) คือศาสตร์ที่ศึกษาการเรียงตัวของอะตอมในของแข็ง คำนี้ในการใช้งานเดิมจะหมายถึงศาสตร์ที่ศึกษาเกี่ยวกับผลึก คำว่า ผลิก มีความหมายเช่นเดียวกับคำว่า ผลึก ก่อนที่จะมีพัฒนาการของผลิกศาสตร์ที่ใช้การเลี้ยวเบนของรังสีเอ็กซ์ การศึกษาผลึกกระทำโดยใช้เรขาคณิตของผลึก โดยจะมีการวัดมุมของผลึกเทียบกับมุมอ้างอิงทางทฤษฎี และหาสมมาตรของผลึกนั้น ๆ ในปัจจุบันผลิกศาสตร์ใช้การวิเคราะห์รูปแบบของการเลี้ยวเบนที่เกิดจากการยิงลำแสงบางอย่างให้กับผลึกนั้น แม้ว่าลำแสงที่ใช้ไม่จำเป็นต้องเป็นรังสีแม่เหล็กไฟฟ้า แต่ตัวเลือกหลักมักเป็นรังสีเอ็กซ.

สารบัญ

  1. 7 ความสัมพันธ์: การเลี้ยวเบนรังสีแม่เหล็กไฟฟ้ารังสีเอกซ์สมมาตรอะตอมผลึกคำสร้างใหม่

  2. ฟิสิกส์สสารควบแน่น
  3. วัสดุศาสตร์
  4. เคมี

การเลี้ยวเบน

กไปจะมีขนาดเท่ากับรูนั้น การเลี้ยวเบนของคลื่นเกิดขึ้นได้ เมื่อคลื่นจากแหล่งกำเนิดเดินทางไปพบสิ่งกีดขวางที่มีลักษณะเป็นขอบหรือช่อง ทำให้คลื่นเคลื่อนที่เลี้ยวอ้อมผ่านสิ่งกีดขวางไปได้  อธิบายได้โดยใช้ เบน.

ดู ผลิกศาสตร์และการเลี้ยวเบน

รังสีแม่เหล็กไฟฟ้า

ในวิชาฟิสิกส์ รังสีแม่เหล็กไฟฟ้า (electromagnetic radiation) หมายถึงคลื่น (หรือควอนตัมโฟตอน) ของสนามแม่เหล็กไฟฟ้าที่แผ่ผ่านปริภูมิโดยพาพลังงานจากการแผ่รังสีแม่เหล็กไฟฟ้า โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นองสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย คลื่นแม่เหล็กไฟฟ้าเกิดเมื่ออนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E.

ดู ผลิกศาสตร์และรังสีแม่เหล็กไฟฟ้า

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ.

ดู ผลิกศาสตร์และรังสีเอกซ์

สมมาตร

'''ซ้าย''' แสดงวัตถุที่เป็นสมมาตร และ '''ขวา''' แสดงวัตถุที่ไม่เป็นสมมาตร กลุ่มสมมาตรทรงกลม o สมมาตร (Symmetry) ทั่วไปจะหมายถึงสองความหมาย ความหมายแรกคือการรับรู้ถึงการเข้ากันได้ หรือความงามได้สัดส่วน และความสมดุลอริสโตเติลลงความเห็นรูปทรงทรงกลม มีทรงที่เยี่ยมยอด มีคุณลักษณะขนาดทางเรขาคณิตนิยามตามรูปแบบของสมมาตรเป็นไปตามลำดับโดยธรรมชาติและความสมบูรณ์แบบของจักรวาล ดังความสวยงามหรือความสมบูรณ์แบบที่สะท้อนออกมา ในความหมายที่สองคือความเที่ยงตรงและความคิดที่ชัดเจนของความสมดุลหรือ"รูปแบบความคล้ายคลึงในตัวเอง" ที่สามารถพิสูจน์หรือตรวจสอบได้ตามกฎของระบบในเชิงรูปนัย โดยใช้เรขาคณิต, จนถึงฟิสิกส์ หรืออื่นๆ ถึงแม้ว่าความหมายจะต่างกันในบางบริบท แต่ทั้งคู่เกี่ยวข้องกันและถูกอภิปรายโต้แย้งกันในการเปรียบเทียบ แนวความคิดเรื่องความเที่ยงตรงถูกต้องของสมมาตรมีหลากหลายวิธีตัดสินและนิยาม เช่น สมมาตรอาจจะใช้:ในประเด็นของเวลาที่ผ่านไป ตามความสัมพันธ์ของตำแหน่ง ตามการแปลงทางเรขาคณิต เช่น ขนาด, การสะท้อน, และการหมุน ตลอดจนการแปลงฟังก์ชันชนิดอื่นๆ และตามมุมมองของวัตถุนามธรรม, แบบจำลองตามทฤษฎี, ภาษา, ดนตรี และความรู้See e.g., สมมาตรสามารถมีคำนิยามที่แตกต่างกันได้ เช่น.

