โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

อันตรกิริยาอย่างอ่อน

ดัชนี อันตรกิริยาอย่างอ่อน

อิเล็กตรอนปฏินิวทรืโนอย่างละหนึ่งตัว ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อน (weak interaction) หรือบางครั้งเรียกกันทั่วไปว่า แรงนิวเคลียร์อย่างอ่อน (weak nuclear force) เป็นกลไกที่รับผิดชอบแรงอ่อนหรือแรงนิวเคลียร์อ่อน แรงนี้เป็นหนึ่งในสี่แรงพื้นฐาน่ของธรรมชาติที่รู้จักกันดีในการปฏิสัมพันธ์, แรงที่เหลือได้แก่อันตรกิริยาอย่างเข้ม, แรงแม่เหล็กไฟฟ้าและแรงโน้มถ่วง อันตรกิริยาอย่างอ่อนเป็นผู้รับผิดชอบต่อการสลายให้กัมมันตรังสีของอนุภาคย่อยของอะตอม และมันมีบทบาทสำคัญในปฏิกิริยานิวเคลียร์ฟิชชัน ทฤษฎีของอันตรกิริยาอย่างอ่อนบางครั้งเรียกว่าควอนตัม flavordynamics (QFD), คล้ายกับ QCD และ QED, แต่คำนี้ที่ไม่ค่อยได้ใช้เพราะแรงอ่อนเป็นที่เข้าใจกันดีที่สุดในแง่ของทฤษฎีไฟฟ้าอ่อน (electro-weak theory (EWT)) ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อนเกิดจากการปล่อยหรือการดูดซึมของ W และ Z โบซอน อนุภาคทุกตัวในตระกูลเฟอร์มิออนที่รู้จักกันแล้วมีปฏิสัมพันธ์ต่อกันผ่านทางอันตรกิริยาอย่างอ่อน อนุภาคเหล่านั้นมีสปินครึ่งจำนวนเต็ม (หนึ่งในคุณสมบัติพื้นฐานของอนุภาค) พวกมันสามารถเป็นอนุภาคมูลฐานเช่นอิเล็กตรอนหรืออาจจะเป็นอนุภาคผสมเช่นโปรตอน มวลของ W+ W- และ Z โบซอน แต่ละตัวจะมีขนาดใหญ่กว่ามวลของโปรตอนหรือของนิวตรอนอย่างมาก สอดคล้องกับช่วงระยะทำการที่สั้นของแรงที่อ่อน แรงถูกเรียกว่าอ่อนเพราะความแรงของสนามในระยะทางที่กำหนดโดยทั่วไปจะมีขนาดเป็นเลขยกกำลังที่น้อยกว่าแรงนิวเคลียร์อย่างเข้มและแรงแม่เหล็กไฟฟ้ามาก ๆ ในช่วงยุคของควาร์ก แรงไฟฟ้าอ่อน (electroweak force) แยกออกเป็นแรงแม่เหล็กไฟฟ้​​าและแรงอ่อน ตัวอย่างที่สำคัญของอันตรกิริยาอย่างอ่อนได้แก่การสลายให้อนุภาคบีตา และการผลิตดิวเทอเรียมจากไฮโดรเจนที่จำเป็นเพื่อให้พลังงานในกระบวนการเทอร์โมนิวเคลียร์ของดวงอาทิตย์ เฟอร์มิออนส่วนใหญ่จะสลายตัวโดยอันตรกิริยาอย่างอ่อนไปตามเวลา การสลายตัวดังกล่าวยังทำให้การหาอายุด้วยวืธีเรดิโอคาร์บอน (radiocabon dating) มีความเป็นไปได้เมื่อคาร์บอน-14 สูญสลายผ่านอันตรกิริยาอย่างอ่อนกลายเป็นไนโตรเจน-14 นอกจากนี้มันยังสามารถสร้างสารเรืองแสงรังสี (radioluminescence) ที่ใช้กันทั่วไปในการส่องสว่างทริเทียม (tritium illumination) และในสาขาที่เกี่ยวข้องกับ betavoltaics ควาร์กเป็นผู้สร้างอนุภาคผสมเช่นนิวตรอนและโปรตอน ควาร์กมีหกชนิดที่เรียกว่า "ฟเลเวอร์" (flavour) ได้แก่ อัพ, ดาวน์, สเตรนจ์, ชาร์ม, ทอปและบอตทอม - ซึ่งเป็นคุณสมบัติของอนุภาคผสมเหล่านั้น อันตรกิริยาอย่างอ่อนเป็นหนึ่งเดียวในแง่ที่ว่ามันจะยอมให้ควาร์กสามารถที่จะสลับฟเลเวอร์ของพวกมันไปเป็นอย่างอื่นได้ ตัวอย่างเช่นในระหว่างการสลายตัวในอนุภาคบีตาลบ ดาวน์ควาร์กตัวหนึ่งสลายตัวกลายเป็นอัพควาร์ก เป็นการแปลงนิวตรอนให้เป็นโปรตอน นอกจากนี้อันตรกิริยาอย่างอ่อนยังเป็นปฏิสัมพันธ์พื้นฐานอย่างเดียวเท่านั้นที่ทำลายการสมมาตรแบบเท่าเทียมกัน และในทำนองเดียวกัน มันเป็นอย่างเดียวเท่านั้นที่ทำลาย CP-สมมาตร.

34 ความสัมพันธ์: พาหะแรงกระแสเป็นกลางการสลายให้กัมมันตรังสีการสลายให้อนุภาคบีตาการปล่อยโพซิตรอนมีซอน (อนุภาค)สสารมืดร้อนสถานะ (สสาร)สตีเฟน ฮอว์กิงห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอนอะตอมอัลเบิร์ต ไอน์สไตน์อันตรกิริยาพื้นฐานอันตรกิริยาอย่างเข้มอิเล็กตรอนอนุภาคย่อยของอะตอมฮิกส์โบซอนทฤษฎีการรวมแรงครั้งใหญ่ทฤษฎีสนามควอนตัมทฤษฎีแม่เหล็กไฟฟ้าความโน้มถ่วงความโน้มถ่วงเชิงควอนตัมควาร์กนิวทริโนนิวตรอนแบบจำลองมาตรฐานแรงแรงแม่เหล็กไฟฟ้าโพซิตรอนโปรตอนเลปตอนเส้นเวลาของบิกแบงเอนรีโก แฟร์มี4

พาหะแรง

ในฟิสิกส์ของอนุภาค พาหะแรง (force carrier) หรือพาหะของแรงคืออนุภาคที่สร้างแรงต่าง ๆ ระหว่างอนุภาคใด ๆ อนุภาคเหล่านี้เป็นกลุ่มก้อนของพลังงาน (ควอนตัม) ของชนิดที่เฉพาะของสนามฟิสิกส์ ทุก ๆ สายพันธ์ของอนุภาคมูลฐานมีสนามเฉพาะตัวหนึ่งชนิด ยกตัวอย่างเช่น มีหนึ่งสนามอิเล็กตรอนที่มีควอนตัมเป็นกลุ่มอิเล็กตรอน และหนึ่งสนามแม่เหล็กไฟฟ้าที่มีควอนตัมเป็นกลุ่มโฟตอน อนุภาคที่เป็นพาหะของแรงจะเป็นคนกลางเพื่อไกล่เกลี่ยระหว่างแรงพื้นฐานทั้งหลาย ซึ่งได้แก่ แรงแม่เหล็กไฟฟ้า, อันตรกิริยาอย่างเข้ม และ อันตรกิริยาอย่างอ่อน อนุภาคนั้นถูกเรียกว่า เกจโบซอน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและพาหะแรง · ดูเพิ่มเติม »

กระแสเป็นกลาง

กระแสเป็นกลาง (Neutral current) หรือปฏิสัมพันธ์ของกระแสเป็นกลางอย่างอ่อน เป็นหนึ่งในหลายวิธีที่กลุ่ม อนุภาคย่อยของอะตอม จะสามารถมีปฏิสัมพันธ์ซึ่งกันและกันโดยการใช้ อันตรกิริยาอย่างอ่อน ปฏิสัมพันธ์เหล่านี้จะถูกไกล่เกลี่ยโดย Z โบซอน การค้นพบกระแสเป็นกลางอย่างอ่อนเป็นก้าวที่สำคัญไปสู่การรวมเป็นหนึ่งเดียวของ ทฤษฎีแม่เหล็กไฟฟ้า กับอันตรกิริยาอย่างอ่อนกลายเป็น อันตรกิริยาไฟฟ้าอ่อน (electroweak force), และนำไปสู่การคันพบ W และ Z โบซอน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและกระแสเป็นกลาง · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: อันตรกิริยาอย่างอ่อนและการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การสลายให้อนุภาคบีตา

ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.

ใหม่!!: อันตรกิริยาอย่างอ่อนและการสลายให้อนุภาคบีตา · ดูเพิ่มเติม »

การปล่อยโพซิตรอน

การปล่อยโพซิตรอน (Positron emission) หรือ การสลายให้อนุภาคบีตาบวก (β+ decay) เป็นประเภทเฉพาะอย่างหนึ่งของการสลายกัมมันตรังสีและประเภทย่อยของการสลายให้อนุภาคบีตา ซึ่งโปรตอนหนึ่งตัวที่อยู่ภายในนิวเคลียสที่นิวไคลด์ของมันมีกัมมันตรังสี จะถูกแปลงให้เป็นนิวตรอนในขณะเดียวกันก็ปล่อยโพซิตรอนและอิเล็กตรอนนิวตริโน (νe) การปล่อยโพซิตรอนมีการไกล่เกลี่ยโดยแรงอย่างอ่อน โพซิตรอนเป็นชนิดหนึ่งของอนุภาคบีตา (β+), อนุภาคเบต้าอีกตัวหนึ่งก็คืออิเล็กตรอน (β−) ที่ปล่อยออกมาจากการสลายให้อนุภาค β− ของนิวเคลียส ตัวอย่างของการปล่อยโพซิตรอน (การสลายให้ β+) จะแสดงด้วยแมกนีเซียม-23 ไปเป็นโซเดียม-23 ตามสมการ: 2312Mg → 2311Na + e+ + Ve เพราะว่าการปล่อยโพซิตรอนจะลดจำนวนโปรตอนลงเมื่อเทียบกับจำนวนนิวตรอน, การสลายให้โพซิตรอนจึงจะเกิดขึ้นโดยทั่วไปในนิวไคลด์กัมมันตรังสี "ที่ร่ำรวยโปรตอน" ขนาดใหญ่ ผลจากการสลายให้โพซิตรอนจะเป็นการแปลง(ธาตุ)นิวเคลียส หรือการเปลี่ยนคุณสมบัติทางเคมีของอะตอมไปเป็นอะตอมของธาตุที่มีเลขอะตอมที่น้อยลงไปหนึ่งหน่วย การปล่อยโพซิตรอนไม่ควรจะสับสนกับการปล่อยอิเล็กตรอนหรือการสลายให้เบต้าลบ (สลายให้ β-) ซึ่งจะเกิดขึ้นเมื่อนิวตรอนจะกลายเป็นโปรตอนและนิวเคลียสก็ปล่อยอิเล็กตรอนและปฏินิวทริโน การจับยึดอิเล็กตรอน (บางครั้งเรียกว่าการสลายให้ตรงข้ามบีตา (inverse beta decay)) ก็ถูกแยกประเภทเป็นครั้งคราวให้เป็นชนิดหนึ่งของการสลายให้บีตาอีกด้วย ในบางวิธี การจับยึดอิเล็กตรอนสามารถถือได้ว่าเทียบเท่ากับการปล่อยโพซิตรอน, เพราะในการจับยึดอิเล็กตรอนหนึ่งตัวจะส่งผลให้มีการปล่อยโพซิตรอนหนึ่งตัวด้วยเหมือนกับเป็นการแปรพันธ์ุเช่นกัน การจับยึดอิเล็กตรอนเกิดขึ้นเมื่ออิเล็กตรอนพร้อมใช้งานและมันต้องการความแตกต่างของพลังงานระหว่างพ่อแม่และลูกสาวน้อยลง ซึ่งจะเกิดขึ้นบ่อยครั้งในอะตอมขนาดเล็ก มากกว่าจะเกิดขึ้นในการปล่อยโพซิตรอน การจับยึดอิเล็กตรอนมักจะแข่งขันกับการปล่อยโพซิตรอนเนื่องจากการปล่อยโพซิตรอนจะสามารถมองเห็นและนอกจากนี้จะเกิดขึ้นเป็นชนิดเดียวเท่านั้นของการสลายให้บีตาในนิวเคลียสทราร่ำรวยโปรตอนเมื่อไม่มีพลังงานการสลายมากเพียงพอที่จะสนับสนุนการปล่อยโพซิตรอน หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:กัมมันตรังสี หมวดหมู่:การแผ่รังสี.

ใหม่!!: อันตรกิริยาอย่างอ่อนและการปล่อยโพซิตรอน · ดูเพิ่มเติม »

มีซอน (อนุภาค)

ในฟิสิกส์ของอนุภาค มีซอน (Meson) (หรือ) คืออนุภาคย่อยในกลุ่มแฮดรอนที่ประกอบด้วยควาร์ก 1 ตัวและปฏิควาร์ก 1 ตัว เกาะเกี่ยวอยู่ด้วยกันด้วยแรงอย่างเข้ม เนื่องจากมีซอนประกอบด้วยอนุภาคย่อย มันจึงมีขนาดทางกายภาพ ด้วยเส้นผ่าศูนย์กลางประมาณหนึ่งเฟมโตเมตร(10−15 เมตร) ซึ่งมีขนาดประมาณ ของหนึ่งโปรตอนหรือหนึ่งนิวตรอน มีซอนทั้งหมดไม่เสถียร ที่มีอายุยืนที่สุดเพียงไม่กี่หนึ่งส่วนร้อยของหนึ่งไมโครวินาทีเท่านั้น มีซอนที่มีประจุจะสลายตัว (บางครั้งผ่านทางอนุภาคระดับกลาง) กลายเป็นอิเล็กตรอนและนิวทริโน มีซอนที่ไม่มีประจุอาจสลายตัวไปเป็นโฟตอน มีซอนไม่ได้เกิดจากการสลายให้กัมมันตรังสี แต่ปรากฏอยู่ในธรรมชาติเพียงแต่เป็นผลิตภัณฑ์ที่อายุสั้นมากของปฏิสัมพันธ์พลังงานสูงมากในสสาร ระหว่างกลุ่มอนุภาคที่ทำจากควาร์ก ตัวอย่างเช่น ในปฏิสัมพันธ์ รังสีคอสมิก อนุภาคดังกล่าวเป็นโปรตอนและนิวตรอนทั่วไป มีซอนยังเกิดขึ้นบ่อยอีกด้วยโดยการสร้างขึ้นในเครื่องเร่งอนุภาคพลังงานสูงที่มีการชนกันของกลุ่มโปรตอน, กลุ่มปฏิโปรตอนหรืออนุภาคอื่น ๆ ในธรรมชาติความสำคัญของมีซอนน้ำหนักเบาก็คือการที่พวกมันเป็นอนุภาคสนามควอนตัมที่สัมพันธ์กันที่สามารถส่ง แรงนิวเคลียร์ แบบเดียวกับที่โฟตอนเป็นอนุภาคที่ส่งแรงแม่เหล็กไฟฟ้า มีซอนที่มีพลังงานสูงกว่า (มวลมากกว่า) ได้ถูกสร้างขึ้นเพียงชั่วขณะหนึ่งตอน บิกแบง แต่ไม่ถูกพิจารณาว่ามีบทบาทสำคัญในธรรมชาติวันนี้ อย่างไรก็ตามอนุภาคดังกล่าวจะถูกสร้างขึ้นอย่างสม่ำเสมอในการทดลอง เพื่อที่จะเข้าใจธรรมชาติของควาร์กชนิดหนักที่ประกอบกันขึ้นเป็นมีซอนชนิดที่หนักกว่า มีซอนเป็นส่วนหนึ่งของครอบครัวอนุภาค แฮดรอน และถูกกำหนดให้เป็นเพียงอนุภาคที่ประกอบด้วยสองควาร์ก สมาชิกอื่น ๆ ของครอบครัวแฮดรอนคือ แบริออน ที่เป็นอนุภาคย่อยที่ประกอบด้วยสามควาร์กแทนที่จะเป็นสองควาร์ก การทดลองบางอย่างแสดงหลักฐานของ มีซอนแปลกใหม่ ซึ่งไม่ได้มีเนื้อหาควาร์กที่มีวาเลนซ์แบบเดิมที่มีหนึ่งควาร์กและหนึ่งปฏิควาร์ก เพราะว่าควาร์กมีสปินเท่ากับ ความแตกต่างในจำนวนควาร์กระหว่างมีซอนและแบริออนเป็นผลให้เกิดมีซอนสองควาร์กทั่วไปกลายเป็น โบซอน ในขณะที่แบริออนเป็น เฟอร์มิออน แต่ละชนิดของมีซอนมีปฏิยานุภาคที่สอดคล้องกัน (ปฏิมีซอน) ซึ่งควาร์กจะถูกแทนที่ด้วยปฏิควาร์กที่สอดคล้องกันของมันและถูกแทนที่ได้ในทางกลับกัน ตัวอย่างเช่น ไพออน บวก (π+) ถูกสร้างขึ้นจากอัพควาร์กหนึ่งตัวและดาวน์ปฏิควาร์กหนึ่งตัว และปฏิยานุภาคที่สอดคล้องกันของมันคือ ไพออนลบ (π-) ถูกสร้างขึ้นจากหนึ่งอัพปฏิควาร์กและหนึ่งดาวน์ควาร์ก เพราะว่ามีซอนประกอบด้วยควาร์ก มันจึงมีส่วนร่วมทั้งใน อันตรกิริยาอย่างอ่อน และ อันตรกิริยาอย่างเข้ม มีซอนที่มีประจุไฟฟ้าสุทธิก็ยังมีส่วนร่วมใน แรงแม่เหล็กไฟฟ้าเช่นกัน พวกมันจะถูกแยกประเภทตามเนื้อหาของควาร์ก, โมเมนตัมเชิงมุมรวม, เท่าเทียมกัน และคุณสมบัติอื่น ๆ อีกมากมายเช่น C-เท่าเทียมกัน และ G-เท่าเทียมกัน แม้ว่าจะไม่มีมีซอนที่เสถียรก็ตาม พวกที่มีมวลต่ำกว่าก็ยังเสถียรมากกว่ามีซอนทีมีมวลขนาดใหญ่ที่สุด และมีความง่ายกว่าที่จะสังเกตเห็นและศึกษาในเครื่องเร่งอนุภาค หรือในการทดลองรังสีคอสมิก พวกมันก็ยังมักจะมีมวลน้อยกว่าแบริออนอีกด้วย หมายความว่าพวกมันจะถูกผลิตขึ้นได้ง่ายกว่าในการทดลอง ดังนั้นพวกมันจึงแสดงปรากฏการณ์บางอย่างที่ให้พลังงานที่สูงกว่าได้อย่างรวดเร็วกว่าแบริออนที่ประกอบด้วยกลุ่มควาร์กเดียวกันจะสามารถทำได้ ยกตัวอย่างเช่น ชาร์มควาร์กถูกพบเห็นเป็นครั้งแรกใน J/Psi meson (J/ψ) ในปี 1974 และ บอตทอมควาร์ก ใน upsilon meson (ϒ) ในปี 1977.