ดู ผลิกศาสตร์และสมมาตร

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ดู ผลิกศาสตร์และอะตอม

ผลึก

Quartz crystal Bismuth Crystal Insulincrystals ผลึก (crystal) เป็นของแข็งที่มีองค์ประกอบเป็นอะตอม โมเลกุล หรือ ไอออน ซึ่งอยู่รวมกันอย่างมีระเบียบ เป็นรูปแบบที่ซ้ำกันและแผ่ขยายออกไปในเนื้อที่สามมิติ โดยทั่วไปสสารที่เป็น ของเหลว จะเกิดผลึกได้เมื่ออยู่ภายใต้กระบวนการโซลิดิฟิเคชัน (solidification) ภายใต้สภาวะที่สมบูรณ์ผลที่ได้จะเป็น ผลึกเดี่ยว (single crystal) ที่ซึ่งทุกอะตอมในของแข็งมีความพอดีที่จะอยู่ใน แลตทิช เดียวกัน หรือ โครงสร้างผลึกเดียวกัน แต่โดยทั่วไปจะเกิดหลายรูปแบบของผลึกในระหว่างโซลิดิฟิเคชัน ทำให้เกิดของแข็งที่เรียกว่า พอลิคริสตัลลีน (polycrystalline solid) ตัวอย่าง เช่น โลหะ ส่วนใหญ่ที่พบเห็นในชีวิตประจำวันจะเป็น พอลิคริสตัล (polycrystals) ผลึกที่โตคู่กันอย่างสมมาตร จะเกิดเป็นผลึกที่เรียกว่า ผลึกแฝด (crystal twins) โครงสร้างผลึกจะขึ้นอยู่กับสารเคมี สภาวะแวดล้อมขณะเกิดการแข็งตัวและความกดดันขณะนั้น กระบวนการเกิดโครงสร้างผลึกเราเรียกว่าคริสตัลไลเซชัน (crystallization) ความสำคัญของผลึก ผลึก สามารถพบได้ทั่วไปในธรรมชาติ พบมากในการก่อตัวของหิน เช่น อัญมณีต่างๆ หรือแม้แต่รอบตัวเรา ในรูปของน้ำตาล น้ำแข็ง และเกลือเม็ด เป็นต้น ความงดงามของผลึกเหล่านี้เป็นที่สนใจมาแต่ตั้งแต่ โบราณ ทั้งด้านความสมมาตรของรูปทรงและสีสรรที่หลากหลาย นักผลึกศาสตร์ในอดีต ใช้เรขาคณิตในการศึกษารูปทรงของผลึกที่พบได้ตามธรรมชาติ 5 มีคุณสมบัติเป็นคลื่นแสงพลังงานสูง มองไม่เห็นด้วยตาเปล่า เมื่อรังสีเอกซ์พุ่งกระทบกับวัตถุ อะตอมในวัตถุจะสามารถทำให้รังสีเอกซ์เกิดการกระเจิงได้ นักผลึกศาสตร์พบว่าการเรียงตัวของอะตอมอย่างเป็นระเบียบในผลึก ทำให้รังสีเอกซ์กระเจิงไปในทิศทางที่จำเพาะเท่านั้น จากข้อมูลความเข้มและทิศทางของรังสีเอกซ์ที่กระเจิงนี้ นักวิทยาศาสตร์สามารถสร้างภาพสามมิติของโครงสร้างของสารในผลึกได้ ผลึกจึงเป็นตัวอย่างที่เหมาะสมสำาหรับการศึกษาโครงสร้างของสารที่ให้ความละเอียดในระดับอะตอม ด้วยคุณสมบัติทั่วไปสามประการได้แก่ คุณสมบัติที่เป็นของแข็ง มีสามมิติ และมีการเรียงตัวของอะตอมอย่างเป็นระเบียบมาก และความสมมาตรสูง นักวิทยาศาสตร์สามารถศึกษาพันธะเคมี ที่ดึงดูดอะตอมเข้าด้วยกัน ตัวอย่างเช่น กราไฟท์หรือถ่านที่ทึบแสงและนิ่ม กับเพชรที่โปร่งแสงและแข็งมาก สารทั้งสองนี้มีส่วนประกอบทางเคมีที่เหมือนกัน คือธาตุคาร์บอนเท่านั้น การที่เพชรสามารถกระเจิงแสงได้ เกิดจากพันธะทางเคมีที่เรียงตัวเป็นระเบียบ ทำาให้เพชรแวววาว เรารู้โครงสร้างและพันธะเคมีของเพชร ได้จากศึกษาโครงสร้างผลึกด้วยรังสีเอก ผลึกที่ฉีกกฎธรรมชาติ ในปี..1984 ดร.แดน เชท์มัน ค้นพบผลึกชนิดพิเศษที่มีรูปแบบการเรียงตัวของอะตอมอย่างไม่ต่อเนื่อง รูปแบบนี้ฉีกกฎที่เคยเชื่อกันว่า ผลึกต้องประกอบขึ้นด้วยรูปแบบสมมาตรชนิด 1, 2, 3, 4 และ 6 ด้านเท่านั้น จึงจะเกิดเป็นรูปทรงสามมิติได้ การค้นพบที่เปลี่ยนแปลงความเชื่อครั้งใหญนี้่ เกิดจากการศึกษาโลหะผสมระหว่างอลูมิเนียมและแมงกานีสด้วยกล้องจุลทรรศน์อิเล็กตรอน ดร.แดน เชชท์มัน สังเกตเห็นการจัดเรียงตัวแบบห้าเหลี่ยม ในผลึก และต่อมาผลึกในลักษณะนี้ เป็นที่รู้จักว่าเป็น “ผลึกเสมือน” การค้นพบนี้ทำให้ ดร.แดน เชท์มัน ได้รับ รางวัล โนเบล สาขาเคมี ในปี..