ใหม่!!: อันตรกิริยาอย่างอ่อนและมีซอน (อนุภาค) · ดูเพิ่มเติม »

สสารมืดร้อน

รมืดร้อน (Hot dark matter) เป็นรูปแบบหนึ่งของสสารมืดที่อยู่ในสมมุติฐาน ว่าประกอบด้วยอนุภาคที่เดินทางด้วยความเร็วสัมพัทธ์สูงยิ่งยวด สิ่งที่มีคุณลักษณะใกล้เคียงกับการเป็นสสารมืดร้อนมากที่สุด ได้แก่ นิวตริโน เนื่องจากมีมวลน้อยมากๆ และไม่มีปฏิกิริยาใดๆ กับอันตรกิริยาพื้นฐาน 2 ใน 4 อย่าง คือแรงแม่เหล็กไฟฟ้าและอันตรกิริยาอย่างเข้ม นิวตริโนมีปฏิกิริยากับอันตรกิริยาอย่างอ่อนและแรงโน้มถ่วง แต่แรงทั้งสองชนิดนี้เป็นแรงที่ตรวจจับได้ยากมาก การตรวจจับนิวตริโนจึงเป็นไปแทบไม่ได้ มีโครงการหลายโครงการเช่น Super-Kamiokande neutrino observatory ที่เกาะกิฟู ประเทศญี่ปุ่น กำลังศึกษาเรื่องราวของนิวตริโนอยู่ในปัจจุบัน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและสสารมืดร้อน · ดูเพิ่มเติม »

สถานะ (สสาร)

นะ (State of matter) เป็นความสัมพันธ์กับโครงสร้างทางเคมีและคุณสมบัติทางฟิสิกส์ เช่น ความหนาแน่น, โครงสร้างผลึก (crystal structure), ดรรชนีหักเหของแสง (refractive index) และอื่นๆ สถานะที่คุ้นเคยกันมาก ได้แก่ ของแข็ง, ของเหลว, และแก๊ส ส่วนสถานะที่ไม่เป็นที่รู้จักกันมากนัก ได้แก่ พลาสมา และ พลาสมาควาร์ก-กลูออน, โบส-ไอน์สไตน์ คอนเดนเซต และ เฟอร์มิโอนิค คอนเดนเซต, วัตถุประหลาด, ผลึกเหลว, ซูเปอร์ฟลูอิด ซูเปอร์โซลิด พาราแมกเนติก, เฟอโรแมกเนติก, เฟสของ วัสดุ แม่เหล็ก.

ใหม่!!: อันตรกิริยาอย่างอ่อนและสถานะ (สสาร) · ดูเพิ่มเติม »

สตีเฟน ฮอว์กิง

ตีเฟน วิลเลียม ฮอว์กิง (Stephen William Hawking; 8 มกราคม ค.ศ. 1942 – 14 มีนาคม ค.ศ. 2018) เป็นนักฟิสิกส์ทฤษฎีและนักจักรวาลวิทยา ศาสตราจารย์ประจำมหาวิทยาลัยเคมบริดจ์ หนังสือวิทยาศาสตร์ของเขาและการปรากฏตัวต่อสาธารณะได้ทำให้เขาเป็นผู้มีชื่อเสียงด้านวิชาการ ผลงานวิทยาศาสตร์สำคัญของเขาจนถึงปัจจุบันมีการบัญญัติทฤษฎีบทเกี่ยวกับภาวะเอกฐานเชิงความโน้มถ่วงในกรอบของทฤษฎีสัมพัทธภาพทั่วไป ร่วมกับโรเจอร์ เพนโรส และการทำนายเชิงทฤษฎีที่ว่าหลุมดำควรปล่อยรังสี ซึ่งปัจจุบันมีชื่อว่า รังสีฮอว์กิง (บางครั้งเรียก รังสีเบเคนสไตน์-ฮอว์กิง) ฮอว์กิงป่วยจากโรคอะไมโอโทรฟิก แลเทอรัล สเกลอโรซิส (ALS) ชนิดหายาก ซึ่งเริ่มมีอาการเร็ว แต่ดำเนินโรคช้า ทำให้เขามีอาการกล้ามเนื้ออ่อนแรงลงเรื่อย ๆ เป็นเวลาหลายสิบปี ปัจจุบันต้องสื่อสารโดยใช้อุปกรณ์สังเคราะห์เสียงพูด ควบคุมผ่านกล้ามเนื้อมัดเดียวในแก้ม เขาแต่งงานสองครั้งและมีลูกสามคน ฮอว์กิงประสบความสำเร็จกับผลงานวิทยาศาสตร์สำหรับบุคคลทั่วไป (popular science) ซึ่งเขาอภิปรายทฤษฎีของเขาและจักรวาลวิทยาโดยรวม ซึ่งมีประวัติย่อของกาลเวลา (A Brief History of Time) และจักรวาลในเปลือกนัท (The Universe in a Nutshell) ซึ่งอยู่ในรายการขายดีที่สุดของบริติชซันเดย์ไทมส์ทำลายสถิตินานถึง 237 สัปดาห์ สตีเฟน ฮอว์กิง เสียชีวิตในวันที่ 14 มีนาคม..

ใหม่!!: อันตรกิริยาอย่างอ่อนและสตีเฟน ฮอว์กิง · ดูเพิ่มเติม »

ห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน

ห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน คือหนึ่งในปฏิกิริยานิวเคลียร์ฟิวชั่นชนิดหนึ่งในจำนวนสองรูปแบบ ซึ่งดาวฤกษ์ใช้ในการแปลงไฮโดรเจนไปเป็นฮีเลียม ปฏิกิริยาอีกชนิดหนึ่งคือวงจรซีเอ็นโอ (วงจรปฏิกิริยาคาร์บอน-ไนโตรเจน-ออกซิเจน) สำหรับห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอนนั้นจะเกิดในดาวฤกษ์ที่มีขนาดประมาณดวงอาทิตย์หรือเล็กกว่า โดยปกติ ฟิวชั่นของโปรตอน-โปรตอน เกิดขึ้นได้ก็ต่อเมื่ออุณหภูมิ (หรือพลังงานจลน์) ของโปรตอนนั้นสูงมากจนสามารถเอาชนะแรงไฟฟ้าสถิตร่วมหรือ แรงผลักเนื่องจากประจุไฟฟ้าบวก (Coulomb repulsion) อาร์เธอร์ สแตนลีย์ เอ็ดดิงตัน เป็นผู้เสนอทฤษฎีนี้เมื่อช่วงคริสต์ทศวรรษ 1920 ว่า ปฏิกิริยาโปรตอน-โปรตอนเป็นหลักการพื้นฐานซึ่งดวงอาทิตย์และดาวฤกษ์อื่นๆ ใช้ในการเผาผลาญตนเอง ในยุคนั้นเชื่อกันว่าอุณหภูมิของดวงอาทิตย์ต่ำเกินไปที่จะฝ่ากำแพงคูลอมบ์ (Coulomb barrier) ได้ แต่หลังจากวิวัฒนาการด้านกลศาสตร์ควอนตัม จึงมีการค้นพบอุโมงค์ควอนตัมของฟังก์ชันคลื่นของโปรตอนซึ่งทำให้สามารถเกิดปฏิกิริยาฟิวชั่นได้ที่อุณหภูมิที่ต่ำกว่าที่เคยคาดการณ์กันไว้ตามหลักของฟิสิกส์ดั้งเดิม อย่างไรก็ดี ยังไม่เป็นที่เข้าใจกันดีนักว่า ปฏิกิริยาโปรตอน-โปรตอน ดำเนินไปอย่างไร เนื่องจากผลผลิตจากปฏิกิริยาที่เห็นชัดที่สุด คือฮีเลียม-2 นั้นเป็นสสารที่ไม่เสถียรและจะแยกตัวออกกลายไปเป็นคู่โปรตอนตามเดิม ในปี..

ใหม่!!: อันตรกิริยาอย่างอ่อนและห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: อันตรกิริยาอย่างอ่อนและอะตอม · ดูเพิ่มเติม »

อัลเบิร์ต ไอน์สไตน์

แอลเบิร์ต ไอน์สไตน์ (Albert Einstein, อัลแบร์ท ไอน์ชไตน์; 14 มีนาคม พ.ศ. 2422 – 18 เมษายน พ.ศ. 2498) เป็นนักฟิสิกส์ทฤษฎี ในวันที่ 15 กุมภาพันธ์ 2428 ชาวเยอรมันเชื้อสายยิว (ตามลำดับ) ซึ่งเป็นที่ยอมรับกันอย่างกว้างขวางว่าเป็นนักวิทยาศาสตร์ที่ยิ่งใหญ่ที่สุดในคริสต์ศตวรรษที่ 20 เขาเป็นผู้เสนอทฤษฎีสัมพัทธภาพ และมีส่วนร่วมในการพัฒนากลศาสตร์ควอนตัม สถิติกลศาสตร์ และจักรวาลวิทยา เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ใน..

ใหม่!!: อันตรกิริยาอย่างอ่อนและอัลเบิร์ต ไอน์สไตน์ · ดูเพิ่มเติม »

อันตรกิริยาพื้นฐาน

อันตรกิริยาพื้นฐาน (fundamental interaction; บางครั้งก็เรียกว่า แรงพื้นฐาน) ในทางฟิสิกส์ คือวิธีการที่อนุภาคชนิดเรียบง่ายที่สุดในเอกภพกระทำต่อกันและกัน อันตรกิริยานั้นจะถือว่าเป็นอันตรกิริยาพื้นฐานเมื่อมันไม่สามารถอธิบายในรูปแบบอันตรกิริยาอื่นใดได้อีก มีอันตรกิริยาพื้นฐานอยู่ 4 ชนิดที่เรารู้จัก ได้แก่ แรงแม่เหล็กไฟฟ้า อันตรกิริยาอย่างเข้ม อันตรกิริยาอย่างอ่อน (บางครั้งก็เรียกว่า แรงนิวเคลียร์ชนิดเข้ม กับ แรงนิวเคลียร์ชนิดอ่อน) และแรงโน้มถ่วง แรงสามชนิดแรกนั้นสามารถอธิบายได้ในรูปแบบของกระบวนการคำนวณต่างๆ ด้วยทฤษฎีที่เรียกชื่อว่า perturbation theory โดยการพิจารณาการแลกเปลี่ยนโบซอนระหว่างอนุภาค ตารางต่อไปนี้แสดงข้อมูลเบื้องต้นเกี่ยวกับอันตรกิริยาแบบต่างๆ ค่าของแรงสัมพัทธ์และระยะที่มีผลที่แสดงในตารางนี้ จะมีความหมายก็ต่อเมื่ออยู่ในกรอบการพิจารณาทางทฤษฎีเท่านั้น พึงทราบด้วยว่าข้อมูลในตารางนี้อ้างอิงจากแนวคิดหลักซึ่งยังเป็นหัวข้อวิจัยที่กำลังดำเนินการอยู่ ในฟิสิกส์แผนใหม่ อันตรกิริยาระหว่างอนุภาคมักจะอธิบายได้ในรูปของการแลกเปลี่ยนหรือการคายและดูดกลืนแบบต่อเนื่องของอะไรบางอย่างที่เรียกอนุภาคสนาม (field particles) หรือ อนุภาคแลกเปลี่ยน (exchange particles) ในกรณีอันตรกิริยาไฟฟ้าอนุภาคสนามก็คือ โฟตอน (photon) ในภาษาของฟิสิกส์แผนใหม่เรากล่าวว่าแรงแม่เหล็กไฟฟ้ามีโฟตอนเป็นสื่อ (mediated) หรือพาหะ (carrier) และโฟตอนก็เป็นอนุภาคสนามของสนามแม่เหล็กไฟฟ้า เช่นกัน แรงนิวเคลียร์ก็มีสื่อเรียก      กลูออน (gluons) (ที่มีชื่อเช่นนี้ เพราะมัน “ยึดติด” นิวคลีออนไว้ด้วยกันเหมือนกาว) แรงอ่อนมีอนุภาคสนามเป็นสื่อ ชื่อ W และ Z โบซอน (bosons) และแรงโน้มถ่วงมีอนุภาคสนามเป็นพาหะเรียก      แกรวิตอน (gravitons) อันตรกิริยาเหล่านี้ พิสัยและความเข้มสัมพัทธ์ของมัน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและอันตรกิริยาพื้นฐาน · ดูเพิ่มเติม »

อันตรกิริยาอย่างเข้ม

นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.

ใหม่!!: อันตรกิริยาอย่างอ่อนและอันตรกิริยาอย่างเข้ม · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: อันตรกิริยาอย่างอ่อนและอิเล็กตรอน · ดูเพิ่มเติม »

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ใหม่!!: อันตรกิริยาอย่างอ่อนและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