ดู ผลิกศาสตร์และผลึก

คำสร้างใหม่

ำสร้างใหม่ หรือ ศัพท์บัญญัติ หมายถึงคำที่ถูกสร้างขึ้นใหม่ซึ่งอาจเริ่มมีการใช้งานทั่วไป แต่อาจยังไม่เป็นที่ยอมรับในภาษาทั่วไป อาจถูกสร้างขึ้นมาเพื่อความเฉพาะเจาะจง เกี่ยวกับคน การเผยแพร่ เวลา หรือเหตุการณ์ ในประเทศไทยราชบัณฑิตยสถานมีหน้าที่บัญญัติศัพท์ และมีคณะกรรมการบัญญัติศัพท์สาขาวิชาต่าง ๆ เช่น คณะกรรมการบัญญัติศัพท์ปรับอากาศ คณะกรรมการบัญญัติศัพท์วิทยาศาสตร์ คณะอนุกรรมการบัญญัติศัพท์แพทย์ และคณะกรรมการบัญญัติศัพท์พิมพ์ เป็นต้น นอกจากนี้ยังมีหน่วยงานทางด้านวิทยาการและเทคโนโลยีจาก ต่างประเทศเข้ามา และได้บัญญัติศัพท์เฉพาะขึ้นมาใช้เอง เช่น คณะกรรมการวิศวกรรมสถานแห่งประเทศไทย คณะกรรมการพิจารณาศัพท์วิชาการศึกษาของกรมวิชาการ กระทรวงศึกษาธิการ และกรรมการพิจารณาศัพท์วิชาการของกรมวิชาการ.

ดู ผลิกศาสตร์และคำสร้างใหม่

ดูเพิ่มเติม

ฟิสิกส์สสารควบแน่น

วัสดุศาสตร์

เคมี