ฮิกส์โบซอน

การทดลองการชนระหว่างอนุภาคโปรตอนสองตัว อาจทำให้เกิดสัญญาณการมีตัวตนของอนุภาคฮิกส์ ฮิกส์โบซอน (Higgs boson) เป็นอนุภาคมูลฐานชนิดหนึ่งที่อยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค มันเป็นการกระตุ้นควอนตัมของ สนามฮิกส์ —ซึ่งเป็นสนามพื้นฐานที่สำคัญอย่างมากต่อทฤษฎีฟิสิกส์ของอนุภาค ที่คาดว่าจะมีอยู่จริงแต่แรกในทศวรรษที่ 1960s, ที่ไม่เหมือนสนามที่เคยรู้จักอื่น ๆ เช่นสนามแม่เหล็กไฟฟ้า, และใช้ค่าคงที่ที่ไม่เป็นศูนย์เกือบทุกแห่ง คำถามที่ว่าสนามฮิกส์มีอยู่จริงหรือไม่ อยู่ในส่วนที่ไม่ได้ตรวจสอบสุดท้ายของแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาคและ "ปัญหาส่วนกลางของฟิสิกส์ของอนุภาค" การปรากฏตัวของสนามนี้, ตอนนี้เชื่อว่าจะมีการยืนยัน, อธิบายคำถามที่ว่าทำไมอนุภาคมูลฐานบางตัวจึงมีมวลเมื่อ, ตามการสมมาตร (ฟิสิกส์)ที่ควบคุมปฏิสัมพันธ์ของพวกมัน, พวกมันควรจะไม่มีมวล การมีอยู่ของสนามฮิกส์จะแก้ปัญหาที่มีมานานหลายอย่างอีกด้วย เช่นเหตุผลสำหรับอันตรกิริยาอย่างอ่อนที่มีช่วงระยะทำการสั้นมาก ๆ ถึงแม้ว่าจะมีการตั้งสมมติฐานว่าสนามฮิกส์แทรกซึมอยู่ในจักรวาลทั้งมวล หลักฐานสำหรับการดำรงอยู่ของมันได้เป็นเรื่องยากมากที่จะหาได้ ในหลักการ สนามฮิกส์สามารถตรวจพบได้โยการกระตุ้นตัวมัน เพื่อให้แสดงตัวออกมาเป็นอนุภาคฮิกส์ แต่วิธีนี้เป็นเรื่องยากมากในการทำขึ้นและตรวจสอบ ความสำคัญของคำถามพื้นฐานนี้ได้นำไปสู่​​การค้นหาถึง 40 ปี และการก่อสร้างหนึ่งของสิ่งอำนวยความสะดวกเพื่อการทดลองที่มีราคาแพงที่สุดและมีความซับซ้อนที่สุดในโลกจนถึงวันนี้ คือเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ของเซิร์น ในความพยายามที่จะสร้างฮิกส์โบซอนและอนุภาคอื่น ๆ สำหรับการสังเกตและการศึกษา เมื่อวันที่ 4 กรกฎาคม 2012, ได้มีการประกาศการค้นพบอนุภาคใหม่ที่มีมวลระหว่าง 125 ถึง 127 GeV/c2; นักฟิสิกส์สงสัยว่ามันเป็นฮิกส์โบซอน ตั้งแต่นั้นมา อนุภาคดังกล่าวแสดงออกที่จะประพฤติ, โต้ตอบ, และสลายตัวในหลาย ๆ วิธีที่ได้คาดการณ์ไว้ตามแบบจำลองมาตรฐาน นอกจากนั้นมันยังได้รับการยืนยันอย่างไม่เป็นทางการที่จะมี parity เป็น even และมีสปินเป็นศูนย์ และมีลักษณะพื้นฐาน (fundamental attribute) ของฮิกส์โบซอน 2 อย่าง นี้ดูเหมือนจะเป็นอนุภาคแบบสเกลาตัวแรกที่มีการค้นพบในธรรมชาติ การศึกษาอื่น ๆ มีความจำเป็นเพื่อตรวจสอบว่าอนุภาคที่ค้นพบใหม่นี้มีคุณสมบัติต่าง ๆ ตรงกับที่ได้มีการคาดการณ์ไว้สำหรับฮิกส์โบซอนโดยแบบจำลองมาตรฐานหรือตามที่ได้คาดการณ์โดยบางทฤษฎีว่าฮิกส์โบซอนแบบกลุ่มมีอยู่จริงหรือไม่ ฮิกส์โบซอนถูกตั้งชื่อตามปีเตอร์ ฮิกส์ ซึ่งเป็นหนึ่งในหกนักฟิสิกส์ที่ในปี 1964 ได้นำเสนอกลไกที่บ่งบอกถึงการมีอยู่ของอนุภาคดังกล่าว เมื่อวันที่ 10 ธันวาคม 2013 สองคนในนั้น, ปีเตอร์ ฮิกส์และ François Englert ได้รับรางวัลโนเบลสาขาฟิสิกส์สำหรับการทำงานและการทำนายของพวกเขา (โรเบิร์ต Brout ผู้ร่วมวิจัยของ Englert ได้เสียชีวิตในปี 2011 และรางวัลโนเบลไม่ได้ส่งให้หลังการเสียชีวิตของผู้ประพันธ์ตามปกติ) ในแบบจำลองมาตรฐาน, อนุภาคฮิกส์เป็น โบซอน ที่ไม่มีสปิน, ไม่มีประจุไฟฟ้าหรือประจุสี นอกจากนี้มันยังไม่เสถียรอย่างมาก การสลายตัวไปเป็นอนุภาคอื่น ๆ เกือบจะเกิดขึ้นได้ในทันที มันเป็นการกระตุ้นของควอนตัมของหนึ่งในสี่ส่วนประกอบของสนามฮิกส์ ตัวหลังของสนามฮิกส์ประกอบขึ้นเป็นสนามสเกลาร์ ที่มีส่วนประกอบที่เป็นกลางสองตัวและส่วนประกอบที่มีประจุไฟฟ้าสองตัวที่ก่อให้เกิดคู่ซับซ้อน (complex doublet) ของการสมมาตรแบบ isospin อย่างอ่อน SU(2) ในวันที่ 15 ธันวาคมปี 2015 ทั้งสองทีมของนักฟิสิกส์ที่ทำงานอิสระที่เซิร์นได้รายงานคำแนะนำเบื้องต้นของการเป็นไปได้ของอนุภาคย่อยใหม่ ถ้าจริง อนุภาคสามารถเป็นได้ทั้งรุ่นที่หนักกว่าของฮิกส์โบซอน หรือเป็น Graviton อย่างใดอย่างหนึ่ง อนุภาคชนิดนี้มีบทบาทพิเศษในแบบจำลองมาตรฐาน กล่าวคือเป็นอนุภาคที่อธิบายว่าทำไมอนุภาคมูลฐานชนิดอื่น เช่น ควาร์ก อิเล็กตรอน ฯลฯ (ยกเว้นโฟตอนและกลูออน) ถึงมีมวลได้ และที่พิเศษกว่าคือ สามารถอธิบายว่าทำไมอนุภาคโฟตอนถึงไม่มีมวล ในขณะที่อนุภาค W และ Z โบซอนถึงมีมวลมหาศาล ซึ่งมวลของอนุภาคมูลฐาน รวมไปถึงความแตกต่างระหว่างแรงแม่เหล็กไฟฟ้าอันเกิดจากอนุภาคโฟตอน และอันตรกิริยาอย่างอ่อนอันเกิดจากอนุภาค W และ Z โบซอนนี่เอง เป็นผลสำคัญอย่างยิ่งที่ประกอบกันเกิดเป็นสสารในหลายรูปแบบ ทั้งที่เรามองเห็นและมองไม่เห็น ทฤษฎีอิเล็กโตรวีค (electroweak) กล่าวไว้ว่า อนุภาคฮิกส์เป็นตัวผลิตมวลให้กับอนุภาคเลปตอน (อิเล็กตรอน มิวออน เทา) และควาร์ก เนื่องจากอนุภาคฮิกส์มีมวลมากแต่สลายตัวแทบจะทันทีที่ก่อกำเนิดขึ้นมา จึงต้องใช้เครื่องเร่งอนุภาคที่มีพลังงานสูงมากในการตรวจจับและบันทึกข้อมูล ซึ่งการทดลองเพื่อพิสูจน์ความมีตัวตนของอนุภาคฮิกส์นี้จัดทำโดยองค์การวิจัยนิวเคลียร์ยุโรป (CERN) โดยทดลองภายในเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ (LHC) และเริ่มต้นการทดลองตั้งแต่ต้นปี 2010 จากการคำนวณตามแบบจำลองมาตรฐานแล้ว เครื่องเร่งอนุภาคจะต้องใช้พลังงานสูงถึง 1.4 เทระอิเล็กตรอนโวลต์ (TeV) ในการผลิตอนุภาคมูลฐานให้มากพอที่จะตรวจวัดได้ ดังนั้นจึงได้มีการสร้างเครื่องชนอนุภาคขนาดใหญ่ (LHC) ดังกล่าวขึ้นมาเพื่อทำการทดลองพิสูจน์ความมีตัวตนของอนุภาคชนิดนี้ วันที่ 12 ธันวาคม 2554 ทีม ATLAS และทีม CMS ของเซิร์น ประกาศว่าได้ค้นพบข้อมูลที่อาจแสดงถึงการค้นพบฮิกส์โบซอน และในวันที่ 4 กรกฎาคม 2555 ทั้งสองทีมได้ออกมาประกาศว่าได้ค้นพบอนุภาคชนิดใหม่ ซึ่งเรียกได้ว่าเป็น "อนุภาคที่สอดคล้องกับอนุภาคฮิกส์" มากที่สุด มีมวลประมาณ 125 GeV/c2 (ประมาณ 133 เท่าของโปรตอน หรืออยู่ในระดับ 10-25 กิโลกรัม) หลังจากนั้นได้มีการวิเคราะห์และตรวจสอบผลอย่างละเอียดเพื่อพิสูจน์ว่าอนุภาคดังกล่าวเป็นอนุภาคฮิกส์จริง และในวันที่ 14 มีนาคม 2556 เซิร์นได้ยืนยันอย่างไม่เป็นทางการว่าอนุภาคที่ตรวจพบจากการทดลองครั้งนี้เป็นอนุภาคฮิกส์ตามทฤษฎีที่ทำนายไว้ ซึ่งจะเป็นหลักฐานชิ้นสำคัญที่สุดที่สนับสนุนแบบจำลองมาตรฐาน นำไปสู่การศึกษาฟิสิกส์สาขาใหม่ แนวคิดเกี่ยวกับอนุภาคฮิกส์ และสนามฮิกส์ (Higgs field) เกิดขึ้นราวปี 2507 โดยนักวิทยาศาสตร์หลายคน ได้แก่ ฟร็องซัว อ็องแกลร์ (François Englert) และ โรเบิร์ต เบราท์ (Robert Brout) ในเดือนสิงหาคม ปีเตอร์ ฮิกส์ ในเดือนตุลาคม รวมถึงงานวิจัยอิสระอีกสามชุดโดย เจอรัลด์ กูรัลนิค (Gerald Guralnik) ซี.อาร.เฮเกน (C. R. Hagen) และ ทอม คิบเบิล (Tom Kibble) ในฤดูใบไม้ผลิปีก่อนหน้าคือ ปี 2506 เลออน เลเดอร์แมน นักฟิสิกส์รางวัลโนเบลชาวอเมริกัน ตั้งชื่ออนุภาคฮิกส์ว่า "อนุภาคพระเจ้า" (God particle) แต่นักวิทยาศาสตร์ที่มีชื่อเสียงหลายคนไม่เห็นด้วยและไม่ชอบชื่อนี้.

ใหม่!!: อันตรกิริยาอย่างอ่อนและฮิกส์โบซอน · ดูเพิ่มเติม »

ทฤษฎีการรวมแรงครั้งใหญ่

ทฤษฎีการรวมแรงครั้งใหญ่ (Grand Unified Theory หรือ GUT) เป็นทฤษฎีทางฟิสิกส์ที่อ้างอิงแบบจำลองหลายแบบที่คล้ายคลึงกันในการศึกษาฟิสิกส์อนุภาคที่ระดับพลังงานสูง โดยที่อันตรกิริยาพื้นฐาน 3 อย่างในแบบจำลองมาตรฐาน สามารถควบรวมกันได้ตามทฤษฎีเกจ (Guage Theory) ได้แก่ แรงแม่เหล็กไฟฟ้า อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน แทนที่จะต้องแบ่งแยกการพิจารณาออกเป็นสามแบบที่แตกต่างกัน การรวมแรงนี้มีความเป็นไปได้เนื่องจากระดับพลังงานที่ขึ้นอยู่กับค่าองค์ประกอบต่างๆ ในทฤษฎีสนามควอนตัม เรียกชื่อว่า renormalization group running ซึ่งจะยินยอมให้ค่าองค์ประกอบที่แตกต่างกันอย่างมากสามารถเปลี่ยนรูปไปที่ระดับพลังงานที่สูงมากยิ่งขึ้น โดยประมาณที่ 10^ GeV และระดับพลังงานของพลังค์ จากคุณสมบัตินี้ สถานการณ์จำลองของการรวมแรงในทางกายภาพจึงไม่สามารถหยั่งตรวจได้โดยตรงจากเครื่องชนอนุภาค แต่จะต้องตรวจผ่านการสังเกตการณ์ทางอ้อม เช่น การสลายตัวของโปรตอน หรือคุณสมบัติบางอย่างของนิวตริโน นอกเหนือจากนี้ ยังมีการคาดการณ์ว่าอาจเป็นไปได้ที่จะรวมเอา แรงโน้มถ่วง เข้ากับอันตรกิริยาทั้งสามอย่างตามทฤษฎีเกจ เพื่อให้กลายเป็น ทฤษฎีแห่งสรรพสิ่ง (Theory of everything) แต่ทฤษฎีการรวมแรงครั้งใหญ่นี้ยังมิได้รวมไปถึงการควบรวมอันตรกิริยาตามแบบจำลองมาตรฐานเข้ากับแรงโน้มถ่วงควอนตัม.

ใหม่!!: อันตรกิริยาอย่างอ่อนและทฤษฎีการรวมแรงครั้งใหญ่ · ดูเพิ่มเติม »

ทฤษฎีสนามควอนตัม

ทฤษฎีสนามควอนตัม (Quantum Field Theory หรือ QFT) คือทฤษฎีควอนตัมของสนามพลังงาน หรือ การใช้ทฤษฎีควอนตัมมาใช้กับระบบที่มีอนุภาคจำนวนมาก เพื่อใช้อธิบายปรากฏการณ์ทาง อิเล็กโตรไดนามิกส์ (โดยการควอนตัมสนามแม่เหล็กไฟฟ้า) เรียกว่าพลศาสตร์ไฟฟ้าควอนตัม (Quantum Electrodynamics) ต่อมาได้ขยายกรอบทางทฤษฎีเพื่ออธิบายสนามของแรงนิวเคลียร์แบบอ่อนร่วมด้วย เรียกว่าทฤษฎี อิเล็กโตร-วีก (Electro-Weak Theory) และเป็นพื้นฐานสำหรับการอธิบายแรงนิวเคลียร์แบบเข้มที่เรียกว่า ควอนตัมโครโมไดนามิกส์ (Quantum Chromodynamics) ทฤษฎีสนามควอนตัม (QFT) เป็นกรอบทฤษฎีสำหรับการสร้างแบบจำลองทางกลศาสตร์ควอนตั้มของสนามและระบบหลาย ๆ อย่างของวัตถุ (อยู่ในบริบทของสสารควบแน่น) ระบบทั้งสองซึ่งเป็นตัวแทนของระบบแบบคลาสสิกโดยเป็นจำนวนอนันต์ขององศาอิสร.

ใหม่!!: อันตรกิริยาอย่างอ่อนและทฤษฎีสนามควอนตัม · ดูเพิ่มเติม »

ทฤษฎีแม่เหล็กไฟฟ้า

ทฤษฎีแม่เหล็กไฟฟ้า (Electromagnetism) เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่เกี่ยวข้องกับการศึกษา แรงแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์ทางกายภาพชนิดหนึ่งที่เกิดขึ้นระหว่างอนุภาคใดๆที่มีประจุไฟฟ้า แรงแม่เหล็กไฟฟ้ามักจะแสดงสนามแม่เหล็กไฟฟ้าเช่นสนามไฟฟ้า, สนามแม่เหล็ก, และแสง แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่ปฏิสัมพันธ์พื้นฐานในธรรมชาติ อีกสามแรงพื้นฐานได้แก่ อันตรกิริยาอย่างเข้ม, อันตรกิริยาอย่างอ่อน และแรงโน้มถ่วง ฟ้าผ่าเป็นการระบายออกของไฟฟ้าสถิตแบบหนึ่งที่ไฟฟ้าสถิตจะเดินทางระหว่างสองภูมิภาคท​​ี่มีประจุไฟฟ้า แม่เหล็กไฟฟ้ามาจากภาษาอังกฤษ electromagnet คำนี้ป็นรูปแบบผสมของคำภาษากรีกสองคำได้แก่ ἤλεκτρον หมายถึง อิเล็กตรอน และ μαγνῆτιςλίθος (Magnetis Lithos) ซึ่งหมายถึง "หินแม่เหล็ก" ซึ่งเป็นแร่เหล็กชนิดหนึ่ง วิทยาศาสตร์ของปรากฏการณ์แม่เหล็กไฟฟ้าถูกกำหนดไว้ในความหมายของแรงแม่เหล็กไฟฟ้า บางครั้งถูกเรียกว่าแรงลอเรนซ์ (Lorentz force) ซึ่งประกอบด้วยทั้งไฟฟ้าและแม่เหล็กในฐานะที่เป็นสององค์ประกอบของปรากฏการณ์ แรงแม่เหล็กไฟฟ้ามีบทบาทสำคัญในการกำหนดคุณสมบัติภายในของวัตถุส่วนใหญ่ที่พบในชีวิตประจำวัน สสารทั่วไปจะได้รูปแบบของมันจากผลของแรงระหว่างโมเลกุลของโมเลกุลแต่ละตัวในสสาร อิเล็กตรอนจะถูกยึดเหนี่ยวตามกลไกคลื่นแม่เหล็กไฟฟ้าเข้ากับวงโคจรรอบนิวเคลียสเพื่อก่อตัวขึ้นเป็นอะตอมซึ่งเป็นองค์ประกอบหลักของโมเลกุล กระบวนการนี้จะควบคุมกระบวนการที่เกี่ยวข้องทั้งหลายในทางเคมีซึ่งเกิดขึ้นจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนในวงโคจรของอะตอมหนึ่งกับอิเล็กตรอนอื่นในวงโคจรของอะตอมที่อยู่ใกล้เคียงซึ่งจะถูกกำหนดโดยการปฏิสัมพันธ์ระหว่างแรงแม่เหล็กไฟฟ้ากับโมเมนตัมของอิเล็กตรอนเหล่านั้น มีคำอธิบายของสนามแม่เหล็กไฟฟ้าทางคณิตศาสตร์จำนวนมาก ในไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) สนามไฟฟ้าจะอธิบายถึงศักย์ไฟฟ้าและกระแสไฟฟ้า ในกฎของฟาราเดย์ สนามแม่เหล็กจะมาพร้อมกับการเหนี่ยวนำแม่เหล็กไฟฟ้าและแม่เหล็ก, และสมการของแมกซ์เวลจะอธิบายว่า สนามไฟฟ้าและสนามแม่เหล็กถูกสร้างขึ้นได้อย่างไร มีการเปลี่ยนแปลงซึ่งกันและกันอย่างไร และมีการเปลี่ยนแปลงโดยประจุและกระแสได้อย่างไร การแสดงเจตนาเป็นนัยในทางทฤษฎีของแรงแม่เหล็กไฟฟ้า โดยเฉพาะในการจัดตั้งของความเร็วของแสงที่ขึ้นอยู่กับคุณสมบัติของ "ตัวกลาง" ของการกระจายคลื่น (ความสามารถในการซึมผ่าน (permeability) และแรงต้านสนามไฟฟ้า (permittivity)) นำไปสู่​​การพัฒนาทฤษฎีสัมพัทธภาพพิเศษโดย อัลเบิร์ต ไอน์สไตน์ในปี 1905 แม้ว่าแรงแม่เหล็กไฟฟ้าถือเป็นหนึ่งในสี่แรงพื้นฐาน แต่ที่ระดับพลังงานสูงอันตรกิริยาอย่างอ่อนและแรงแม่เหล็กไฟฟ้าถูกรวมเป็นสิ่งเดียวกัน ในประวัติศาสตร์ของจักรวาล ในช่วงยุคควาร์ก แรงไฟฟ้าอ่อน (electroweak) จะหมายถึงแรง(แม่เหล็ก)ไฟฟ้า + (อันตรกิริยาอย่าง)อ่อน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและทฤษฎีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

ความโน้มถ่วง

หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.

ใหม่!!: อันตรกิริยาอย่างอ่อนและความโน้มถ่วง · ดูเพิ่มเติม »

ความโน้มถ่วงเชิงควอนตัม

ทฤษฎีโน้มถ่วงเชิงควอนตัม (Quantum Gravity: QG) เป็นทฤษฎีที่พยายามรวม กลศาสตร์ควอนตัม ซึ่งอธิบายแรงพื้นฐาน สามแรงคือ แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบเข้ม และแรงนิวเคลียร์แบบอ่อน เข้ากับ ทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ ซึ่งใช้อธิบายแรงโน้มถ่วง เป้าหมายของทฤษฎีนี้ก็คือ การอธิบายทฤษฎีสัมพัทธภาพทั่วไปในระดับพลังงานสูง และ ทฤษฎีควอนตัมในระดับสเกลใหญ่ภายใต้กฎหนึ่งเดียวเป็นทฤษฎีแห่งสรรพสิ่ง (Theory of Everything: TOE).

ใหม่!!: อันตรกิริยาอย่างอ่อนและความโน้มถ่วงเชิงควอนตัม · ดูเพิ่มเติม »

ควาร์ก

วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..

ใหม่!!: อันตรกิริยาอย่างอ่อนและควาร์ก · ดูเพิ่มเติม »

นิวทริโน

นิวทริโน (Neutrino) เป็นอนุภาคมูลฐาน ที่เป็นกลางทางไฟฟ้า และมีค่าสปิน (ฟิสิกส์)เท่ากับครึ่งจำนวนเต็ม นิวทริโน (ภาษาอิตาลีหมายถึง "สิ่งเป็นกลางตัวน้อย") ใช้สัญลักษณ์แทนด้วยอักษรกรีกว่า \nu_^ (นิว) มวลของนิวทริโนมีขนาดเล็กมากเมื่อเปรียบเทียบกับอนุภาคย่อยอื่นๆ และเป็นอนุภาคเพียงชนิดเดียวที่รู้จักในขณะนี้ที่มีความเป็นไปได้ว่าจะเป็นสสารมืด โดยเฉพาะอย่างยิ่งสสารมืดร้อน นิวทริโนเป็นเลปตอน กลุ่มเดียวกับอิเล็กตรอน มิวออน และเทา (อนุภาค) แต่ไม่มีประจุไฟฟ้า แบ่งเป็น 3 ชนิด (หรือ flavour) ได้แก่ อิเล็กตรอนนิวทริโน (Ve) มิวออนนิวทริโน (Vμ) และเทานิวทริโน (VT) แต่ละเฟลเวอร์มีคู่ปฏิปักษ์ (ปฏิยานุภาค) ของมันเรียกว่า "ปฏินิวทริโน" ซึ่งไม่มีประจุไฟฟ้าและมีสปินเป็นครึ่งเช่นกัน นิวทริโนถูกสร้างขึ้นในวิธีที่อนุรักษ์ เลขเลปตอน นั่นคือ เมื่อมี อิเล็กตรอนนิวทริโน ถูกสร้างขึ้น หนึ่งตัว จะมี โพซิตรอน (ปฏิอิเล็กตรอน) หนึ่งตัวถูกสร้างขึ้นด้วย และเมื่อมี อิเล็กตรอนปฏินิวทริโนหนึ่งตัวถูกสร้างขึ้น ก็จะมีอิเล็กตรอนหนึ่งตัวถูกสร้างขึ้นเช่นกัน นิวทริโนไม่มีประจุไฟฟ้า จึงไม่ถูกกระทบโดยแรงแม่เหล็กไฟฟ้าที่จะกระทำต่อทุกอนุภาคที่มีประจุไฟฟ้า และเนื่องจากมันเป็นเลปตอน จึงไม่ถูกกระทบโดยอันตรกิริยาอย่างเข้มที่จะกระทำต่อทุกอนุภาคที่ประกอบเป็นนิวเคลียสของอะตอม นิวทริโนจึงถูกกระทบโดย อันตรกิริยาอย่างอ่อน และ แรงโน้มถ่วง เท่านั้น แรงอย่างอ่อนเป็นปฏิสัมพันธ์ที่มีระยะทำการสั้นมาก และแรงโน้มถ่วงก็อ่อนแออย่างสุดขั้วในระยะทางระดับอนุภาค ดังนั้นนิวทริโนโดยทั่วไปจึงสามารถเคลื่อนผ่านสสารทั่วไปได้โดยไม่ถูกขวางกั้นและไม่สามารถตรวจจับได้ นิวทริโนสามารถสร้างขึ้นได้ในหลายวิธี รวมทั้งในหลายชนิดที่แน่นอนของการสลายให้กัมมันตรังสี, ในปฏิกิริยานิวเคลียร์ เช่นพวกที่เกิดขึ้นในดวงอาทิตย์, ในเครื่องปฏิกรณ์นิวเคลียร์, เมื่อรังสีคอสมิกชนกับอะตอมและในซูเปอร์โนวา ส่วนใหญ่ของนิวทริโนในบริเวณใกล้โลกเกิดจากปฏิกิริยานิวเคลียร์ในดวงอาทิตย์ ในความเป็นจริง นิวทรืโนจากดวงอาทิตย์ประมาณ 65 พันล้านตัว ต่อวินาทีเคลื่อนที่ผ่านทุก ๆ ตารางเซนติเมตรที่ตั้งฉากกับทิศทางของดวงอาทิตย์ในภูมิภาคของโลก นิวทริโนมีการ แกว่ง (oscillate) ไปมาระหว่างฟเลเวอร์ที่แตกต่างกันเมื่อมีการเคลื่อนที่ นั่นคิอ อิเล็กตรอนนิวทริโนตัวหนึ่งที่ถูกสร้างขึ้นในปฏิกิริยาการสลายให้อนุภาคบีตา อาจกลายเป็นมิวออนนิวทริโนหรือเทานิวทริโนหนึ่งตัวเมื่อมาถึงเครื่องตรวจจับ ซึ่งนิวทริโนแต่ละชนิดจะมีมวลไม่เท่ากัน ถึงแม้ว่ามวลเหล่านี้มีขนาดที่เล็กมาก จากการวัดทางจักรวาลวิทยา ได้มีการคำนวณว่าผลรวมของมวลนิวทริโนสามตัวน้อยกว่าหนึ่งในล้านส่วนของมวลอิเล็กตรอน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและนิวทริโน · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: อันตรกิริยาอย่างอ่อนและนิวตรอน · ดูเพิ่มเติม »

แบบจำลองมาตรฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ที่มีรุ่นตระกูลของสสารสามรุ่นโดยมี เกจโบซอน อยู่ในแถวที่สี่ และฮิกส์โบซอนอยู่ในแถวที่ห้า แบบจำลองมาตรฐาน (Standard Model) ของ ฟิสิกส์ของอนุภาค เป็นทฤษฎีหนึ่งที่เกี่ยวข้องกับปฏิสัมพันธ์ของนิวเคลียสที่เป็นแบบแม่เหล็กไฟฟ้า, ที่อ่อนแอ, และที่แข็งแกร่ง เช่นเดียวกับการแยกประเภทของอนุภาคย่อยของอะตอมที่เรารู้จักแล้วทั้งหมด มันถูกพัฒนาขึ้นในช่วงครึ่งหลังของศตวรรษที่ 20 ในฐานะที่เป็นความพยายามในความร่วมมือของนักวิทยาศาสตร์ทั่วโลก รูปแบบปัจจุบันได้รับการสรุปขั้นตอนสุดท้ายในช่วงกลางของทศวรรษที่ 1970 ภายใต้การยืนยันด้วยการทดลองของการดำรงอยุ่ของควาร์ก ตั้งแต่นั้นมา การค้นพบทอปควาร์ก (1995), เทานิวทริโน (2000), และเร็ว ๆ นี้ ฮิกส์โบซอน (2012), ได้เพิ่มเครดิตให้กับแบบจำลองพื้นฐาน เนื่องจากความสำเร็จของมันในการอธิบายความหลากหลายอย่างกว้างขวางของผลลัพธ์จากการทดลอง แบบจำลองพื้นฐานบางครั้งถูกพิจารณาว่าเป็น "ทฤษฏีของเกือบทุกสิ่ง" แม้ว่าแบบจำลองมาตรฐานจะถูกเชื่อว่าจะเป็นความสม่ำเสมอในทางทฤษฎีด้วยตัวมันเองก็ตาม และได้แสดงให้เห็นถึงความสำเร็จอย่างใหญ่หลวงและต่อเนื่องในการให้การคาดการณ์จากการทดลองที่ดี มันทิ้งปรากฏการณ์ที่อธิบายไม่ได้บางอย่างไว้ให้และมันให้ผลงานต่ำกว่าที่ประมาณการไว้ของการเป็นทฤษฎีที่สมบูรณ์แบบของการปฏิสัมพันธ์พื้นฐาน มันไม่ได้รวบรวมทฤษฎีที่สมบูรณ์ของแรงโน้มถ่วงSean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct.

ใหม่!!: อันตรกิริยาอย่างอ่อนและแบบจำลองมาตรฐาน · ดูเพิ่มเติม »

แรง

ในทางฟิสิกส์ แรง คือ อันตรกิริยาใด ๆ เมื่อไม่มีการขัดขวางแล้วจะเปลี่ยนแปลงการเคลื่อนที่ของวัตถุไป แรงที่สามารถทำให้วัตถุซึ่งมีมวลเปลี่ยนแปลงความเร็ว (ซึ่งรวมทั้งการเคลื่อนที่จากภาวะหยุดนิ่ง) กล่าวคือ ความเร่ง ซึ่งเป็นผลมาจากการใช้พลังงาน แรงยังอาจหมายถึงการผลักหรือการดึง แรงเป็นปริมาณที่มีทั้งขนาดหรือทิศทาง วัดได้ในหน่วยของนิวตัน โดยใช้สัญลักษณ์ทั่วไปเป็น F ตามกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน กล่าวว่าแรงลัพธ์ที่กระทำต่อวัตถุมีค่าเท่ากับอัตราของโมเมนตัมที่เปลี่ยนแปลงไปตามเวลา ถ้ามวลของวัตถุเป็นค่าคงตัว จากกฎข้อนี้จึงอนุมานได้ว่าความเร่งเป็นสัดส่วนโดยตรงกับแรงลัพธ์ที่กระทำต่อวัตถุในทิศทางของแรงลัพธ์และเป็นสัดส่วนผกผันกับมวลของวัตถุ แนวคิดเกี่ยวกับแรง ได้แก่ แรงขับซึ่งเพิ่มความเร็วของวัตถุให้มากขึ้น แรงฉุดซึ่งลดความเร็วของวัตถุ และทอร์กซึ่งทำให้เกิดการเปลี่ยนแปลงความเร็วในการหมุนของวัตถุ ในวัตถุที่มีส่วนขยาย แรงที่ทำกระทำคือแรงที่กระทำต่อส่วนของวัตถุที่อยู่ติดกัน การกระจายตัวของแรงดังกล่าวเป็นความเครียดเชิงกล ซึ่งไม่ทำให้เกิดความเร่งของวัตถุมื่อแรงสมดุลกัน แรงที่กระจายตัวกระทำบนส่วนเล็ก ๆ ของวัตถุอาจเรียกได้ว่าเป็นความดัน ซึ่งเป็นความเคลียดอย่างหนึ่งและถ้าไม่สมดุลอาจทำให้วัตถุมีความเร่งได้ ความเครียดมักจะทำให้วัตถุเกิดการเสียรูปของวัตถุที่เป็นของแข็งหรือการไหลของของไหล.

ใหม่!!: อันตรกิริยาอย่างอ่อนและแรง · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

ใหม่!!: อันตรกิริยาอย่างอ่อนและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

โพซิตรอน

ซิตรอน (positron) หรือ แอนติอิเล็กตรอน (antielectron) เป็นปฏิยานุภาคหรือปฏิสสารของอิเล็กตรอน โพซิตรอนมีประจุไฟฟ้าเป็น +1 มีสปินเป็น 1/2 และมีมวลเท่ากับอิเล็กตรอน ถ้าโพซิตรอนพลังงานต่ำชนกับอิเล็กตรอนพลังงานต่ำจะเกิดการประลัย (annihilation) คือมีการเกิดโฟตอนรังสีแกมมา 2 โฟตอนหรือมากกว่า โพซิตรอนอาจจะเกิดจากการสลายตัวของการปลดปล่อยโพซิตรอนกัมมันตรังสี (ผ่านอันตรกิริยาอย่างอ่อน) หรือโดยการผลิตคู่จากโฟตอนที่มีพลังงานเพียงพอ.

ใหม่!!: อันตรกิริยาอย่างอ่อนและโพซิตรอน · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: อันตรกิริยาอย่างอ่อนและโปรตอน · ดูเพิ่มเติม »

เลปตอน

อนุภาคต่างๆ ใน แบบจำลองมาตรฐาน เลปตอน (Lepton) เป็นอนุภาคมูลฐานชนิดหนึ่งที่มีสปิน (ฟิสิกส์)ครึ่งจำนวนเต็ม (สปิน) และไม่ประสพกับอันตรกิริยาอย่างเข้ม เลปตอนแบ่งออกเป็นสองชั้นหลัก ได้แก่ เลปตอนที่มีประจุไฟฟ้า (หรือที่เรียกว่า เลปตอนที่เหมือนอิเล็กตรอน) และเล็ปตอนนิวทรัล (เล็ปตอนเป็นกลาง) (หรือที่เรียกว่า นิวทรืโน) เลปตอนที่มีประจุสามารถรวมกับอนุภาคอื่นกลายเป็น อนุภาคผสมหลายอย่าง เช่นอะตอมและโพซิโทรเนียม ในขณะที่นิวทริโนยากที่จะปฏิสัมพันธ์กับผู้อื่น ดังนั้นมันจึงยากที่จะถูกพบเห็น พวกเลปตอนที่รู้จักกันดีคือ อิเล็กตรอน มีเลปตอนอยู่ทั้งสิ้น 6 ชนิด (flavour) แยกเป็น 3 ชั่วรุ่น (generation) ชั่วรุ่นที่หนึ่งเรียกว่า เลปตอนอิเล็กตรอน ประกอบด้วยอิเล็กตรอน (e-) และอิเล็กตรอนนิวตริโน (Ve) ชั่วรุ่นที่สองคือ เลปตอนมิวออน ประกอบด้วย มิวออน (μ-) และ มิวออนนิวตริโน (Vμ) ชั่วรุ่นที่สามคือ เลปตอนเทา ประกอบด้วย เทา (อนุภาค) (T-) และ เทานิวตริโน (VT) อิเล็กตรอนมีมวลน้อยที่สุดในหมู่เลปตอนที่มีประจุทั้งหมด มิวออนและเทาที่หนักที่สุดจะเปลี่ยนอย่างรวดเร็วไปเป็นอิเล็กตรอนผ่านทางกระบวนการของการสลายอนุภาค ซึ่งเป็นการแปลงจากสถานะมวลมากไปเป็นสถานะมวลน้อย ดังนั้นอิเล็กตรอนจึงเสถียรและเป็นเลปตอนแบบมีประจุที่พบมากที่สุดในจักรวาล ในขณะที่มิวออนและเทาสามารถถูกสร้างขึ้นมาได้เพียงแต่ในการชนกันที่พลังงานฟิสิกส์ที่สูงเท่านั้น (เช่นพวกที่เกี่ยวกับรังสีคอสมิกและพวกที่เกิดขึ้นในเครื่องเร่งอนุภาค เลปตอนมีคุณสมบัติที่เป็นเนื้อแท้หลายอย่าง รวมทั้ง ประจุไฟฟ้า สปิน และ มวล อย่างไรก็ตาม มันแตกต่างจากควาร์ก เพราะไม่อยู่ภายใต้ อันตรกิริยาอย่างเข้ม แต่อาจอยู่ภายใต้อันตรกิริยาพื้นฐานอื่นอีกสามอย่าง ซึ่งได้แก่ แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า (ไม่รวมพวกนิวทริโนซึ่งเป็นกลางทางไฟฟ้า) และ อันตรกิริยาอย่างอ่อน สำหรับทุกเฟลเวอร์ของเลปตอน พวกมันมี ปฏิยานุภาค เรียกว่า ปฏิเลปตอน ที่แตกต่างกันเฉพาะบางส่วนของคุณสมบัติ ซึ่งปฏิเลปตอนจะมี 'ขนาดเท่ากันแต่เครื่องหมายตรงข้าม' และบางทฤษฎีกล่าวว่านิวทริโนอาจเป็นตัวปฏิปักษ์ของมันเอง ซึ่งปัจจุบันยังไม่มีใครรู้ว่าเป็นเช่นนั้นจริงหรือไม่ เลปตอนที่มีประจุตัวแรกคือ อิเล็กตรอน ถูกตั้งทฤษฎีในกลางศตวรรษที่ 19 โดยนักวิทยาศาสตร์หลายคน และถูกค้นพบในปี 1897 โดย J. J. Thomson. เลปตอนตัวต่อมาที่ถูกค้นพบคือมิวออน โดย Carl D. Anderson ในปี 1936 ซึ่งในขณะนั้นถูกระบุว่าเป็นมีซอน การศึกษาต่อมาพบว่า มิวออนไม่มีคุณสมบัติของมีซอนอย่างที่คาดไว้ แต่ประพฤฒิตัวเหมือนอิเล็กตรอน เพียงแต่มีมวลมากกว่า ต้องใช้เวลาถึงปี 1947 เพื่อให้ได้หลักการของ "เลปตอน" ว่าเป็นครอบครัวหนึ่งของอนุภาคที่จะถูกนำเสนอ นิวทริโน และ อิเล็กตรอนนิวทริโน ถูกนำเสนอโดย Wolfgang Pauli ในปี 1930 เพื่ออธิบายลักษณะที่แน่นอนของ การสลายให้อนุภาคบีตา มันถูกสังเกตเห็นในการทดลองของ Cowan–Reines ที่ดำเนินการโดย Clyde Cowan และ Frederick Reines ในปี 1956. มิวออนนิวทริโน ถูกค้นพบในปี 1962 โดย Leon M. Lederman, Melvin Schwartz และ Jack Steinberger, และ เทา ถูกค้นพบระหว่างปี 1974 ถีงปี 1977 โดย Martin Lewis Perl และเพื่อนร่วมงานจาก Stanford Linear Accelerator Center และ Lawrence Berkeley National Laboratory. ขณะที่ เทานิวทริโน เพิ่งถูกประกาศการค้นพบ เมื่อ กรกฎาคม 2000 โดย DONUT collaboration จาก Fermilab เลปตอนเป็นชิ้นส่วนสำคัญใน แบบจำลองมาตรฐาน อิเล็กตรอนเป็นองค์ประกอบของอะตอม เคียงข้างกับ โปรตอน และ นิวตรอน ขณะที่ อะตอมแปลก ซึ่งมีมิวออนและเทา แทนที่จะเป็นอิเล็กตรอน สามารถถูกสังเคราะห์ขึ้นได้ เช่นเดียวกับอนุภาค เลปตอน-ปฏิเลปตอน เช่น โพซิโทรเนียม.

ใหม่!!: อันตรกิริยาอย่างอ่อนและเลปตอน · ดูเพิ่มเติม »

เส้นเวลาของบิกแบง

ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา คำว่า เส้นเวลาของบิกแบง คือประวัติของการเกิดจักรวาลที่สอดคล้องกับทฤษฏีบิกแบง โดยใช้ตัวแปรทางเวลาของจักรวาลในพิกัดเคลื่อนที่ เมื่อพิจารณาตรรกะจากการขยายตัวของเอกภพโดยใช้ทฤษฎีสัมพัทธภาพทั่วไป หากเวลาย้อนหลังไปจะทำให้ความหนาแน่นและอุณหภูมิมีค่าสูงขึ้นอย่างไม่จำกัดขณะที่เวลาในอดีตจำกัดอยู่ค่าหนึ่ง ภาวะเอกฐานเช่นนี้เป็นไปไม่ได้เพราะขัดแย้งกับทฤษฎีสัมพัทธภาพทั่วไป เป็นที่ถกเถียงกันอยู่มากกว่าเราสามารถประมาณภาวะเอกฐานได้ใกล้สักเพียงไหน (ซึ่งไม่มีทางประมาณไปได้มากเกินกว่ายุคของพลังค์) ภาวะเริ่มแรกที่มีความร้อนและความหนาแน่นสูงอย่างยิ่งนี้เองที่เรียกว่า "บิกแบง" และถือกันว่าเป็น "จุดกำเนิด" ของเอกภพของเราจากผลการตรวจวัดการขยายตัวของซูเปอร์โนวาประเภท Ia การตรวจวัดความแปรเปลี่ยนของอุณหภูมิในไมโครเวฟพื้นหลัง และการตรวจวัดลำดับวิวัฒนาการของดาราจักร เชื่อว่าเอกภพมีอายุประมาณ 13.73 ± 0.12 พันล้านปีG.

ใหม่!!: อันตรกิริยาอย่างอ่อนและเส้นเวลาของบิกแบง · ดูเพิ่มเติม »

เอนรีโก แฟร์มี

อนริโก แฟร์มี เอนริโก แฟร์มี (Enrico Fermi) (29 กันยายน พ.ศ. 2444 – 28 พฤศจิกายน พ.ศ. 2497) นักฟิสิกส์รางวัลโนเบลชาวอิตาลีผู้มีบทบาทสำคัญในการพัฒนาวิชานิวเคลียร์ฟิสิกส์ เป็นนักฟิสิกส์ที่เชี่ยวชาญทั้งการทดลองและทฤษฎี ซึ่งหาได้ยากยิ่งในวงการฟิสิกส์ปัจจุบัน.

ใหม่!!: อันตรกิริยาอย่างอ่อนและเอนรีโก แฟร์มี · ดูเพิ่มเติม »

4

4 (สี่) เป็นจำนวน ตัวเลข และเป็นชื่อของสัญลักษณ์ภาพ เป็นจำนวนธรรมชาติที่อยู่ถัดจาก 3 (สาม) และอยู่ก่อนหน้า 5 (ห้า).

ใหม่!!: อันตรกิริยาอย่างอ่อนและ4 · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

แรงนิวเคลียร์อย่างอ่อนแรงนิวเคลียร์อ่อนแรงนิวเคลียร์แบบอ่อน

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »