โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

นิวตรอน

ดัชนี นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

92 ความสัมพันธ์: บิกแบงฟลูออรีนฟิสิกส์นิวเคลียร์พ.ศ. 2475พลังงานนิวเคลียร์กระบวนการเผาไหม้คาร์บอนกระบวนการเผาไหม้นีออนกลูออนกากกัมมันตรังสีการกระตุ้นนิวตรอนการสลายให้กัมมันตรังสีการสลายให้อนุภาคบีตาการสังเคราะห์นิวเคลียสการจับยึดอิเล็กตรอนการจับยึดนิวตรอนการแบ่งแยกนิวเคลียสการแตกเป็นเสี่ยง (ฟิสิกส์)การเคลื่อนที่ (ฟิสิกส์)การเปลี่ยนความถี่ยีนอย่างไม่เจาะจงมวลวิกฤตมวลอะตอมมหาวิทยาลัยลิเวอร์พูลมหาวิทยาลัยเคมบริดจ์มหานวดารามีซอน (อนุภาค)ระดับอุณหภูมิของนิวตรอนรังสีแกมมารางวัลโนเบลสาขาฟิสิกส์ลีเซอ ไมท์เนอร์วัสดุฟิสไซล์สารเคมีหมู่เกาะแห่งเสถียรภาพห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอนอสมมาตรของแบริออนอะตอมอะตอมฮีเลียมอันตรกิริยาอย่างเข้มอันตรกิริยาของสปินกับออร์บิทอาวุธเทอร์โมนิวเคลียร์อนุภาคอนุภาคย่อยของอะตอมอนุภาคแอลฟาฮิเดะกิ ยุกะวะธาตุธีรเกียรติ์ เกิดเจริญทฤษฎีอะตอมดาวนิวตรอนดิวเทอเรียมควาร์กตัวหน่วงนิวตรอน...ตารางไอโซโทป (สมบูรณ์)ตารางไอโซโทป (แบ่งส่วน)ซีเวอร์ตปฏิกิริยาลูกโซ่นิวเคลียร์ประวัติศาสตร์ฟิสิกส์ปริมาณรังสีสมมูลนิวทริโนนิวคลีออนนิวไคลด์นิวเคลียสนิวเคลียสของอะตอมน้ำ (โมเลกุล)แบบจำลองชั้นพลังงานของนิวเคลียสแบริออนแฟรนเซียมแรงนิวเคลียร์แหล่งกำเนิดนิวตรอนแฮดรอนแคลิฟอร์เนียมโปรตอนไอน์สไตเนียมไอโซโทปไอโซโทปของพลูโทเนียมไอโซโทปของแฟรนเซียมไอโซโทปเสถียรไฮโดรเจนเชื้อเพลิงนิวเคลียร์เฟอร์มิออนเฟอร์เมียมเลขมวลเลขนิวตรอนเลปตอนเส้นเวลาของบิกแบงเส้นเวลาของยุคใหม่เอนรีโก แฟร์มีเอ็ดเวิร์ด เทลเลอร์เครื่องปฏิกรณ์ความร้อนนิวตรอนเครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวดเซอร์โคเนียมเนบิวลาHE 1523-0901S-process ขยายดัชนี (42 มากกว่า) »

บิกแบง

ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา บิกแบง (Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี..

ใหม่!!: นิวตรอนและบิกแบง · ดูเพิ่มเติม »

ฟลูออรีน

ฟลูออรีน (Fluorine) (จากภาษาละติน Fluere แปลว่า "ไหล") เป็นธาตุเคมีที่เป็นพิษและทำปฏิกิริยาได้มากที่สุด มีสัญลักษณ์ F และเลขอะตอม 9 เป็นธาตุแฮโลเจนที่เป็นเบาที่สุดและมีค่าอิเล็กโทรเนกาติวิตีมากที่สุด มันปรากฎอยู่ในรูปของแก๊สสีเหลืองที่ภาวะอุณหภูมิและความดันมาตรฐาน ธาตุนี้ทำปฏิกิริยาได้เกือบทุกธาตุรวมทั้งแก๊สมีตระกูลบางตัว มีสมบัติเป็นอโลหะมากที่สุด (ถ้าไม่รวมแก๊สมีตระกูล).

ใหม่!!: นิวตรอนและฟลูออรีน · ดูเพิ่มเติม »

ฟิสิกส์นิวเคลียร์

ฟิสิกส์นิวเคลียร์ (Nuclear physics) หรือฟิสิกส์ของนิวเคลียส เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่ศึกษาองค์ประกอบต่าง ๆ และปฏิสัมพันธ์ระหว่างกันของนิวเคลียสทั้งหลายของอะตอม การประยุกต์ใช้ฟิสิกส์นิวเคลียร์ที่ทราบกันดีที่สุดคือ การผลิตไฟฟ้าจากพลังงานนิวเคลียร์และเทคโนโลยีอาวุธนิวเคลียร์ แต่การวิจัยได้ประยุกต์ในหลายสาขา เช่น เวชศาสตร์นิวเคลียร์และการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก การปลูกฝังไอออนในวิศวกรรมศาสตร์วัสดุ และการหาอายุจากคาร์บอนกัมมันตรังสีในวิชาภูมิศาสตร์และโบราณคดี นิวเคลียสเป็นสิ่งที่ยังไม่เป็นที่เข้าใจทางทฤษฏี เพราะมันประกอบไปด้วยอนุภาคจำนวนมาก (เช่น โปรตอน และนิวตรอน) แต่ไม่มีขนาดใหญ่พอที่จะอธิบายลักษณะได้ถูกต้องเหมือนอย่างผลึก จึงมีการใช้แบบจำลองของนิวเคลียสซึ่งใช้ศึกษาพฤติกรรมทางนิวเคลียร์ส่วนใหญ่ได้ โดยอาจใช้เป็นวิธีการเดียวหรือร่วมกับวิธีการอื่น.

ใหม่!!: นิวตรอนและฟิสิกส์นิวเคลียร์ · ดูเพิ่มเติม »

พ.ศ. 2475

ทธศักราช 2475 ตรงกั.

ใหม่!!: นิวตรอนและพ.ศ. 2475 · ดูเพิ่มเติม »

พลังงานนิวเคลียร์

รงไฟฟ้าพลังไอน้ำ Susquehanna แสดงเครื่องปฏิกรณ์ต้มน้ำร้อน. เครื่องปฏิกรณ์ตั้งอยู่ภายในอาคารเก็บกักรูปสี่เหลี่ยมที่อยู่ด้านหน้าของหอให้ความเย็น. โรงไฟฟ้านี้ผลิตกำลังไฟฟ้า 63 ล้านกิโลวัตต์ต่อวัน เรือรบพลังงานนิวเคลียร์ของสหรัฐฯ, จากบนลงล่าง เรือลาดตระเวน USS Bainbridge (CGN-25), USS Long Beach (CGN-9) and the USS Enterprise (CVN-65), เรือยาวที่สุดและเรือบรรทุกเครื่องบินพลังงานนิวเคลียร์ลำแรก. ภาพนี้ถ่ายในปี 1964 ระหว่างการทำสถิติการเดินทาง 26,540 nmi (49,190 km) รอบโลกใน 65 วันโดยไม่ต้องเติมเชื้อเพลิง. ลูกเรือแปรอักษรเป็นสูตรมวลพลังงานของไอน์สไตน์ว่า ''E.

ใหม่!!: นิวตรอนและพลังงานนิวเคลียร์ · ดูเพิ่มเติม »

กระบวนการเผาไหม้คาร์บอน

กระบวนการเผาไหม้คาร์บอน หรือ ฟิวชั่นคาร์บอน เป็นชุดของปฏิกิริยานิวเคลียร์ฟิวชั่นซึ่งเกิดขึ้นในดาวมวลมาก (อย่างน้อย 5 เท่าของมวลดวงอาทิตย์ตั้งแต่แรกเกิด) ซึ่งได้เผาผลาญธาตุที่เบากว่าในแกนกลาง กระบวนการดังกล่าวต้องการอุณหภูมิและความหนาแน่นที่สูงมาก (6×108 เคลวิน หรือ 50 กิโลอิเล็กตรอนโวลต์ และราว 2×108 กิโลกรัมต่อลูกบาศก์เมตร) ตัวเลขของอุณหภูมิและความหนาแน่นนี้เป็นเพียงแนวทางเท่านั้น ดาวมวลมากจำนวนมากได้เผาผลาญเชื้อเพลิงนิวเคลียร์เร็วกว่านี้ เนื่องจากมันต้องหักล้างกับแรงโน้มถ่วงที่มากกว่าเพื่อที่จะรักษาสภาวะสมดุลอุทกสถิต ซึ่งมีความหมายโดยทั่วไปว่า อุณหภูมิที่สูงกว่า ถึงแม้ว่าจะมีความหนาแน่นต่ำกว่าสำหรับดาวมวลมากที่น้อยกว่าClayton, Donald.

ใหม่!!: นิวตรอนและกระบวนการเผาไหม้คาร์บอน · ดูเพิ่มเติม »

กระบวนการเผาไหม้นีออน

กระบวนการเผาไหม้นีออน (Neon-burning process) เป็นชุดของปฏิกิริยานิวเคลียร์ฟิวชั่นซึ่งเกิดขึ้นในดาวฤกษ์มวลมาก (อย่างน้อย 8 เท่าของมวลดวงอาทิตย์) การเผาไหม้นีออนต้องใช้อุณหภูมิและความดันที่สูงมาก (ประมาณ 1.2 x 109 K หรือ 100 KeV และ 4 x 109 kg/m3) ที่อุณหภูมิสูงขนาดนั้น photodisintegration จึงส่งผลกระทบอย่างสำคัญ ทำให้นิวเคลียสอะตอมของนีออนบางตัวแตกตัวออกและปลดปล่อยอนุภาคอัลฟาออกมาClayton, Donald.

ใหม่!!: นิวตรอนและกระบวนการเผาไหม้นีออน · ดูเพิ่มเติม »

กลูออน

กลูออน (Gluon) เป็นอนุภาคมูลฐานที่ทำหน้าที่เป็นอนุภาคแลกเปลี่ยน (หรือเกจโบซอน) ของอันตรกิริยาอย่างเข้มระหว่างควาร์ก คล้ายกับการแลกเปลี่ยนโฟตอนในแรงแม่เหล็กไฟฟ้าระหว่างอนุภาคที่มีประจุ 2 ตัว เนื่องจากควาร์กนั้นประกอบกับขึ้นเป็นแบริออน และมีอันตรกิริยาอย่างเข้มเกิดขึ้นระหว่างแบริออนเหล่านั้น จึงอาจกล่าวได้ว่า แรงสี (color force) เป็นแหล่งกำเนิดของอันตรกิริยาอย่างเข้ม หรืออาจกล่าวว่าอันตรกิริยาอย่างเข้มเป็นเหมือนกับแรงสี ที่ครอบคลุมอนุภาคอื่นๆ มากกว่าแบริออน ตัวอย่างเช่น เมื่อโปรตอนและนิวตรอนดึงดูดกันและกันในนิวเคลียส เป็นต้น กล่าวในเชิงเทคนิค กลูออนก็คือเกจโบซอนแบบเวกเตอร์ที่เป็นตัวกลางของอันตรกิริยาอย่างเข้มของควาร์กในควอนตัมโครโมไดนามิกส์ (QCD) ซึ่งแตกต่างกับโฟตอนที่เป็นกลางทางไฟฟ้าของควอนตัมอิเล็กโตรไดนามิกส์ (QED) ตัวกลูออนเองนั้นมีประจุสี (color charge) ดังนั้นจึงมีส่วนอยู่ในอันตรกิริยาอย่างเข้มเพื่อทำหน้าที่เป็นตัวกลาง ทำให้การวิเคราะห์ QCD ทำได้ยากกว่า QED เป็นอย่างมาก.

ใหม่!!: นิวตรอนและกลูออน · ดูเพิ่มเติม »

กากกัมมันตรังสี

กากกัมมันตรังสี (Radioactive waste) เป็นของเสียที่ประกอบด้วยสารกัมมันตรังสี กากกัมมันตรังสีมักจะเป็น'ผลพลอยได้'ของการผลิตไฟฟ้าจากพลังงานนิวเคลียร์และการใช้งานอื่นๆจากปฏิกิริยานิวเคลียร์ฟิชชันหรือเทคโนโลยีนิวเคลียร์ เช่นการวิจัยนิวเคลียร์และการแพทย์นิวเคลียร์ กากกัมมันตรังสีเป็นอันตรายต่อสิ่งที่มีชีวิตและสิ่งแวดล้อม และถูกกำกับดูแลโดยหน่วยงานภาครัฐในการที่จะปกป้องสุขภาพของมนุษย์และสิ่งแวดล้อม ปฏิกิริยานิวเคลียร์ฟิชชันเกิดขึ้นเมื่ออนุภาคนิวตรอนไปกระทบกับนิวเคลียสของยูเรเนียมในสภาวะที่เหมาะสม ทำให้นิวเคลียสของยูเรเนียมแตกออกเป็นธาตุใหม่สองชนิดที่เป็นธาตุกัมมันตรังสีพร้อมทั้งให้พลังงานและนิวตรอนที่เกิดขึ้นใหม่ด้วย ธาตุใหม่สองชนิดที่เกิดจากการแตกตัวของยูเรเนียมนี้เองเรียกว่า กากกัมมันตรังสี ซึ่งจะติดอยู่ในเม็ดเชื้อเพลิง ยูเรเนียมที่ใช้เป็นเชื้อเพลิงในโรงไฟฟ้านิวเคลียร์จะถูกอัดเป็นเม็ดเซรามิก บรรจุเรียงตัวกันภายในแท่งเชื้อเพลิง จากนั้นจึงนำไปใช้งานในเครื่องปฏิกรณ์นิวเคลียร์ กากกัมมันตรังสีจากปฏิกิริยาการแตกตัวของยูเรเนียมที่เกิดอย่างต่อเนื่องเป็นลูกโซ่ภายในเครื่องปฏิกรณ์จะถูกกักเก็บอย่างมิดชิดภายในเม็ดเชื้อเพลิงที่มีปลอกแท่งเชื้อเพลิงห่อหุ้มอีกชั้นหนึ่ง ภายหลังการใช้งานแท่งเชื้อเพลิงไประยะหนึ่งจะมีกากกัมมันตรังสีเกิดสะสมขึ้นในเม็ดเชื้อเพลิงเป็นจำนวนมาก ทำให้ประสิทธิภาพของปฏิกิริยาลูกโซ่ลดลงจึงจำเป็นต้องมีการสับเปลี่ยนนำแท่งเชื้อเพลิงใช้แล้ว (spent nuclear fuel (SNF)) ออกมาและเติมแท่งเชื้อเพลิงใหม่เข้าไปเพื่อให้ปฏิกิริยาดำเนินต่อไปได้ นอกจากนี้ระหว่างการเดินเครื่องโรงไฟฟ้านิวเคลียร์ยังมีกากกัมมันตรังสีบางประเภทปะปนในน้ำระบายความร้อนและอุปกรณ์ภายในเครื่องปฏิกรณ์ จากการดูดจับอนุภาคนิวตรอน ด้วยเหตุนี้ทำให้ผู้ผลิตไฟฟ้ามีภาระรับผิดชอบในการจัดการกับกากกัมมันตรังสีที่เกิดขึ้น เพื่อป้องกันมิให้สารกัมมันตรังสีรั่วไหลออกสู่ภายนอกโรงไฟฟ้า ส่งผลกระทบต่อมนุษย์ และสิ่งแวดล้อม กัมมันตภาพรังสีสามารถสูญสลายตามธรรมชาติไปตามกาลเวลา ดังนั้นกากกัมมันตรังสีจะต้องมีการแยกและถูกคุมขังในสิ่งอำนวยความสะดวกเพื่อการกำจัดที่เหมาะสมเป็นระยะเวลานานเพียงพอจนกว่ามันจะไม่ทำให้เกิดอันตรายร้ายแรงอีกต่อไป ระยะเวลาของการเก็บกากของเสียจะขึ้นอยู่กับประเภทของของเสียและประเภทของไอโซโทปกัมมันตรังสี มันอาจมีระยะเวลาไม่กี่วันสำหรับไอโซโทปที่อายุสั้นมากๆจนถึงหลายล้านปีสำหรับเชื้อเพลิงนิวเคลียร์ใช้แล้ว วิธีการที่สำคัญในปัจจุบันในการจัดการกับกากกัมมันตรังสีคือการแยกและจัดเก็บสำหรับของเสียอายุสั้น การกำจัดโดยการฝังตื้นใกล้พื้นผิวโลกสำหรับของเสียระดับต่ำและระดับกลางบางส่วน และการฝังศพลึกหรือการแบ่งส่วน/การแปลงสภาพ (transmutation) สำหรับของเสียในระดับสูง บทสรุปของปริมาณกากกัมมันตรังสีและแนวทางการจัดการสำหรับประเทศที่พัฒนาแล้วส่วนใหญ่จะมีการนำเสนอและทบทวนเป็นระยะๆซึ่งเป็นส่วนหนึ่งของ 'อนุสัญญาร่วมว่าด้วยความปลอดภัยของระบบการบริหารจัดการเชื้อเพลิงใช้แล้วและความปลอดภัยของการจัดการของเสียกัมมันตรังสี' (Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management) ของสำนักงานพลังงานปรมาณูระหว่างประเทศ (International Atomic Energy Agency (IAEA)).

ใหม่!!: นิวตรอนและกากกัมมันตรังสี · ดูเพิ่มเติม »

การกระตุ้นนิวตรอน

การกระตุ้นนิวตรอน (Neutron activation) เป็นกระบวนการที่ นิวตรอน ไปเหนี่ยวนำให้เกิดกัมมันตภาพรังสีในวัสดุ และจะเกิดขึ้นเมื่อนิวเคลียสของอะตอมจับยึดนิวตรอนอิสระ กลายเป็นนิวเคลียสที่หนักกว่าและเข้าสู่สภาวะกระตุ้น นิวเคลียสที่ถูกกระตุ้นมักจะสลายตัวทันทีโดยการเปล่ง รังสีแกมมา หรือเปล่งอนุภาคเช่น อนุภาคบีตา อนุภาคแอลฟา ผลผลิตฟิชชัน และนิวตรอน (ในนิวเคลียร์ฟิชชัน) ดังนั้นกระบวนการของการจับยึดนิวตรอน แม้ว่าจะหลังจากการสลายตัวระดับกลางใด ๆ มักจะส่งผลให้เกิดผลผลิตจากการกระตุ้นที่ไม่เสถียร นิวเคลียสกัมมันตรังสีดังกล่าวสามารถแสดงครึ่งชีวิตในพิสัยตั้งแต่เศษส่วนขนาดเล็กของหนึ่งวินาทีจนถึงหลายปี การกระตุ้นนิวตรอนเป็นวิธีที่พบบ่อยเท่านั้นที่สามารถเหนี่ยวนำวัสดุที่มีความเสถียรให้กลายเป็นสารกัมมันตรังสีโดยเนื้อแท้ของมันเอง วัสดุที่เกิดขึ้นตามธรรมชาติทั้งหมด รวมทั้งอากาศ น้ำและดินสามารถถูกเหนี่ยวนำ (กระตุ้น) โดย การจับยึดนิวตรอน ให้เปล่งกัมมันตภาพรังสีในปริมาณที่แตกต่างกัน โดยเป็นผลมาจากการผลิตไอโซโทปรังสีที่อุดมไปด้วยนิวตรอน บางอะตอมต้องใช้นิวตรอนมากกว่าหนึ่งตัวเพื่อให้มันกลายเป็นไม่เสถียร ซึ่งทำให้พวกมันยากขึ้นที่จะกระตุ้นเพราะความน่าจะเป็นของการจับยึดสองเท่าหรือสามเท่าโดยหนึ่งนิวเคลียสจะยากกว่าของการจับยึดเพียงครั้งเดียว ยกต้วอย่างเช่นน้ำ มันถูกสร้างขึ้นจากไฮโดรเจนและออกซิเจน ไฮโดรเจนต้องมีการจับยึดสองครั้งเพื่อให้บรรลุความไม่เสถียรเป็นไฮโดรเจน-3 (ทริเทียม) ในขณะที่ออกซิเจนธรรมชาติ (ออกซิเจน-16) ต้องจับยึดสามครั้งเพื่อให้กลายเป็นออกซิเจน-19 ที่ไม่เสถียร ดังนั้นน้ำค่อนข้างยากที่จะกระตุ้นเมื่อเทียบกับเกลือทะเล (โซเดียมคลอไรด์) ซึ่งอะตอมของทั้งโซเดียมและคลอรีนจะไม่เสถียรด้วยการจับยึดเพียงครั้งเดียวในแต่ละอะตอม ข้อเท็จจริงเหล่านี้ได้ตระหนักถึงตั้งแต่แรกที่ชุดทดสอบอะตอมใน Operation Crossroads ในปี 1946.

ใหม่!!: นิวตรอนและการกระตุ้นนิวตรอน · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: นิวตรอนและการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การสลายให้อนุภาคบีตา

ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.

ใหม่!!: นิวตรอนและการสลายให้อนุภาคบีตา · ดูเพิ่มเติม »

การสังเคราะห์นิวเคลียส

การสังเคราะห์นิวเคลียส (Nucleosynthesis) คือกระบวนการในการสร้างนิวเคลียสของอะตอมใหม่ขึ้นจากนิวคลีออนเดิมที่มีอยู่ก่อนแล้ว (โปรตอนและนิวตรอน) เชื่อว่านิวคลีออนดั้งเดิมเองนั้นกำเนิดขึ้นจากการรวมตัวของควาร์ก-กลูออนพลาสมาในเหตุการณ์บิกแบงขณะที่มันมีอุณหภูมิเย็นลง 2 ล้านล้านองศา ไม่กี่นาทีหลังจากนั้น จากเพียงโปรตอนและนิวตรอนจึงได้เกิดเป็นนิวเคลียสของลิเทียมและเบอริลเลียม (ที่เลขมวล 7) แต่ก็มีเพียงจำนวนน้อยมาก จากนั้นกระบวนการฟิวชั่นจึงหยุดลงเมื่ออุณหภูมิและความหนาแน่นลดต่ำลงอย่างรวดเร็วจากการที่เอกภพขยายตัวออก กระบวนการแรกสุดของการสังเคราะห์นิวเคลียสดั้งเดิมนี้อาจเรียกชื่อว่า นิวคลีโอเจเนซิส ก็ได้ สำหรับการเกิดการสังเคราะห์นิวเคลียสในลำดับถัดมาของอะตอมธาตุหนัก เกิดขึ้นได้หลังจากการระเบิดของดาวฤกษ์มวลมากและซูเปอร์โนวาในช่วงเวลาเดียวกัน ตามหลักการของทฤษฎีนี้ ไฮโดรเจนและฮีเลียมจากบิกแบง (รวมถึงอิทธิพลจากความหนาแน่นของสสารมืด) ควบรวมกันกลายเป็นดาวฤกษ์ยุคแรกในราว 500 ล้านปีหลังจากบิกแบง ธาตุที่เกิดในช่วงการสังเคราะห์นิวเคลียสของดาวฤกษ์มีเลขอะตอมตั้งแต่ 6 (คาร์บอน) ไปจนถึงอย่างน้อย 98 (แคลิฟอร์เนียม) ซึ่งสามารถตรวจจับได้ในเส้นสเปกตรัมของซูเปอร์โนวา การเกิดซินทีสิสของธาตุหนักเหล่านี้เกิดได้ทั้งจากปฏิกิริยานิวเคลียร์ฟิวชั่น หรือจากนิวเคลียร์ฟิชชั่น และบางครั้งก็มีการสลายปลดปล่อยอนุภาคเบตาเกิดขึ้นด้ว.

ใหม่!!: นิวตรอนและการสังเคราะห์นิวเคลียส · ดูเพิ่มเติม »

การจับยึดอิเล็กตรอน

องรูปแบบของการจับยึดอิเล็กตรอน ''บน'': นิวเคลียสดูดซับอิเล็กตรอน ''ล่างซ้าย'': อิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอน "ที่หายไป" รังสีเอ็กซ์ที่มีพลังงานเท่ากับความแตกต่างระหว่างสองเปลือกอิเล็กตรอนจะถูกปล่อยออกมา ''ล่างขวา'': ใน Auger effect, พลังงานจะถูกปล่อยออกมาเมื่ออิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอนรอบใน พลังงานจะถูกย้ายไปที่อิเล็กตรอนรอบนอก อิเล็กตรอนรอบนอกจะถูกดีดออกจากอะตอม เหลือแค่ไอออนบวก การจับยึดอิเล็กตรอน Electron capture หรือ Inverse Beta Decay หรือ K-electron capture หรือ K-capture หรือ L-electron capture หรือ L-capture) เป็นกระบวนการที่นิวเคลียสที่ร่ำรวยโปรตอนของอะตอมที่เป็นกลางทางไฟฟ้าดูดซับอิเล็กตรอนที่อยู่วงในของอะตอม มักจะจากเปลือกอิเล็กตรอนที่วงรอบ K และวงรอบ L กระบวนการนี้จึงเป็นการเปลี่ยนโปรตอนของนิวเคลียสให้เป็นนิวตรอนและพร้อมกันนั้นได้มีการปลดปล่อยอิเล็กตรอนนิวทริโนออกมา ตามสมการ นิวไคลด์ลูกสาว (ผลผลิตที่ได้จากการสลาย) ถ้ามันอยู่ในสภาวะกระตุ้น มันก็จะเปลี่ยนผ่านไปอยู่ในสภาวะพื้น (ground state) ของมัน โดยปกติ รังสีแกมมาจะถูกปล่อยออกมาระหว่างการเปลี่ยนผ่านนี้ แต่การปลดการกระตุ้นนิวเคลียร์อาจเกิดขึ้นโดยการแปลงภายใน (internal conversion) ก็ได้เช่นกัน หลังการจับยึดอิเล็กตรอนรอบในโดยนิวเคลียส อิเล็กตรอนรอบนอกจะแทนที่อิเล็กตรอนที่ถูกจับยึดไปและโฟตอนลักษณะรังสีเอกซ์หนึ่งตัวหรือมากกว่าจะถูกปล่อยออกมาในกระบวนการนี​​้ การจับยึดอิเล็กตรอนบางครั้งยังเป็นผลมาจาก Auger effect ได้อีกด้วย ซึ่งในกระบวนการนี้อิเล็กตรอนจะถูกดีดออกมาจากเปลือกอิเล็กตรอนของอะตอมเนื่องจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนด้วยกันของอะตอมนั้นในกระบวนการของการแสวงหาสภาวะของอิเล็กตรอนพลังงานที่ต่ำกว่า ลูกโซ่การสลายจากตะกั่ว-212 กลายเป็นตะกั่ว-208, เป็นการแสดงผลผลิตที่ได้จากการสลายในช่วงกลาง แต่ละช่วงเป็นนิวไคลด์ลูกสาวของตัวบน(นิวไคลด์พ่อแม่) หลังการจับยึดอิเล็กตรอน เลขอะตอมจะลดลงไปหนึ่งหน่วย จำนวนนิวตรอนจะเพิ่มขึ้นไปหนึ่งหน่วย และไม่มีการเปลี่ยนแปลงในมวลอะตอม การจับอิเล็กตรอนง่าย ๆ เกิดในอะตอมที่เป็นกลางเนื่องจากการสูญเสียอิเล็กตรอนในเปลือกอิเล็กตรอนจะถูกทำให้สมดุลโดยการสูญเสียประจุนิวเคลียร์บวก อย่างไรก็ตามไอออนบวกอาจเกิดจากการปล่อยอิเล็กตรอนแบบ Auger มากขึ้น การจับยึดอิเล็กตรอนเป็นตัวอย่างหนึ่งของอันตรกิริยาอย่างอ่อน ซึ่งเป็นหนึ่งในสี่ของแรงพื้นฐาน การจับยึดอิเล็กตรอนเป็นโหมดขั้นปฐมของการสลายตัวสำหรับไอโซโทปที่มีโปรตอนอย่างมากในนิวเคลียส แต่ด้วยความแตกต่างของพลังงานไม่เพียงพอระหว่างไอโซโทปกับลูกสาวของมันในอนาคต (Isobar ที่มีประจุบวกน้อยลงหนึ่งหน่วย) สำหรับนิวไคลด์ที่จะสลายตัวโดยการปล่อยโพซิตรอน การจับยึดอิเล็กตรอนเป็นโหมดการสลายตัวแบบทางเลือกเสมอสำหรับไอโซโทปกัมมันตรังสีที่ไม่มีพลังงานเพียงพอที่จะสลายตัวโดยการปล่อยโพซิตรอน บางครั้งมันจึงถูกเรียกว่าการสลายให้บีตาผกผัน แม้ว่าคำนี้ยังสามารถหมายถึงปฏิสัมพันธ์ของอิเล็กตรอนปฏินิวทริโนกับโปรตอนอีกด้วย ถ้าความแตกต่างกันของพลังงานระหว่างอะตอมพ่อแม่และอะตอมลูกสาวมีน้อยกว่า 1.022 MeV, การปล่อยโพซิตรอนเป็นสิ่งต้องห้ามเนื่องจากพลังงานที่ใช้ในการสลายมีไม่เพียงพอที่จะยอมให้เกิดขึ้น ดังนั้นการจับยึดอิเล็กตรอนจึงเป็นโหมดการสลายตัวแต่เพียงอย่างเดียว ยกตัวอย่างเช่นรูบิเดียม-83 (37 โปรตอน, 46 นิวตรอน) จะสลายตัวไปเป็น Krypton-83 (36 โปรตอน, 47 นิวตรอน) โดยการจับยึดอิเล็กตรอนแต่เพียงอย่างเดียว (เพราะความแตกต่างพลังงานหรือพลังงานสลายมีค่าประมาณ 0.9 MeV เท่านั้น) โปรตอนอิสระปกติจะไม่สามารถเปลี่ยนไปเป็นนิวตรอนอิสระได้โดยกระบวนการนี​​้ โปรตอนและนิวตรอนจะต้องเป็นส่วนหนึ่งของนิวเคลียสที่มีขนาดใหญ่ \mathrm+\mathrm^- \rightarrow\mathrm+_e | \mathrm+\mathrm^- \rightarrow\mathrm+_e | ระลึกไว้ว่า ไอโซโทปกัมมันตภาพที่สามารถเกิด pure electron capture ได้ในทฤษฎีนั้นอาจถูกห้ามจาก radioactive decay หากพวกมันถูก ionized โดยสมบูรณ์ (คำว่า "stripped" ถูกใช้บางครั้งเพื่อบรรรยายไอออนเหล่านั้น) มีสมมติฐานว่าธาตุเหล่านั้น ถ้าหากถูกสร้างโดย r-process ในการระเบิด ซูเปอร์โนวา พวกมันจะถูกปลดปล่อยเป็น ionized โดยสมบูรณ์และจะไม่มี radioactive decay ตราบเท่าที่พวกมันไม่ได้ปะทะกับอิเล็กตรอนในสเปซภายนอก ความผิดปกติในการกระจายตัวของธาตุก็ถูกคิดว่าเป็นผลส่วนหนี่งจากผลกระทบของ electron capture นี้ พันธะเคมี ยังสามารถมีผลต่ออัตราของ electron capture ได้ระดับน้อย ๆ อีกด้วย (โดยทั่วไปน้อยกว่า 1%) ขึ้นอยู่กับความใกล้ของอิเล็กตรอนกับนิวเคลียส -->.

ใหม่!!: นิวตรอนและการจับยึดอิเล็กตรอน · ดูเพิ่มเติม »

การจับยึดนิวตรอน

ผังของนิวไคลด์ที่แสดงค่าตัดขวางการจับยึดนิวตรอนความร้อน การจับยึดนิวตรอน (Neutron capture) เป็นปฏิกิริยานิวเคลียร์แบบหนึ่งที่ นิวเคลียสของอะตอม หนึ่งตัวและ นิวตรอน หนึ่งตัวหรือมากกว่ามีการชนกันและรวมเข้าด้วยกันทำให้เกิดเป็นนิวเคลียสตัวใหม่ที่หนักขึ้น เนื่องจากนิวตรอนไม่มีประจุไฟฟ้า พวกมันจึงสามารถแทรกตัวเข้าสู่นิวเคลียสได้ง่ายกว่าโปรตอนประจุบวก ซึ่งจะถูกไล่ออกไปโดยไฟฟ้าสถิต การจับยึดนิวตรอนมีบทบาทสำคัญในการสังเคราะห์นิวเคลียสโดยรังสีคอสมิกของธาตุที่หนัก ในดวงดาว มันสามารถเกิดขึ้นในสองวิธี ได้แก่ กระบวนการอย่างรวดเร็ว (r-process) หรือกระบวนการอย่างช้า (s-process) นิวเคลียสของมวลที่มากกว่า 56 ไม่สามารถเกิดขึ้นจากปฏิกิริยานิวเคลียร์ความร้อนได้ (เช่นโดยนิวเคลียร์ฟิวชัน) แต่สามารถเกิดขึ้นได้โดยการจับยึดนิวตรอน.

ใหม่!!: นิวตรอนและการจับยึดนิวตรอน · ดูเพิ่มเติม »

การแบ่งแยกนิวเคลียส

prompt gamma rays) ออกมาด่วย (ไม่ได้แสดงในภาพ) การแบ่งแยกนิวเคลียส หรือ นิวเคลียร์ฟิชชัน (nuclear fission) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์หรือกระบวนการการสลายกัมมันตรังสีอย่างหนึ่งที่นิวเคลียสของอะตอม แตกออกเป็นชิ้นขนาดเล็ก (นิวเคลียสที่เบากว่า) กระบวนการฟิชชันมักจะผลิตนิวตรอนและโปรตอนอิสระ (ในรูปของรังสีแกมมา) พร้อมทั้งปลดปล่อยพลังงานออกมาจำนวนมาก แม้ว่าจะเป็นการปลดปล่อยจากการสลายกัมมันตรังสีก็ตาม นิวเคลียร์ฟิชชันของธาตุหนักถูกค้นพบเมื่อวันที่ 17 ธันวาคม 1938 โดยชาวเยอรมัน นายอ็อตโต ฮาห์นและผู้ช่วยของเขา นายฟริตซ์ Strassmann และได้รับการอธิบายในทางทฤษฎีในเดือนมกราคมปี 1939 โดยนาง Lise Meitner และหลานชายของเธอ นายอ็อตโต โรเบิร์ต Frisch.

ใหม่!!: นิวตรอนและการแบ่งแยกนิวเคลียส · ดูเพิ่มเติม »

การแตกเป็นเสี่ยง (ฟิสิกส์)

การแตกเป็นเสี่ยง (Spallation) เป็นกระบวนการหนึ่งที่ชิ้นส่วนของวัสดุจะถูกดีดออกมาจากร่างกายใด ๆ เนื่องจากการกระทบหรือความเครียด ในบริบทของกลศาสตร์การกระทบมันจะอธิบายการดีดออกหรือการระเหยของวัสดุจากเป้าหมายระหว่างการกระทบจากวัตถุวิถีโค้ง ในฟิสิกส์ของดาวเคราะห์ การแตกเป็นเสี่ยงจะอธิบายการกระทบจากอุกกาบาตบนพื้นผิวของดาวเคราะห์และผลกระทบของลมดวงดาวในบรรยากาศของดาวเคราะห์ ในบริบทของการทำเหมืองแร่หรือธรณีวิทยา การแตกเป็นเสี่ยงอาจหมายถึงชิ้นส่วนของหินที่แตกออกจากผิวหน้าของหินเนื่องจากความเครียดภายในหินนั้น โดยทั่วไปมันเกิดขึ้นบนผนังปล่องเหมือง ในบริบทของมานุษยวิทยา, การแตกเป็นเสี่ยงเป็นกระบวนการที่ใช้ในการทำเครื่องมือหินเช่นหัวลูกศรโดยการเคาะหรือทุบ ในฟิสิกส์นิวเคลียร์ การแตกเป็นเสี่ยงเป็นกระบวนการที่นิวเคลียสหนักปลดปล่อยนิวคลีออนออกมาเป็นจำนวนมากเป็นผลมาจากการถูกชนด้วยอนุภาคย่อยพลังงานสูง ดังนั้นน้ำหนักอะตอมจึงลดลงอย่างมาก การแตกเป็นเสี่ยงของนิวเคลียสจะเกิดขึ้นตามธรรมชาติใน ชั้นบรรยากาศของโลก เนื่องจากการกระทบของ รังสีคอสมิก และยังเกิดขึ้นบนผิวของวัตถุในอวกาศอีกด้วยเช่น อุกกาบาต และ ดวงจันทร์ หลักฐานของการแตกเป็นเสี่ยงจากรังสีคอสมิก (หรือเรียกว่า "การทำลาย" (spoliation)) เป็นหลักฐานที่แสดงว่าวัสดุที่พูดถึงได้ถูกเปิดรับบนพื้นผิวของวัตถุที่มันเป็นส่วนหนึ่ง และให้วิธีการวัดความยาวของระยะเวลาของการเปิดรับที่ องค์ประกอบของต้วรังสีคอสมิกเองยังแสดงให้เห็นว่าพวกมันได้รับความเดือดร้อนจากการแตกเป็นเสี่ยงก่อนที่จะตกถึงพื้นโลก เพราะสัดส่วนขององค์ประกอบแสงเช่น Li, B และ Be ในตัวพวกมันจะมีปริมาณสูงเกินกว่าค่าเฉลี่ยของความสมบูรณ์ในจักรวาล; องค์ประกอบเหล่านี้ในรังสีคอสมิกเห็นได้ชัดว่าเกิดจากก่อตัวขึ้นจากการแตกเป็นเสี่ยงของออกซิเจน, ไนโตรเจน, คาร์บอนและบางทีก็ซิลิกอน ในแหล่งที่มาของรังสีคอสมิกหรือในระหว่างการเดินทางที่แสนไกลของพวกมันจนถึงที่นี่ สารที่เกิดขึ้นจากการแตกเป็นเสี่ยงขององค์ประกอบพื้นราบภายใต้การโจมตี จากรังสีคอสมิก เช่น ไอโซโทป ของ อลูมิเนียม, เบริลเลียม, คลอรีน, ไอโอดีน, และ นีออน สารเหล่านี้ได้มีการตรวจพบบนโลก การแตกเป็นเสี่ยงของนิวเคลียสเป็นหนึ่งในกระบวนการที่ เครื่องเร่งอนุภาค อาจถูกใช้ในการผลิตลำแสงของ นิวตรอน.

ใหม่!!: นิวตรอนและการแตกเป็นเสี่ยง (ฟิสิกส์) · ดูเพิ่มเติม »

การเคลื่อนที่ (ฟิสิกส์)

การเคลื่อนที่ในฟิสิกส์ หมายถึง การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ถูกอธิบายด้วย การกระจัด ระยะทาง ความเร็ว ความเร่ง เวลา และอัตราเร็ว การเคลื่อนที่ของวัตถุจะถูกสังเกตได้โดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง ทำการวัดการเปลี่ยนตำแหน่งของวัตถุเทียบกับกรอบอ้างอิงนั้น ถ้าตำแหน่งของวัตถุไม่เปลี่ยนแปลงเมื่อเทียบกับกรอบอ้างอิง อาจกล่าวได้ว่าวัตถุนั้นอยู่นิ่งหรือตำแหน่งคงที่ (ระบบมีพลวัตแบบเวลายง) การเคลื่อนที่ของวัตถุจะไม่สามารถเปลี่ยนแปลงได้ เว้นเสียแต่มีแรงมากระทำ โมเมนตัมคือปริมาณที่ใช้ในการวัดการเคลื่อนที่ของวัตถุ โมเมนตัมของวัตถุเกี่ยวข้องกับมวลและความเร็วของวัตถุ และโมเมนตัมทั้งหมดของวัตถุทั้งหมดในระบบโดดเดี่ยว (อย่างใดอย่างหนึ่งไม่ได้รับผลกระทบจากปัจจัยภายนอก) ไม่เปลี่ยนแปลงตามเวลาตามที่อธิบายไว้ในกฎการอนุรักษ์โมเมนตัม เนื่องจากไม่มีกรอบอ้างอิงที่แน่นอนดังนั้นจึงไม่สามารถระบุการเคลื่อนที่แบบสัมบูรณ์ได้ ดังนั้นทุกสิ่งทุกอย่างในจักรวาลจึงสามารถเคลื่อนที่ได้ การเคลื่อนที่ใช้ได้กับวัตถุ อนุภาค การแผ่รังสี อนุภาคของรังสี อวกาศ ความโค้ง และปริภูมิ-เวลาได้ อนึ่งยังสามารถพูดถึงการเคลื่อนที่ของรูปร่างและขอบเขต ดังนั้นการเคลื่อนที่หมายถึงการเปลี่ยนแปลงอย่างต่อเนื่องในการกำหนดค่าของระบบทางกายภาพ ตัวอย่างเช่นเราสามารถพูดถึงการเคลื่อนที่ของคลื่นหรือการเคลื่อนที่ของอนุภาคควอนตัมซึ่งการกำหนดค่านี้ประกอบด้วยความน่าจะเป็นในการครอบครองตำแหน่งที่เฉพาะเจาะจง การเคลื่อนที่เกี่ยวข้องกับการเปลี่ยนตำแหน่ง เช่น ภาพนี้เป็นรถไฟใต้ดินออกจากสถานีด้วยความเร็ว.

ใหม่!!: นิวตรอนและการเคลื่อนที่ (ฟิสิกส์) · ดูเพิ่มเติม »

การเปลี่ยนความถี่ยีนอย่างไม่เจาะจง

ร์วินให้เป็น '''ทฤษฎีวิวัฒนาการสังเคราะห์แบบปัจจุบัน''' (Modern evolutionary synthesis) การเปลี่ยนความถี่ยีนอย่างไม่เจาะจง (Genetic drift, allelic drift, Sewall Wright effect) เป็นการเปลี่ยนความถี่รูปแบบยีน (คือ อัลลีล) ในกลุ่มประชากรเพราะการชักตัวอย่างอัลลีลแบบสุ่มของสิ่งมีชีวิต คือ อัลลีลที่พบในสิ่งมีชีวิตรุ่นลูก จะเป็นตัวอย่างของอัลลีลที่ชักมาจากพ่อแม่ โดยความสุ่มจะมีบทบาทกำหนดว่า สิ่งมีชีวิตรุ่นลูกนั้น ๆ จะรอดชีวิตแล้วสืบพันธุ์ต่อไปหรือไม่ ส่วน ความถี่อัลลีล (allele frequency) ก็คืออัตราที่ยีนหนึ่ง ๆ จะมีรูปแบบเดียวกันในกลุ่มประชากร การเปลี่ยนความถี่ยีนอาจทำให้อัลลีลหายไปโดยสิ้นเชิงและลดความแตกต่างของยีน (genetic variation) เมื่ออัลลีลมีก๊อปปี้น้อย ผลของการเปลี่ยนความถี่จะมีกำลังกว่า และเมื่อมีก๊อปปี้มาก ผลก็จะน้อยกว่า ในคริสต์ทศวรรษที่ 20 มีการอภิปรายอย่างจริงจังว่า การคัดเลือกโดยธรรมชาติสำคัญเทียบกับกระบวนการที่เป็นกลาง ๆ รวมทั้งการเปลี่ยนความถี่ยีนอย่างไม่เจาะจงแค่ไหน.

ใหม่!!: นิวตรอนและการเปลี่ยนความถี่ยีนอย่างไม่เจาะจง · ดูเพิ่มเติม »

มวลวิกฤต

มวลวิกฤต (critical mass) คือปริมาณที่น้อยที่สุดของวัสดุฟิสไซล์ที่จำเป็นสำหรับการรักษาปฏิกิริยาลูกโซ่นิวเคลียร์ให้ยั่งยิน.

ใหม่!!: นิวตรอนและมวลวิกฤต · ดูเพิ่มเติม »

มวลอะตอม

อะตอมของ ลิเทียม-7 ที่ทันสมัยประกอบไปด้วย 3 โปรตอน 4 นิวตรอน และ 3 อิเล็กตรอน (มวลของอิเล็กตรอนทั้งหมดจะเป็น ~1/4300 ของมวลของนิวเคลียส) มันมีมวล 7.016 u ลิเทียม-6 ที่หายากในธรรมชาติ (มวล 6.015 u) มีนิวตรอนเพียง 3 ตัว เป็นผลให้มวลอะตอม (เฉลี่ย) ลดลงเหลือเพียง 6.941 u มวลอะตอม (ma) (อังกฤษ: Atomic mass) คือมวลของอนุภาคของอะตอมหรืออนุภาคย่อยของอะตอมหรือโมเลกุลของธาตุใด ๆ มีหน่วยเป็น หน่วยมวลอะตอมหรือเอเอ็มยู (unified Atomic Mass Unit - UAMU) หรือแค่ "u" โดย 1 u มีค่าเท่ากับ 1/12 ของมวลของหนึ่งอะตอมนิ่งของคาร์บอน-12 หรือ 1.66 x 10-24 กรัม โดยน้ำหนักนี้เทียบมาจาก 1 อะตอมของไฮโดรเจน หรือ 1/16 ของ 1 อะตอมของออกซิเจน สำหรับอะตอมทั่วไป มวลของโปรตอนและนิวตรอนเกือบจะเป็นมวลทั้งหมดของอะตอม และมวลอะตอมที่มีค่าเป็น u เกือบจะเป็นค่าเดียวกับเลขมวล.

ใหม่!!: นิวตรอนและมวลอะตอม · ดูเพิ่มเติม »

มหาวิทยาลัยลิเวอร์พูล

มหาวิทยาลัยลิเวอร์พูล (University of Liverpool) เป็นมหาวิทยาลัยรัฐ ในสหราชอาณาจักรที่มีเปิดสอนในระบบที่อิงฐานการเรียนการสอนในห้องเรียนและบนพื้นฐานของการทำวิจัย ตั้งอยู่ในเมืองลิเวอร์พูล ประเทศอังกฤษ ก่อตั้งขึ้นเมื่อปี ค.ศ. 1881 ในรูปแบบของมหาวิทยาลัยวิทยาลัย (University College) โดยเปิดสอน 3 คณะ (Faculty) ที่ประกอบด้วยภาควิชา (Department) และสำนักวิชา (School) ต่างๆรวมแล้ว 35 สาขาวิชา มหาวิทยาลิเวอร์พูลเป็นมหาวิทยาลัยที่มีความก้าวหน้าอย่างโดดเด่นในด้านนวัตกรรมงานวิจัย โดยเป็นหนึ่งในสมาชิกของกลุ่มรัสเซล (Russell Group) ซึ่งเป็นกลุ่มของมหาวิทยาลัยในสหราชอาณาจักรที่ประกอบด้วยมหาวิทยาลัยวิจัยขนาดใหญ่ใน 18 มหาวิทยาลัยจากสมาชิก 19 แห่ง ติด 20 อันดับแรกของประเทศในด้านงบวิจัย และเป็นหนึ่งในสมาชิกกลุ่มความร่วมมือด้านงานวิจัยของมหาวิทยาลัยในเขตภาคเหนือของสหราชอาณาจักรอีกด้วย มหาวิทยาลัยลิเวอร์พูลเป็นมหาวิทยาลัยแห่งแรกในสหราชอาณาจักรที่สามารถสร้างมหาวิทยาลัยอิสระในประเทศจีนและเป็นมหาวิทยาลัยจีน-บริติชแห่งแรกของโลก เป็นมหาวิทยาลัยแห่งแรกของโลกที่เปิดสอนสาขาวิชาสมุทรศาสตร์ (Oceanography) การออกแบบเมือง (Civic Design) สถาปัตยกรรมศาสตร์ (Architecture) และชีวเคมี (Biochemistry) ทั้งนี้ มหาวิทยาลัยลิเวอร์พูลมีเงินสนับสนุนรายปีกว่า 410 ล้านปอนด์สเตอร์ลิง ซึ่งในจำนวนนี้ประกอบด้วบงบประมาณที่สนับสนุนด้านงานวิจัยถึง 150 ล้านปอนด์สเตอร์ลิง.

ใหม่!!: นิวตรอนและมหาวิทยาลัยลิเวอร์พูล · ดูเพิ่มเติม »

มหาวิทยาลัยเคมบริดจ์

มหาวิทยาลัยเคมบริดจ์ (University of Cambridge)ใช้ชื่อทางการว่า นายกสภา อนุสาสก และคณาจารย์แห่งมหาวิทยาลัยเคมบริดจ์ (The Chancellor, Masters, and Scholars of the University of Cambridge) เป็นสถาบันอุดมศึกษาขนาดกลางค่อนข้างใหญ่ในสหราชอาณาจักร มีความเก่าแก่เป็นอันดับที่สองของสหราชอาณาจักร ก่อตั้งเมื่อ พ.ศ. 1752 โดยมหาวิทยาลัยที่ก่อตั้งก่อนหน้านั้นคือ มหาวิทยาลัยอ๊อกซฟอร์ด นอกจากนี้ยังเป็นมหาวิทยาลัยเก่าแก่เป็นอันดับที่สี่ของโลกและยังเปิดดำเนินการอยู่อีกด้วย มหาวิทยาลัยก่อกำเนิดจากคณาจารย์และนักวิจัยของมหาวิทยาลัยซึ่งขัดแย้งกับชาวบ้านที่เมืองอ๊อกซฟอร์ด มหาวิทยาลัยเคมบริจด์และมหาวิทยาลัยอ๊อกซฟอร์ดมักได้รับการจัดอันดับต้น ๆ ของการจัดอันดับโดยสำนักต่าง ๆ จนมีการเรียกรวมกันว่า อ๊อกซบริดจ์ มหาวิทยาลัยเคมบริดจ์เป็นมหาวิทยาลัยที่มีผู้ได้รางวัลโนเบลสูงที่สุด ในบรรดามหาวิทยาลัยทั้งหลายในโลก กล่าวคือ 81 รางวัล นิสิตและคณาจารย์ของมหาวิทยาลัย จะถูกจัดให้สังกัดแต่ละวิทยาลัยแบบคณะอาศัย (College)หมายถึง คณะที่เป็นที่อยู่ของนักศึกษาจากหลายสาขาวิชา นักศึกษาจะพักอาศัยกินอยู่และทบทวนวิชาเรียนในคณะอาศัย แต่การเรียนการทำวิจัยต้องทำในคณะวิชา จำนวนทั้งสิ้น 31 แห่ง โดยคละกันมาจากคณะวิชา (School) 6 คณะ โดยวิทยาลัยแต่ละแห่งอาศัยบริหารงานอย่างเป็นอิสระไม่ขึ้นแก่กัน ลักษณะการบริหารเช่นนี้มีให้เห็นในมหาวิทยาลัยเคนต์ และมหาวิทยาลัยเดอแรม อาคารต่าง ๆ ของมหาวิทยาลัยเป็นอาคารแทรกตัวตามร้านรวงในเมือง แทนที่จะเป็นกลุ่มอาคารในพื้นที่ของตนเองเช่นมหาวิทยาลัยยุคใหม่ อาคารเหล่านั้นบางหลังมีความสำคัญทางประวัติศาสตร์อย่างมาก มหาวิทยาลัยจัดให้มีสำนักพิมพ์เป็นของตนเอง ซึ่งถือเป็นสำนักพิมพ์ที่ใหญ่ที่สุดเป็นอันดับสองของโลกที่สังกัดมหาวิทยาลัย นอกจากนี้มหาวิทยาลัยยังมีห้องสมุดขนาดใหญ่อีกด้ว.

ใหม่!!: นิวตรอนและมหาวิทยาลัยเคมบริดจ์ · ดูเพิ่มเติม »

มหานวดารา

ำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง มหานวดารา นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม.

ใหม่!!: นิวตรอนและมหานวดารา · ดูเพิ่มเติม »

มีซอน (อนุภาค)

ในฟิสิกส์ของอนุภาค มีซอน (Meson) (หรือ) คืออนุภาคย่อยในกลุ่มแฮดรอนที่ประกอบด้วยควาร์ก 1 ตัวและปฏิควาร์ก 1 ตัว เกาะเกี่ยวอยู่ด้วยกันด้วยแรงอย่างเข้ม เนื่องจากมีซอนประกอบด้วยอนุภาคย่อย มันจึงมีขนาดทางกายภาพ ด้วยเส้นผ่าศูนย์กลางประมาณหนึ่งเฟมโตเมตร(10−15 เมตร) ซึ่งมีขนาดประมาณ ของหนึ่งโปรตอนหรือหนึ่งนิวตรอน มีซอนทั้งหมดไม่เสถียร ที่มีอายุยืนที่สุดเพียงไม่กี่หนึ่งส่วนร้อยของหนึ่งไมโครวินาทีเท่านั้น มีซอนที่มีประจุจะสลายตัว (บางครั้งผ่านทางอนุภาคระดับกลาง) กลายเป็นอิเล็กตรอนและนิวทริโน มีซอนที่ไม่มีประจุอาจสลายตัวไปเป็นโฟตอน มีซอนไม่ได้เกิดจากการสลายให้กัมมันตรังสี แต่ปรากฏอยู่ในธรรมชาติเพียงแต่เป็นผลิตภัณฑ์ที่อายุสั้นมากของปฏิสัมพันธ์พลังงานสูงมากในสสาร ระหว่างกลุ่มอนุภาคที่ทำจากควาร์ก ตัวอย่างเช่น ในปฏิสัมพันธ์ รังสีคอสมิก อนุภาคดังกล่าวเป็นโปรตอนและนิวตรอนทั่วไป มีซอนยังเกิดขึ้นบ่อยอีกด้วยโดยการสร้างขึ้นในเครื่องเร่งอนุภาคพลังงานสูงที่มีการชนกันของกลุ่มโปรตอน, กลุ่มปฏิโปรตอนหรืออนุภาคอื่น ๆ ในธรรมชาติความสำคัญของมีซอนน้ำหนักเบาก็คือการที่พวกมันเป็นอนุภาคสนามควอนตัมที่สัมพันธ์กันที่สามารถส่ง แรงนิวเคลียร์ แบบเดียวกับที่โฟตอนเป็นอนุภาคที่ส่งแรงแม่เหล็กไฟฟ้า มีซอนที่มีพลังงานสูงกว่า (มวลมากกว่า) ได้ถูกสร้างขึ้นเพียงชั่วขณะหนึ่งตอน บิกแบง แต่ไม่ถูกพิจารณาว่ามีบทบาทสำคัญในธรรมชาติวันนี้ อย่างไรก็ตามอนุภาคดังกล่าวจะถูกสร้างขึ้นอย่างสม่ำเสมอในการทดลอง เพื่อที่จะเข้าใจธรรมชาติของควาร์กชนิดหนักที่ประกอบกันขึ้นเป็นมีซอนชนิดที่หนักกว่า มีซอนเป็นส่วนหนึ่งของครอบครัวอนุภาค แฮดรอน และถูกกำหนดให้เป็นเพียงอนุภาคที่ประกอบด้วยสองควาร์ก สมาชิกอื่น ๆ ของครอบครัวแฮดรอนคือ แบริออน ที่เป็นอนุภาคย่อยที่ประกอบด้วยสามควาร์กแทนที่จะเป็นสองควาร์ก การทดลองบางอย่างแสดงหลักฐานของ มีซอนแปลกใหม่ ซึ่งไม่ได้มีเนื้อหาควาร์กที่มีวาเลนซ์แบบเดิมที่มีหนึ่งควาร์กและหนึ่งปฏิควาร์ก เพราะว่าควาร์กมีสปินเท่ากับ ความแตกต่างในจำนวนควาร์กระหว่างมีซอนและแบริออนเป็นผลให้เกิดมีซอนสองควาร์กทั่วไปกลายเป็น โบซอน ในขณะที่แบริออนเป็น เฟอร์มิออน แต่ละชนิดของมีซอนมีปฏิยานุภาคที่สอดคล้องกัน (ปฏิมีซอน) ซึ่งควาร์กจะถูกแทนที่ด้วยปฏิควาร์กที่สอดคล้องกันของมันและถูกแทนที่ได้ในทางกลับกัน ตัวอย่างเช่น ไพออน บวก (π+) ถูกสร้างขึ้นจากอัพควาร์กหนึ่งตัวและดาวน์ปฏิควาร์กหนึ่งตัว และปฏิยานุภาคที่สอดคล้องกันของมันคือ ไพออนลบ (π-) ถูกสร้างขึ้นจากหนึ่งอัพปฏิควาร์กและหนึ่งดาวน์ควาร์ก เพราะว่ามีซอนประกอบด้วยควาร์ก มันจึงมีส่วนร่วมทั้งใน อันตรกิริยาอย่างอ่อน และ อันตรกิริยาอย่างเข้ม มีซอนที่มีประจุไฟฟ้าสุทธิก็ยังมีส่วนร่วมใน แรงแม่เหล็กไฟฟ้าเช่นกัน พวกมันจะถูกแยกประเภทตามเนื้อหาของควาร์ก, โมเมนตัมเชิงมุมรวม, เท่าเทียมกัน และคุณสมบัติอื่น ๆ อีกมากมายเช่น C-เท่าเทียมกัน และ G-เท่าเทียมกัน แม้ว่าจะไม่มีมีซอนที่เสถียรก็ตาม พวกที่มีมวลต่ำกว่าก็ยังเสถียรมากกว่ามีซอนทีมีมวลขนาดใหญ่ที่สุด และมีความง่ายกว่าที่จะสังเกตเห็นและศึกษาในเครื่องเร่งอนุภาค หรือในการทดลองรังสีคอสมิก พวกมันก็ยังมักจะมีมวลน้อยกว่าแบริออนอีกด้วย หมายความว่าพวกมันจะถูกผลิตขึ้นได้ง่ายกว่าในการทดลอง ดังนั้นพวกมันจึงแสดงปรากฏการณ์บางอย่างที่ให้พลังงานที่สูงกว่าได้อย่างรวดเร็วกว่าแบริออนที่ประกอบด้วยกลุ่มควาร์กเดียวกันจะสามารถทำได้ ยกตัวอย่างเช่น ชาร์มควาร์กถูกพบเห็นเป็นครั้งแรกใน J/Psi meson (J/ψ) ในปี 1974 และ บอตทอมควาร์ก ใน upsilon meson (ϒ) ในปี 1977.

ใหม่!!: นิวตรอนและมีซอน (อนุภาค) · ดูเพิ่มเติม »

ระดับอุณหภูมิของนิวตรอน

ระดับอุณหภูมิของนิวตรอน (neutron temperature) หรือ พลังงานนิวตรอน (neutron energy) จะแสดง พลังงานจลน์ ของ นิวตรอนอิสระ มีหน่วยเป็น อิเล็กตรอนโวลท์ คำว่า "อุณหภูมิ" ถูกใช้เพราะนิวตรอนร้อน(hot neutron), นิวตรอนความร้อน (thermal neutron) และนิวตรอนเย็น (cold neutron) ถูก หน่วง ในตัวกลางหนึ่งที่มีอุณหภูมิระดับหนึ่ง จากนั้นการกระจายพลังงานของนิวตรอนจะถูกปรับให้เป็นไปตาม การกระจายตัวแบบแมกซ์เวลล์-โบลส์แมนน์ หรือ Maxwellian distribution ที่เรียกว่าการเคลื่อนที่เชิงความร้อน (thermal motion) ในเชิงปริมาณ อุณหภูมิยิ่งสูง พลังงานจลน์ของนิวตรอนอิสระก็ยิ่งมาก พลังงานจลน์, ความเร็ว และ ความยาวคลื่นของนิวตรอน มีความสัมพันธ์ที่เป็นไปตาม ความสัมพันธ์ของเดอเบรย (De Broglie relation).

ใหม่!!: นิวตรอนและระดับอุณหภูมิของนิวตรอน · ดูเพิ่มเติม »

รังสีแกมมา

รังสีแกมมา (Gamma radiation หรือ Gamma ray) มีสัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17 หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น.

ใหม่!!: นิวตรอนและรังสีแกมมา · ดูเพิ่มเติม »

รางวัลโนเบลสาขาฟิสิกส์

หรียญรางวัลโนเบล รางวัลโนเบลสาขาฟิสิกส์ (Nobelpriset i fysik, Nobel Prize in Physics) เป็นรางวัลโนเบลหนึ่งใน 5 สาขา ริเริ่มโดยอัลเฟรด โนเบล ตั้งแต่ปี ค.ศ. 1895 โดยสถาบัน Royal Swedish Academy of Sciences แห่งประเทศสวีเดน เป็นผู้คัดเลือกผู้รับรางวัล ซึ่งมีผลงานวิจัยด้านฟิสิกส์อย่างโดดเด่น มีพิธีมอบเป็นครั้งแรก เมื่อ ค.ศ. 1901 พิธีมอบรางวัลมีขึ้นในวันที่ 10 ธันวาคมของทุกปี ซึ่งตรงกับวันคล้ายวันเสียชีวิตของอัลเฟรด โนเบล ที่กรุงสตอกโฮล์ม.

ใหม่!!: นิวตรอนและรางวัลโนเบลสาขาฟิสิกส์ · ดูเพิ่มเติม »

ลีเซอ ไมท์เนอร์

ลีเซอ ไมท์เนอร์ (Lise Meitner) เป็นนักฟิสิกส์สัญชาติออสเตรีย-สวีเดน ซึ่งศึกษาในด้านการสลายให้กัมมันตรังสีและฟิสิกส์นิวเคลียร์ เธอร่วมกับออทโท ฮาน เป็นผู้นำนักวิทยาศาสตร์กลุ่มเล็กๆที่ค้นพบนิวเคลียร์ฟิชชันของยูเรเนียมซึ่งเกิดขึ้นเมื่อได้รับนิวตรอนเพิ่มเข้าไป ไมท์เนอร์และฮานสามารถเข้าใจกระบวนการฟิชชันซึ่งแบ่งอะตอมนิวเคลียสของยูเรเนียมออกเป็น 2 อะตอมนิวเคลียสที่มีขนาดเล็กกว่า ซึ่งการจะเกิดขึ้นได้จำเป็นต้องปลดปล่อยพลังงานมหาศาลออกมา นิวเคลียร์ฟิชชั่นจากเครื่องปฏิกรณ์นิวเคลียร์นั้น สามารถใช้สร้างความร้อนและแปรเปลี่ยนเป็นพลังงานไฟฟ้า การเข้าใจถึงกระบวนการนี้ได้เป็นรากฐานของการสร้างอาวุธนิวเคลียร์โดยสหรัฐอเมริกาในช่วงสงครามโลกครั้งที่สอง ลีเซอ ไมท์เนอร์ เกิดในครอบครัวยิวในกรุงเวียนนา เมื่อแรกเกิดเธอมีชื่อว่า อลีเซอ บิดาของเธอเป็นนักกฎหมายชาวยิวกลุ่มแรกๆในออสเตรีย ตลอดช่วงการทำงานตลอดชีวิตเธอ เธอใช้เวลาอยู่ในกรุงเบอร์ลินยาวนานที่สุด โดยเป็นอาจารย์และหัวหน้าภาควิชาประจำสถาบันไคเซอร์วิลเฮล์ม เธอเป็นสตรีคนแรกที่ได้รับตำแหน่งศาสตร์จารย์ด้านฟิสิกส์ในประเทศเยอรมนี อย่างไรก็ตาม เธอถูกถอดออกจากตำแหน่งนี้เมื่อกฎหมายเนือร์นแบร์กเพื่อต่อต้านยิวถูกตราขึ้นโดยรัฐบาลนาซีในปี 1935 ภัยคุกคามจากระบอบนาซีทำให้เธอตัดสินใจอพยพไปยังสวีเดนในปี 1938 และอาศัยอยู่ที่นั่นเป็นเวลาหลายปีจนได้สัญชาติสวีเดน.

ใหม่!!: นิวตรอนและลีเซอ ไมท์เนอร์ · ดูเพิ่มเติม »

วัสดุฟิสไซล์

แผนภูมิของนิวไคลด์แสดงค่าตัดขวางฟิชชั่นของนิวตรอนความร้อน วัสดุฟิสไซล์ (fissile material) ในวิศวกรรมนิวเคลียร์, หมายถึงวัสดุที่สามารถรักษาปฏิกิริยาลูกโซ่นิวเคลียร์ฟิชชันให้ยั่งยืน.

ใหม่!!: นิวตรอนและวัสดุฟิสไซล์ · ดูเพิ่มเติม »

สารเคมี

รเคมี (chemical substance) เป็นสสารวัสดุ ที่ใช้ในโรงงานอุตสาหกรรมหรือได้จากกระบวนการเคมี อาท.

ใหม่!!: นิวตรอนและสารเคมี · ดูเพิ่มเติม »

หมู่เกาะแห่งเสถียรภาพ

Z.

ใหม่!!: นิวตรอนและหมู่เกาะแห่งเสถียรภาพ · ดูเพิ่มเติม »

ห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน

ห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน คือหนึ่งในปฏิกิริยานิวเคลียร์ฟิวชั่นชนิดหนึ่งในจำนวนสองรูปแบบ ซึ่งดาวฤกษ์ใช้ในการแปลงไฮโดรเจนไปเป็นฮีเลียม ปฏิกิริยาอีกชนิดหนึ่งคือวงจรซีเอ็นโอ (วงจรปฏิกิริยาคาร์บอน-ไนโตรเจน-ออกซิเจน) สำหรับห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอนนั้นจะเกิดในดาวฤกษ์ที่มีขนาดประมาณดวงอาทิตย์หรือเล็กกว่า โดยปกติ ฟิวชั่นของโปรตอน-โปรตอน เกิดขึ้นได้ก็ต่อเมื่ออุณหภูมิ (หรือพลังงานจลน์) ของโปรตอนนั้นสูงมากจนสามารถเอาชนะแรงไฟฟ้าสถิตร่วมหรือ แรงผลักเนื่องจากประจุไฟฟ้าบวก (Coulomb repulsion) อาร์เธอร์ สแตนลีย์ เอ็ดดิงตัน เป็นผู้เสนอทฤษฎีนี้เมื่อช่วงคริสต์ทศวรรษ 1920 ว่า ปฏิกิริยาโปรตอน-โปรตอนเป็นหลักการพื้นฐานซึ่งดวงอาทิตย์และดาวฤกษ์อื่นๆ ใช้ในการเผาผลาญตนเอง ในยุคนั้นเชื่อกันว่าอุณหภูมิของดวงอาทิตย์ต่ำเกินไปที่จะฝ่ากำแพงคูลอมบ์ (Coulomb barrier) ได้ แต่หลังจากวิวัฒนาการด้านกลศาสตร์ควอนตัม จึงมีการค้นพบอุโมงค์ควอนตัมของฟังก์ชันคลื่นของโปรตอนซึ่งทำให้สามารถเกิดปฏิกิริยาฟิวชั่นได้ที่อุณหภูมิที่ต่ำกว่าที่เคยคาดการณ์กันไว้ตามหลักของฟิสิกส์ดั้งเดิม อย่างไรก็ดี ยังไม่เป็นที่เข้าใจกันดีนักว่า ปฏิกิริยาโปรตอน-โปรตอน ดำเนินไปอย่างไร เนื่องจากผลผลิตจากปฏิกิริยาที่เห็นชัดที่สุด คือฮีเลียม-2 นั้นเป็นสสารที่ไม่เสถียรและจะแยกตัวออกกลายไปเป็นคู่โปรตอนตามเดิม ในปี..

ใหม่!!: นิวตรอนและห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอน · ดูเพิ่มเติม »

อสมมาตรของแบริออน

อสมมาตรของแบริออน (Baryon asymmetry) เป็นปัญหาทางฟิสิกส์เกี่ยวข้อเท็จจริงที่ปรากฏในปัจจุบันถึงความไม่สมดุลระหว่างสสารแบริออนกับแอนติแบริออนในเอกภพ ไม่ว่าแบบจำลองมาตรฐานในวิชาฟิสิกส์อนุภาค หรือทฤษฎีสัมพัทธภาพทั่วไป ก็ยังไมสามารถให้คำอธิบายที่แจ่มแจ้งได้ว่าทำไมจึงเป็นเช่นนั้น ตามสมมุติฐาน เอกภพมีภาวะเป็นกลางจากประจุทุกชนิด การเกิดบิกแบงควรจะทำให้เกิดสสารและปฏิสสารขึ้นเป็นจำนวนพอๆ กัน ซึ่งจะทำให้มันเกิดการหักล้างกันและกัน กล่าวคือ โปรตอนจะหักล้างกับแอนติโปรตอน อิเล็กตรอนจะหักล้างกับแอนติอิเล็กตรอน นิวตรอนจะหักล้างกับแอนตินิวตรอน เป็นเช่นนี้ไปเรื่อยๆ กับอนุภาคมูลฐานทุกชนิด ผลก็คือเอกภพจะเต็มไปด้วยทะเลโฟตอนโดยไม่มีสสารเกิดขึ้นเลย แต่เอกภพของเราไม่ได้เป็นเช่นนั้น หลังจากบิกแบงแล้ว มีบางสิ่งบางอย่างที่ทำให้กฎเกณฑ์ทางฟิสิกส์แตกต่างไปสำหรับสสารและปฏิสสาร มีทฤษฎีอยู่หลายทฤษฎีที่พยายามอธิบายปรากฏการณ์แบริโอเจเนซิส แต่ ณ ปัจจุบันยังไม่มีทฤษฎีที่เป็นเอกฉันท์ที่สามารถอธิบายปรากฏการณ์นี้ได้.

ใหม่!!: นิวตรอนและอสมมาตรของแบริออน · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: นิวตรอนและอะตอม · ดูเพิ่มเติม »

อะตอมฮีเลียม

อะตอมฮีเลียม (Helium atom) คืออะตอมของธาตุเคมีฮีเลียม ซึ่งฮีเลียมนั้นประกอบด้วยอิเล็กตรอนสองตัวที่ถูกแรงแม่เหล็กไฟฟ้ายึดติดไว้กับหนึ่งนิวเคลียสที่ประกอบด้วยสองโปรตอน พร้อมทั้งมีหนึ่งหรือสองนิวตรอน (ขึ้นอยู่กับไอโซโทป) ที่ยึดติดกันด้วยแรงอย่างเข้ม ในวิชากลศาสตร์ควอนตัม เรามักจะศึกษาอะตอมของไฮโดรเจน ซึ่งเป็นอะตอมที่มีโครงสร้างอย่างง่ายที่สุด อีกอะตอมหนึ่งที่เราชอบใช้ในการศึกษา คืออะตอมของฮีเลียม ฮีเลียมเป็นธาตุที่ประกอบไปด้วยอิเล็กตรอนจำนวนสองตัวซึ่งดึงดูดอยู่กับนิวเคลียสด้วยแรงทางแม่เหล็กไฟฟ้า นิวเคลียสประกอบด้วยโปรตอนจำนวนสองตัวและนิวตรอนจำนวนหนึ่งหรือสองตัวตามไอโซโทป ซึ่งยึดเหนี่ยวกันอยู่ภายในด้วยแรงนิวเคลียร์อย่างเข้ม สมการฮาร์มิลโทเนียนของอะตอมฮีเลียม คือ โดยที่ m คือมวลของอิเล็กตรอน (โดยแท้จริงแล้ว ต้องระบุเป็นมวลลดทอน แต่เนื่องจากมวลลดทอนมีค่าใกล้เคียงมวลของอิเล็กตรอน ดังนั้นเราจึงหาสามารถใช้มวลอิเล็กตรอนในการคำนวณได้) สมการฮาร์มิลโทเนียนประกอบไปด้วย ฮาร์มิลโทเนียนของไฮโดรเจน 2 พจน์ ซึ่งมาจากอิเล็กตรอนตัวที่ 1 และตัวที่ 2 ของฮีเลียม และพจน์สุดท้ายคือพจน์ที่อธิบายแรงผลักคูลอมบ์ของอิเล็กตรอนทั้ง 2 ตัว จากพจน์ของแรงคูลอมบ์ระหว่างอิเล็กตรอน เมื่อเราใช้วิธีการรบกวน (perturbation) ในการประมาณค่าหาพลังงานของสถานะพื้นของระดับพลังงานที่เลื่อนไป ∆E จะได้ว่าพลังงานในสถานะพื้นของอะตอมฮีเลียมมีค่าประมาณ E \sim-74.8 eV.

ใหม่!!: นิวตรอนและอะตอมฮีเลียม · ดูเพิ่มเติม »

อันตรกิริยาอย่างเข้ม

นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.

ใหม่!!: นิวตรอนและอันตรกิริยาอย่างเข้ม · ดูเพิ่มเติม »

อันตรกิริยาของสปินกับออร์บิท

ในการศึกษาฟิสิกส์ควอนตัม อันตรกิริยาของสปินกับออร์บิท (spin–orbit interaction, spin–orbit effect หรือ spin–orbit coupling) คืออันตรกิริยาระหว่างสปินของอนุภาคหนึ่งกับกับการเคลื่อนที่ของอนุภาคนั้น ตัวอย่างแรกที่สุดและเป็นตัวอย่างซึ่งเป็นที่รู้จักดีที่สุด คืออันตรกิริยาของสปินกับออร์บิทที่ทำให้เกิดการเคลื่อนตัวของระดับพลังงานอะตอมของอิเล็กตรอน อันเนื่องมาจากอันตรกิริยาทางแม่เหล็กไฟฟ้าระหว่างสปินของอิเล็กตรอนกับสนามแม่เหล็กที่เกิดจากการโคจรของอิเล็กตรอนรอบๆ นิวเคลียส การเคลื่อนตัวดังกล่าวนี้ตรวจจับได้จากการแยกแยะเส้นสเปกตรัม อีกปรากฏการณ์หนึ่งที่คล้ายคลึงกัน เกิดจากความสัมพันธ์ระหว่างโมเมนตัมเชิงมุมกับแรงนิวเคลียร์ชนิดเข้ม ที่เกิดขึ้นจากการที่โปรตอนและนิวตรอนเคลื่อนที่อยู่ภายในนิวเคลียสอะตอม ทำให้เกิดการเคลื่อนตัวของระดับพลังงานของมันในชั้นพลังงาน มีการศึกษาปรากฏการณ์สปิน-ออร์บิทของอิเล็กตรอนในสารกึ่งตัวนำและวัสดุอื่นอย่างกว้างขวางในสาขาวิชาสปินทรอนิกส์และนำไปสู่การประยุกต์ใช้ที่มีประโยชน์มากม.

ใหม่!!: นิวตรอนและอันตรกิริยาของสปินกับออร์บิท · ดูเพิ่มเติม »

อาวุธเทอร์โมนิวเคลียร์

ทลเลอร์–อูลาม (Teller–Ulam configuration)อาวุธเทอร์โมนิวเคลียร์ (Thermonuclear weapon) หรือ ระเบิดไฮโดรเจน (Hydrogen bomb)เรียกภาษาปากว่า เอชบอมบ์ เป็นอาวุธนิวเคลียร์ที่ใช้พลังงานฟิวชั่นเป็นหลักซึ่งต้องใช้ความร้อนถึงร้อยล้านองศาจึงเป็นที่มาของชื่อเทอร์โมนิวเคลียร์ โดยใช้ปฏิกิริยานิวเคลียร์ฟิชชันในขั้นตอนแรก เพื่อจุดระเบิด ปฏิกิริยานิวเคลียร์ฟิวชั่นในขั้นตอนที่สอง ผลลัพธ์ทำให้อำนาจระเบิดเพิ่มขึ้นมหาศาลเมื่อเทียบกับอาวุธฟิชชันแบบเก่าที่ใช้แค่ขั้นตอนเดียวอย่างระเบิดปรมาณู(atomic bomb) เนื่องจากการ ฟิวชั่น คือการใช้การรวมตัวของธาตุเบาไปเป็นธาตุที่หนักขึ้น ในที่นี้ระเบิดจะใช้ไฮโดรเจน(ดิวเทอเรียมหลอมรวมกับทริเทียม)เป็นปฏิกิริยาแบบเดียวกับที่เกิดในแกนกลางดวงอาทิตย์ซึ่งต้องใช้ความกดดันสูงมากกับอุณหภูมินับสิบล้านองศาเพื่อให้เกิดปฏิกิริยานี้แต่เนื่องจากบนโลกมีความหนาแน่นน้อยกว่าแกนดวงอาทิตย์มากจึงทำให้ต้องใช้อุณหภูมิมากกว่าแกนกลางของดวงอาทิตย์โดยใช้ถึงหลักร้อยล้านองศาเพื่อให้อะตอมไฮโดรเจนรวมตัวกัน ฉะนั้นจึงจำเป็นต้องใช้ระเบิดนิวเคลียร์แบบฟิชชัน(Atomic bomb)ในอาวุธนี้ก่อนเพื่อกระตุ้นให้อุณหภูมิถึงขั้นที่จะเกิดการฟิวชั่นได้ ซึ่งเกิดในอาวุธเทอร์โมนิวเคลียร์ สหรัฐอเมริกาเป็นชาติแรกที่มีอาวุธชนิดนี้ โดยทำการทดสอบระเบิดเทอร์โมนิวเคลียร์ลูกแรกของโลกในปี..

ใหม่!!: นิวตรอนและอาวุธเทอร์โมนิวเคลียร์ · ดูเพิ่มเติม »

อนุภาค

อนุภาค หมายถึงสสารที่มีปริมาณน้อยมากหรือเล็กมาก อาจหมายถึง; ในเคมี.

ใหม่!!: นิวตรอนและอนุภาค · ดูเพิ่มเติม »

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ใหม่!!: นิวตรอนและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

อนุภาคแอลฟา

อนุภาคแอลฟา (เขียนแทนด้วยอักษรกรีก แอลฟา α) คืออนุภาคที่ประกอบด้วยโปรตอน 2 ตัวและนิวตรอน 2 ตัว เหมือนกับนิวเคลียสของอะตอมของธาตุฮีเลียม (He) จึงสามารถเขียนสัญลักษณ์ได้อีกอย่างหนึ่งเป็น He^\,\! หรือ ^4_2He^ อนุภาคแอลฟาหนึ่งอนุภาคมีมวล 6.644656×10−27 กิโลกรัม หรือเทียบเท่ากับพลังงาน 3.72738 จิกะอิเล็กตรอนโวลต์ (GeV) มีประจุเป็น +2e โดยที่ e คือความจุไฟฟ้าของอิเล็กตรอนซึ่งมีค่าเท่ากับ 1.602176462×10−19 คูลอมบ์ อนุภาคแอลฟามักเกิดจากการสลายของอะตอมของธาตุกัมมันตรังสี เช่นยูเรเนียม (U) หรือเรเดียม (Ra) ด้วยกระบวนการที่รู้จักกันในชื่อการสลายให้อนุภาคแอลฟา (alpha decay) เมื่ออนุภาคแอลฟาถูกปลดปล่อยออกจากนิวเคลียส มวลอะตอมของธาตุกัมมันตรังสีจะลดลงประมาณ 4.0015 u เนื่องจากการสูญเสียทั้งโปรตอนและนิวตรอน และเลขอะตอมจะลดลง 2 ทำให้อะตอมกลายเป็นธาตุใหม่ ดังตัวอย่างการสลายให้อนุภาคแอลฟาของยูเรเนียม จะได้ธาตุใหม่เป็นทอเรียม (Th) ^_U \rightarrow ^_Th + ^4_2He^.

ใหม่!!: นิวตรอนและอนุภาคแอลฟา · ดูเพิ่มเติม »

ฮิเดะกิ ยุกะวะ

กิ ยุกะวะ เกิดเมื่อวันที่ 23 มกราคม ค.ศ. 1907 เป็นนักวิทยาศาสตร์ สาขาฟิสิกส์เชิงทฤษฎีที่มีชื่อเสียงของญี่ปุ่น และเป็นชาวญี่ปุ่นคนแรกที่ได้รับรางวัลโนเบล.

ใหม่!!: นิวตรอนและฮิเดะกิ ยุกะวะ · ดูเพิ่มเติม »

ธาตุ

ในทางเคมี ธาตุ คือ สารบริสุทธิ์ซึ่งประกอบด้วยอนุภาคมูลฐานเลขอะตอม อันเป็นจำนวนของโปรตอนในนิวเคลียสของธาตุนั้น ตัวอย่างธาตุที่คุ้นเคยกัน เช่น คาร์บอน ออกซิเจน อะลูมิเนียม เหล็ก ทองแดง ทองคำ ปรอทและตะกั่ว จนถึงเดือนพฤษภาคม..

ใหม่!!: นิวตรอนและธาตุ · ดูเพิ่มเติม »

ธีรเกียรติ์ เกิดเจริญ

ผศ.ดร. ธีรเกียรติ์ เกิดเจริญ ผ.ธีรเกียรติ์ เกิดเจริญ (7 มกราคม 2511 -) เจ้าของรางวัลนักวิทยาศาสตร์รุ่นใหม่ ของมูลนิธิส่งเสริมวิทยาศาสตร์และเทคโนโลยีในพระบรมราชูปถัมภ์ ประจำปี..

ใหม่!!: นิวตรอนและธีรเกียรติ์ เกิดเจริญ · ดูเพิ่มเติม »

ทฤษฎีอะตอม

ในวิชาเคมีและฟิสิกส์ ทฤษฎีอะตอมคือทฤษฎีที่ว่าด้วยธรรมชาติของสสาร ซึ่งกล่าวว่า สสารทุกชนิดประกอบด้วยหน่วยเล็กๆ ที่เรียกว่า อะตอม ซึ่งตรงกันข้ามกับแนวคิดดั้งเดิมที่แบ่งสสารออกเป็นหน่วยเล็กหลายชนิดตามแต่อำเภอใจ แนวคิดนี้เริ่มต้นเป็นแนวคิดเชิงปรัชญาของชาวกรีกโบราณ (ดีโมครีตุส) และชาวอินเดีย ต่อมาได้เข้ามาสู่วิทยาศาสตร์กระแสหลักในช่วงต้นคริสต์ศตวรรษที่ 19 เมื่อมีการค้นพบในสาขาวิชาเคมีซึ่งพิสูจน์ว่า พฤติกรรมของสสารนั้นดูเหมือนมันประกอบขึ้นด้วยอนุภาคขนาดเล็ก คำว่า "อะตอม" (จากคำกริยาในภาษากรีกโบราณว่า atomos, 'แบ่งแยกไม่ได้') ถูกนำมาใช้เรียกอนุภาคพื้นฐานที่ประกอบกันขึ้นเป็นธาตุเคมี เพราะนักเคมีในยุคนั้นเชื่อว่ามันคืออนุภาคมูลฐานของสสาร อย่างไรก็ดี เมื่อเข้าสู่คริสต์ศตวรรษที่ 20 การทดลองจำนวนมากเกี่ยวกับแม่เหล็กไฟฟ้าและสารกัมมันตรังสี ทำให้นักฟิสิกส์ค้นพบว่าสิ่งที่เราเรียกว่า "อะตอมซึ่งแบ่งแยกไม่ได้อีก" นั้นที่จริงแล้วยังประกอบไปด้วยอนุภาคที่เล็กกว่าอะตอมอีกจำนวนมาก (ตัวอย่างเช่น อิเล็กตรอน โปรตอน และนิวตรอน) ซึ่งสามารถแยกแยะออกจากกันได้ อันที่จริงแล้วในสภาวะแวดล้อมสุดโต่งดังเช่นดาวนิวตรอนนั้น อุณหภูมิและความดันที่สูงอย่างยิ่งยวดกลับทำให้อะตอมไม่สามารถดำรงอยู่ได้เลยด้วยซ้ำ เมื่อพบว่าแท้จริงแล้วอะตอมยังแบ่งแยกได้ ในภายหลังนักฟิสิกส์จึงคิดค้นคำว่า "อนุภาคมูลฐาน" (elementary particle) เพื่อใช้อธิบายถึงอนุภาคที่แบ่งแยกไม่ได้ วิทยาศาสตร์ที่ศึกษาเกี่ยวกับอนุภาคที่เล็กกว่าอะตอมนี้เรียกว่า ฟิสิกส์อนุภาค (particle physics) ซึ่งนักฟิสิกส์ในสาขานี้หวังว่าจะสามารถค้นพบธรรมชาติพื้นฐานที่แท้จริงของอะตอมได้.

ใหม่!!: นิวตรอนและทฤษฎีอะตอม · ดูเพิ่มเติม »

ดาวนิวตรอน

วนิวตรอน (Neutron Star) เป็นซากที่เหลือจากยุบตัวของการระเบิดแบบซูเปอร์โนวาชนิด II,Ib หรือ Ic และจะเกิดเฉพาะดาวฤกษ์มวลมากมีส่วนประกอบเพียงนิวตรอนที่อะตอมไร้กระแสไฟฟ้า (นิวตรอนมีมวลสารใกล้เคียงโปรตอน) และดาวประเภทนี้สามารถคงตัวอยู่ได้ด้วยหลักการกีดกันของเพาลีเกี่ยวกับแรงผลักระหว่างนิวตรอน ดาวนิวตรอนมีมวลประมาณ 1.35 ถึง 2.1 เท่ามวลดวงอาทิตย์ และมีรัศมี 20 ถึง 10 กิโลเมตรตามลำดับ (เมื่อดาวนิวตรอนมีมวลเพิ่มขึ้น รัศมีของดาวจะลดลง) ดาวนิวตรอนจึงมีขนาดเล็กกว่าดวงอาทิตย์ 30,000 ถึง 70,000 เท่า ดังนั้นดาวนิวตรอนจึงมีความหนาแน่นที่ 8*1013 ถึง 2*1015 กรัมต่อลูกบากศ์เซนติเมตร ซึ่งเป็นช่วงของความหนาแน่นของนิวเคลียสอะตอม ต้องใช้ความเร็วหลุดพ้นประมาณ 150,000 กิโลเมตรต่อวินาที หรือประมาณครึ่งหนึ่งของความเร็วแสง โดยทั่วไปแล้ว ดาวที่มีมวลน้อยกว่า 1.44 เท่ามวลดวงอาทิตย์ จะเป็นดาวแคระขาวตามขีดจำกัดของจันทรสิกขาร์ ถ้าอยู่ระหว่าง 2 ถึง 3 เท่ามวลดวงอาทิตย์อาจจะเป็นดาวควาร์ก (แต่ก็ยังเป็นที่ถกเถียงกันอยู่) ส่วนดาวที่มีมวลมากกว่านี้จะกลายเป็นหลุมดำไป เมื่อดาวฤกษ์มวลมากเกิดซูเปอร์โนวาและกลายเป็นดาวนิวตรอน ส่วนแก่นของมันจะได้รับโมเมนตัมเชิงมุมมา ซึ่งการเปลี่ยนแปลงรัศมีจากใหญ่ไปเล็กนั้นจะทำให้ความเร็วในการหมุนรอบตัวเองขึ้น แต่เมื่อเวลาผ่านไปก็จะหมุนรอบตัวเองช้าลงทีละน้อย ความเร็วในการหมุนรอบตัวเองของดาวนิวตรอนที่มีการบันทึกได้นั้นอยู่ระหว่าง 700 รอบต่อวินาทีไปจนถึง 30 วินาทีต่อรอบ ความเร่งที่พื้นผิวอยู่ที่ 2*1011 ถึง 3*1012 เท่ามากกว่าโลก ด้วยเหตุนี้ดาวนิวตรอนจึงสามารถส่งคลื่นวิทยุออกมาเป็นช่วงหรือพัลซาร์ และกระแสแม่เหล็กออกมาปริมาณมหาศาล การที่ดาวนิวตรอนสามารถส่งคลื่นวิทยุออกมาเป็นช่วงๆ นั้นทำได้อย่างไร ยังคงเป็นคำถามที่ไม่มีคำตอบ แม้ว่าจะมีการวิจัยเรื่องนี้มานานกว่า 40 ปีแล้วก็ตามในดาราจักรของเรานั้นเราพบเพียงไม่กี่สิบดวงเท่านั้น เรายังพบอีกว่า ดาวนิวตรอนน่าจะเป็นต้นกำเนิดของ แสงวาบรังสีแกมมา ที่มีความสว่างมากกว่าซูเปอร์โนวา หลายเท.

ใหม่!!: นิวตรอนและดาวนิวตรอน · ดูเพิ่มเติม »

ดิวเทอเรียม

วเทอเรียม (Deuterium) สัญญลักษณ์ 2H ถูกเรียกอีกชื่อหนึ่งว่าไฮโดรเจนหนัก เป็นหนึ่งในสองของไอโซโทปของไฮโดรเจนที่เสถียร โดยที่นิวเคลียสของอะตอมมีโปรตอน 1 ตัวและนิวตรอน 1 ตัว ในขณะที่ไอโซโทปของไฮโดรเจนที่รู้จักกันทั่วไปมากกว่าที่เรียกอีกอย่างหนึ่งว่า โปรเทียม (protium) มีเพียงโปรตอนเดียวเท่านั้น ไม่มีนิวตรอน ดิวเทอเรียมมี'ความอุดมในธรรมชาติ' โดยพบในมหาสมุทรทั่วไปประมาณหนึ่งอะตอมใน 6420 อะตอมของไฮโดรเจน ทำให้ดิวเทอเรียมมีสัดส่วนที่ประมาณ 0.0156% (หรือ 0.0312% ถ้าคิดตามมวล) ของไฮโดรเจนที่เกิดในธรรมชาติทั้งหมดในมหาสมุทร ในขณะที่โปรเทียมมีสัดส่วนมากกว่า 99.98% ความอุดมของดิวเทอเรียมเปลี่ยนแปงเล็กน้อยตามชนิดของน้ำตามธรรมชาติ (ดู ค่าเฉลี่ยของน้ำในมหาสมุทรตามมาตรฐานเวียนนา) นิวเคลียสของดิวเทอเรียมเรียกว่าดิวเทอรอน เราใช้สัญลักษณ์ 2H แทนดิวเทอเรียม อย่างไรก็ตาม บ่อยครั้งที่เราใช้ D แทนดิวเทอเรียม เช่นเมื่อเราต้องการจะเขียนสัญลักษณ์แทนโมเลกุลก๊าซดิวเทอเรียม จะสามารถเขียนแทนได้ว่า 2H2 หรือ D2 ก็ได้ หากแทนที่ดิวเทอเรียมในโมเลกุลของน้ำ จะทำให้เกิดสารดิวเทอเรียมออกไซด์หรือที่เรียกว่าน้ำมวลหนักขึ้น ถึงแม้น้ำชนิดหนักจะไม่เป็นสารพิษที่ร้ายแรงมากนัก แต่ก็ไม่เคยถูกนำมาใช้ในการอุปโภคบริโภค การมีอยู่ของดิวเทอเรียมในดาวฤกษ์เป็นข้อมูลสำคัญในวิชาจักรวาลวิทยา โดยปฏิกิริยานิวเคลียร์ฟิวชันในดาวฤกษ์จะทำลายดิวเทอเรียม ยังไม่พบกระบวนการในธรรมชาติใดๆที่ทำให้เกิดดิวเทอเรียมนอกจากปรากฏการณ์บิ๊กแบง ดิวเทอเรียมไม่มีอะไรต่างจากไฮโดรเจนมากนักในเชิงเคมีฟิสิกส์ นอกเสียจากว่ามีมวลที่หนักกว่า ซึ่งมวลที่หนักกว่านี้เองที่ทำให้ดิวเทอเรียมเปรียบเสมือนกับไฮโดรเจนที่เชื่องช้า เนื่องจากการที่มีมวลมากกว่า จะทำให้มีอัตราการเกิดปฏิกิริยาน้อยกว.

ใหม่!!: นิวตรอนและดิวเทอเรียม · ดูเพิ่มเติม »

ควาร์ก

วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..

ใหม่!!: นิวตรอนและควาร์ก · ดูเพิ่มเติม »

ตัวหน่วงนิวตรอน

ใน วิศวกรรมนิวเคลียร์ ตัวหน่วงนิวตรอน (neutron moderator) เป็นตัวกลางที่ช่วยลดความเร็วของ นิวตรอนเร็ว โดยเปลี่ยนพวกมันให้เป็น นิวตรอนความร้อน ที่สามารถสร้างความยั่งยืนให้กับ ปฏิกิริยาลูกโซ่นิวเคลียร์ ที่ใช้ ยูเรเนียม-235 หรือ นิวไคลด์ อื่นที่ทำ ฟิชชัน ได้ที่คล้ายกัน ตัวหน่วงที่ใช้กันทั่วไป ได้แก่ น้ำปกติ (เบา) (ใช้ประมาณ 75% ของเครื่องปฏิกรณ์นิวเคลียร์ของโลก) แท่ง แกรไฟต์ (20% ของเครื่องปฏิกรณ์นิวเคลียร์) และ น้ำหนัก (5% ของเครื่องปฏิกรณ์นิวเคลียร์) เบริลเลียม ก็ได้ถูกนำมาใช้ในรูปแบบเพื่อการทดลองบางอย่าง และพวก ไฮโดรคาร์บอน ก็ได้รับการแนะนำว่ามีความเป็นไปได้อีกตัวหนึ่ง.

ใหม่!!: นิวตรอนและตัวหน่วงนิวตรอน · ดูเพิ่มเติม »

ตารางไอโซโทป (สมบูรณ์)

ตารางไอโซโทป นี้แสดงไอโซโทปทั้งหมดของธาตุเคมีที่เป็นที่รู้จักกัน ถูกจัดโดยเลขอะตอมเพิ่มจากซ้ายไปขวา และเลขนิวตรอนเพิ่มจากบนลงล่าง ค่าครึ่งชีวิตแสดงให้เห็นด้วยสีของเซลล์ไอโซโทปแต่ละเซลล์ (ตารางสีด้านขวา) ขอบที่มีสีบอกค่าครึ่งชีวิตของnuclear isomer ในสถานะที่เสถียรที่สุด สำหรับตารางที่เหมือนกันแต่ถูกจัดให้ดูง่ายกว่า, ดูตารางไอโซโทป (แบ่งส่วน).

ใหม่!!: นิวตรอนและตารางไอโซโทป (สมบูรณ์) · ดูเพิ่มเติม »

ตารางไอโซโทป (แบ่งส่วน)

ตารางไอโซโทป นี้แสดงไอโซโทปทั้งหมดของธาตุเคมีที่เป็นที่รู้จักกัน ถูกจัดโดยเลขอะตอมเพิ่มจากซ้ายไปขวา และเลขนิวตรอนเพิ่มจากบนลงล่าง ค่าครึ่งชีวิตแสดงให้เห็นด้วยสีของเซลล์ไอโซโทปแต่ละเซลล์ (ตารางสีด้านขวา) ขอบที่มีสีบอกค่าครึ่งชีวิตของnuclear isomer ในสถานะที่เสถียรที่สุด สำหรับตารางที่เหมือนกันแต่รวมเป็นตารางเดียว, ดูตารางไอโซโทป (สมบูรณ์) The data for these tables came from Brookhaven National Laboratory which has an interactive with data on ~3000 nuclides.

ใหม่!!: นิวตรอนและตารางไอโซโทป (แบ่งส่วน) · ดูเพิ่มเติม »

ซีเวอร์ต

ซีเวอร์ต (sievert, Sv) เป็นหน่วยอนุพันธ์เอสไอของปริมาณรังสีสมมูล มันจะแสดงถึงผลทางชีวภาพของรังสีตรงข้ามกับลักษณะทางกายภาพซึ่งเป็นลักษณะของปริมาณรังสีดูดซึมโดยวัดเป็นหน่วยเกรย์ ซีเวอร์ตได้ชื่อตาม รอล์ฟ ซีเวอร์ต (Rolf Sievert) นักฟิสิกส์การแพทย์ชาวสวีเดนที่อุทิศตนเพื่อศึกษาผลของรังสีที่มีต่อสิ่งมีชีวิต.

ใหม่!!: นิวตรอนและซีเวอร์ต · ดูเพิ่มเติม »

ปฏิกิริยาลูกโซ่นิวเคลียร์

ฟิชชันที่เป็นไปได้ 1. อะตอมยูเรเนียม-235 ดูดซับนิวตรอน และแตกเป็นสองอะตอมใหม่ (การแตกตัว), ปล่อยนิวตรอนใหม่ 3 นิวตรอน และพลังงาน 2. หนึ่งในนิวตรอนเหล่านั้นถูกดูดซับโดยอะตอมของยูเรเนียม-238 และไม่เกิดปฏิกิริยาต่อ นิวตรอนที่เหลือในระบบไม่ถูกดูดซับ อย่างไรก็ตาม นิวตรอนหนึ่งอาจไปชนกับอะตอมยูเรเนียม-235 และแตกตัวปลดปล่อยนิวตรอนสองนิวตรอนและพลังงาน 3. นิวตรอนทั้งสองตัวนั้นไปชนอะตอมยูเรเนียม-235 และแต่ละอะตอมแตกตัวปลดปล่อยนิวตรอนสองสามนิวตรอนซึ่งสามารถไปชนอะตอมยูเรเนียม-235 อื่นอีกไปเรื่อย ๆ ปฏิกิริยาลูกโซ่นิวเคลียร์ (nuclear chain reaction) เกิดขึ้นเมื่อปฏิกิริยานิวเคลียร์หนึ่งทำให้เกิดปฏิกิริยานิวเคลียร์อื่นต่อไปอีก นำไปสู่การเพิ่มจำนวนตนเองของปฏิกิริยาเหล่านี้อย่างต่อเนื่อง ปฏิกิริยานิวเคลียร์หนึ่ง ๆ อาจเป็นฟิชชันของไอโซโทปหนัก (เช่น ยูเรเนียม 235) หรือฟิวชั่นของไอโซโทปเบา (เช่น ดิวทีเรียมหรือทริเทียม) ปฏิกิริยาลูกโซ่นิวเคลียร์จะปลดปล่อยพลังงานออกมามากกว่าปฏิกิริยาเคมีหลายล้านเท.

ใหม่!!: นิวตรอนและปฏิกิริยาลูกโซ่นิวเคลียร์ · ดูเพิ่มเติม »

ประวัติศาสตร์ฟิสิกส์

''Table of Mechanicks'', 1728 ''Cyclopaedia''. ประวัติศาสตร์ของฟิสิกส์ คือ การศึกษาการเติบโตของฟิสิกส์ไม่ได้นำมาเพียงแค่การเปลี่ยนแปลงแนวคิดพื้นฐานเกี่ยวกับโลกแห่งวัตถุ คณิตศาสตร์ และ ปรัชญา เท่านั้น แต่ยังเกี่ยวข้องกับเทคโนโลยี และการเปลี่ยนรูปแบบของสังคม ฟิสิกส์ถูกพิจารณาในแง่ของทั้งตัวเนื้อความรู้และการปฏิบัติที่สร้างและส่งผ่านความรู้ดังกล่าว การปฏิวัติวิทยาศาสตร์ ซึ่งเริ่มต้นประมาณปี ค.ศ. 1600 เป็นขอบเขตง่าย ๆ ระหว่างแนวคิดโบราณกับฟิสิกส์คลาสสิก ในปี ค.ศ. 1900 จึงเป็นจุดเริ่มต้นของฟิสิกส์ยุคใหม่ ทุกวันนี้วิทยาศาสตร์ยังไม่มีอะไรแสดงถึงจุดสมบูรณ์ เพราะการค้นพบที่มากขึ้นนำมาซึ่งคำถามที่เกิดขึ้นจากอายุของเอกภพ ไปถึงธรรมชาติของสุญญากาศ และธรรมชาติในที่สุดของสมบัติของอนุภาคที่เล็กกว่าอะตอม ทฤษฎีบางส่วนเป็นสิ่งที่ดีที่สุดที่ฟิสิกส์ได้เสนอในปัจจุบันนี้ อย่างไรก็ตามรายนามของปัญหาที่ยังแก้ไม่ได้ของฟิสิกส์ ก็ยังคงมีมากอยู.

ใหม่!!: นิวตรอนและประวัติศาสตร์ฟิสิกส์ · ดูเพิ่มเติม »

ปริมาณรังสีสมมูล

ปริมาณรังสีสมมูล (equivalent dose, HT) เป็นการวัดค่าปริมาณรังสีต่อเนื้อเยื่อที่ผลกระทบเชิงชีววิทยาสัมพันธ์จะต่างกันเมื่อชนิดของกัมมันตภาพรังสีต่างกัน ปริมาณรังสีสมมูลเป็นปริมาณพื้นฐานน้อยกว่าปริมาณรังสีดูดซึม แต่ในทางชีวภาพมีนัยสำคัญมากกว่า ปริมาณรังสีสมมูลมีหน่วยเป็นซีเวอร์ต และยังมีหน่วยอื่น Röntgen equivalent man (REM หรือ rem) ที่ยังคงใช้กันทั่วไปในสหรัฐอเมริกา แม้ว่ากฎระเบียบให้เปลี่ยนไปใช้ซีเวอร์ต (100 Röntgen equivalent man.

ใหม่!!: นิวตรอนและปริมาณรังสีสมมูล · ดูเพิ่มเติม »

นิวทริโน

นิวทริโน (Neutrino) เป็นอนุภาคมูลฐาน ที่เป็นกลางทางไฟฟ้า และมีค่าสปิน (ฟิสิกส์)เท่ากับครึ่งจำนวนเต็ม นิวทริโน (ภาษาอิตาลีหมายถึง "สิ่งเป็นกลางตัวน้อย") ใช้สัญลักษณ์แทนด้วยอักษรกรีกว่า \nu_^ (นิว) มวลของนิวทริโนมีขนาดเล็กมากเมื่อเปรียบเทียบกับอนุภาคย่อยอื่นๆ และเป็นอนุภาคเพียงชนิดเดียวที่รู้จักในขณะนี้ที่มีความเป็นไปได้ว่าจะเป็นสสารมืด โดยเฉพาะอย่างยิ่งสสารมืดร้อน นิวทริโนเป็นเลปตอน กลุ่มเดียวกับอิเล็กตรอน มิวออน และเทา (อนุภาค) แต่ไม่มีประจุไฟฟ้า แบ่งเป็น 3 ชนิด (หรือ flavour) ได้แก่ อิเล็กตรอนนิวทริโน (Ve) มิวออนนิวทริโน (Vμ) และเทานิวทริโน (VT) แต่ละเฟลเวอร์มีคู่ปฏิปักษ์ (ปฏิยานุภาค) ของมันเรียกว่า "ปฏินิวทริโน" ซึ่งไม่มีประจุไฟฟ้าและมีสปินเป็นครึ่งเช่นกัน นิวทริโนถูกสร้างขึ้นในวิธีที่อนุรักษ์ เลขเลปตอน นั่นคือ เมื่อมี อิเล็กตรอนนิวทริโน ถูกสร้างขึ้น หนึ่งตัว จะมี โพซิตรอน (ปฏิอิเล็กตรอน) หนึ่งตัวถูกสร้างขึ้นด้วย และเมื่อมี อิเล็กตรอนปฏินิวทริโนหนึ่งตัวถูกสร้างขึ้น ก็จะมีอิเล็กตรอนหนึ่งตัวถูกสร้างขึ้นเช่นกัน นิวทริโนไม่มีประจุไฟฟ้า จึงไม่ถูกกระทบโดยแรงแม่เหล็กไฟฟ้าที่จะกระทำต่อทุกอนุภาคที่มีประจุไฟฟ้า และเนื่องจากมันเป็นเลปตอน จึงไม่ถูกกระทบโดยอันตรกิริยาอย่างเข้มที่จะกระทำต่อทุกอนุภาคที่ประกอบเป็นนิวเคลียสของอะตอม นิวทริโนจึงถูกกระทบโดย อันตรกิริยาอย่างอ่อน และ แรงโน้มถ่วง เท่านั้น แรงอย่างอ่อนเป็นปฏิสัมพันธ์ที่มีระยะทำการสั้นมาก และแรงโน้มถ่วงก็อ่อนแออย่างสุดขั้วในระยะทางระดับอนุภาค ดังนั้นนิวทริโนโดยทั่วไปจึงสามารถเคลื่อนผ่านสสารทั่วไปได้โดยไม่ถูกขวางกั้นและไม่สามารถตรวจจับได้ นิวทริโนสามารถสร้างขึ้นได้ในหลายวิธี รวมทั้งในหลายชนิดที่แน่นอนของการสลายให้กัมมันตรังสี, ในปฏิกิริยานิวเคลียร์ เช่นพวกที่เกิดขึ้นในดวงอาทิตย์, ในเครื่องปฏิกรณ์นิวเคลียร์, เมื่อรังสีคอสมิกชนกับอะตอมและในซูเปอร์โนวา ส่วนใหญ่ของนิวทริโนในบริเวณใกล้โลกเกิดจากปฏิกิริยานิวเคลียร์ในดวงอาทิตย์ ในความเป็นจริง นิวทรืโนจากดวงอาทิตย์ประมาณ 65 พันล้านตัว ต่อวินาทีเคลื่อนที่ผ่านทุก ๆ ตารางเซนติเมตรที่ตั้งฉากกับทิศทางของดวงอาทิตย์ในภูมิภาคของโลก นิวทริโนมีการ แกว่ง (oscillate) ไปมาระหว่างฟเลเวอร์ที่แตกต่างกันเมื่อมีการเคลื่อนที่ นั่นคิอ อิเล็กตรอนนิวทริโนตัวหนึ่งที่ถูกสร้างขึ้นในปฏิกิริยาการสลายให้อนุภาคบีตา อาจกลายเป็นมิวออนนิวทริโนหรือเทานิวทริโนหนึ่งตัวเมื่อมาถึงเครื่องตรวจจับ ซึ่งนิวทริโนแต่ละชนิดจะมีมวลไม่เท่ากัน ถึงแม้ว่ามวลเหล่านี้มีขนาดที่เล็กมาก จากการวัดทางจักรวาลวิทยา ได้มีการคำนวณว่าผลรวมของมวลนิวทริโนสามตัวน้อยกว่าหนึ่งในล้านส่วนของมวลอิเล็กตรอน.

ใหม่!!: นิวตรอนและนิวทริโน · ดูเพิ่มเติม »

นิวคลีออน

นิวเคลียสอะตอมประกอบด้วยอนุภาคอัดแน่นของนิวคลีออน 2 ประเภท คือโปรตอน (สีแดง) กับนิวตรอน (สีน้ำเงิน) ในภาพนี้ โปรตอนกับนิวตรอนดูเหมือนลูกบอลเล็กๆ ที่ติดแน่นอยู่ด้วยกัน แต่ในนิวเคลียสจริงๆ ตามความเข้าใจของวิชาฟิสิกส์นิวเคลียร์ยุคใหม่ไม่ได้มีหน้าตาแบบนี้ เราพรรณนาภาพนิวเคลียสจริงๆ อย่างถูกต้องได้เพียงอาศัยกลศาสตร์ควอนตัมเท่านั้น ตัวอย่างเช่น ในนิวเคลียสจริงๆ นิวคลีออนแต่ละตัวจะอยู่ในหลายๆ ตำแหน่งในเวลาเดียวกัน กระจายไปทั่วตลอดนิวเคลียส นิวคลีออน (Nucleon) คือหนึ่งในหลายอนุภาคที่ประกอบขึ้นเป็นนิวเคลียสของอะตอม นิวเคลียสของอะตอมแต่ละตัวประกอบด้วยนิวคลีออนหนึ่งตัวหรือมากกว่านั้น ดังนั้นอะตอมแต่ละตัวจึงประกอบด้วยกลุ่มของนิวคลีออนที่ล้อมรอบด้วยอิเล็กตรอนหนึ่งตัวหรือมากกว่านั้น นิวคลีออนมีอยู่ 2 ประเภทคือนิวตรอน และโปรตอน เลขมวลของไอโซโทปอะตอมหนึ่งๆ จะมีค่าเท่ากันกับจำนวนของนิวคลีออนของไอโซโทปอะตอมนั้นๆ ด้วยเหตุนี้ เราจึงสามารถใช้เลขนิวคลีออนแทนที่เลขมวลหรือเลขมวลอะตอมซึ่งเป็นที่นิยมใช้กันอย่างกว้างขวางก็ได้ ก่อนจะถึงทศวรรษ 1960 เคยเชื่อกันว่านิวคลีออนเป็นอนุภาคมูลฐาน ซึ่งไม่อาจประกอบขึ้นจากชิ้นส่วนอื่นใดที่เล็กไปกว่านั้นอีกแล้ว แต่ปัจจุบันเราทราบกันแล้วว่ามันเป็นอนุภาคประกอบ ซึ่งเกิดจากควาร์กสามตัวเกาะเข้าด้วยกันด้วยสิ่งที่เรียกว่าอันตรกิริยาอย่างเข้ม อันตรกิริยาระหว่างนิวคลีออนตั้งแต่ 2 ตัวขึ้นไปเรียกว่า internucleon interaction หรือแรงนิวเคลียร์ ซึ่งเกิดขึ้นจากอันตรกิริยาอย่างเข้มนั่นเอง (แต่เดิมก่อนมีการค้นพบควาร์ก คำว่า "อันตรกิริยาอย่างเข้ม" มีความหมายถึงเพียง internucleon interaction เท่านั้น) ทั้งโปรตอนและนิวตรอนล้วนเป็นแบริออน และก็เป็นเฟอร์มิออนด้วย ตามคำนิยามของฟิสิกส์อนุภาค อนุภาคทั้งสองนี้ประกอบกันเป็น isospin doublet ซึ่งเป็นคำอธิบายว่าทำไมมวลของพวกมันจึงเกือบเท่ากัน โดยที่นิวตรอนหนักกว่าโปรตอนราว 0.1% เท่านั้น.

ใหม่!!: นิวตรอนและนิวคลีออน · ดูเพิ่มเติม »

นิวไคลด์

นิวไคลด์ (Nuclide; มาจาก นิวเคลียส) คือกลุ่มลักษณะของอะตอมที่เกิดจากคุณลักษณะเฉพาะของนิวเคลียสของมัน เช่นการดูจากจำนวน Z ของโปรตอน (ประเภทจำนวนโปรตอนเท่ากัน), จำนวน N ของนิวตรอน (ประเภทจำนวนนิวตอนเท่ากัน) และระดับพลังงานของอะตอม(ประเภทพลังงานเท่ากัน) คำว่า "นิวไคลด์" ถูกนำเสนอขึ้น โดยนาย Truman P. Kohman ในปี..

ใหม่!!: นิวตรอนและนิวไคลด์ · ดูเพิ่มเติม »

นิวเคลียส

นิวเคลียส (nucleus, พหูพจน์: nucleuses หรือ nuclei (นิวคลีไอ) มีความหมายว่า ใจกลาง หรือส่วนที่อยู่ตรงกลาง โดยอาจมีความหมายถึงสิ่งต่อไปนี้ โดยคำว่า นิวเคลียส (Nucleus) เป็นคำศัพท์ภาษาละตินใหม่ (New Latin) มาจากคำศัพท์เดิม nux หมายถึง ผลเปลือกแข็งเมล็ดเดียว (nut).

ใหม่!!: นิวตรอนและนิวเคลียส · ดูเพิ่มเติม »

นิวเคลียสของอะตอม

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'.

ใหม่!!: นิวตรอนและนิวเคลียสของอะตอม · ดูเพิ่มเติม »

น้ำ (โมเลกุล)

น้ำมี สูตรเคมี H2O, หมายถึงหนึ่ง โมเลกุล ของน้ำประกอบด้วยสองอะตอมของ ไฮโดรเจน และหนึ่งอะตอมของ ออกซิเจน เมื่ออยู่ในภาวะ สมดุลพลวัต (dynamic equilibrium) ระหว่างสถานะ ของเหลว และ ของแข็ง ที่ STP (standard temperature and pressure: อุณหภูมิและความดันมาตรฐาน) ที่อุณหภูมิห้อง เป็นของเหลวเกือบ ไม่มีสี, ไม่มีรส, และ ไม่มีกลิ่น บ่อยครั้งมีการอ้างอิงทางวิทยาศาสตร์ว่ามันเป็น ตัวทำละลายของจักรวาล และน้ำเป็นสารประกอบบริสุทธิ์ชนิดเดียวเท่านั้นที่พบในธรรมชาติทั้ง 3 สถานะ คือ ของแข็ง ของเหลว และก๊าซ.

ใหม่!!: นิวตรอนและน้ำ (โมเลกุล) · ดูเพิ่มเติม »

แบบจำลองชั้นพลังงานของนิวเคลียส

ในการศึกษาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ แบบจำลองชั้นพลังงานของนิวเคลียส คือแบบจำลองของนิวเคลียสอะตอมที่อาศัยหลักการกีดกันของเพาลีเพื่ออธิบายโครงสร้างของนิวเคลียสในรูปของระดับพลังงาน แบบจำลองชั้นพลังงานชุดแรกเสนอขึ้นโดย ดมิทรี อิวาเนนโก (ร่วมกับ E.Gapon) เมื่อปี..

ใหม่!!: นิวตรอนและแบบจำลองชั้นพลังงานของนิวเคลียส · ดูเพิ่มเติม »

แบริออน

แบริออน (Baryon) เป็นตระกูลหนึ่งของอนุภาคย่อยของอะตอมแบบผสมที่เกิดจากควาร์ก 3 ตัว (ซึ่งแตกต่างจาก มีซอน ซึ่งประกอบด้วยควาร์ก 1 ตัวและปฏิควาร์ก 1 ตัว) พวกแบริออนและมีซอนต่างก็เป็นส่วนหนึ่งของตระกูลอนุภาคที่เรียกว่า แฮดรอน ซึ่งเป็นตระกูลอนุภาคที่เกิดจากควาร์ก คำว่า แบริออน มาจากภาษากรีกโบราณว่า βαρύς (แบรีส) มีความหมายว่า "หนัก" เนื่องจากเมื่อครั้งที่ตั้งชื่อนี้นั้น พวกอนุภาคมูลฐานที่รู้จักกันแล้วส่วนใหญ่มีมวลน้อยกว่าพวกแบริออน เนื่องจากแบริออนประกอบด้วยควาร์ก มันจึงประสพกับอันตรกิริยาอย่างเข้ม ในขณะที่พวกเลปตอน ซึ่งไม่มีส่วนประกอบของควาร์ก ไม่ต้องประสพ พวกแบริออนที่คุ้นเคยมากที่สุดคือ โปรตอน และ นิวตรอน ซึ่งประกอบขึ้นเป็นมวลส่วนใหญ่ของสสารที่มองเห็นได้ในจักรวาล ขณะที่อิเล็กตรอน (ส่วนประกอบหลักอีกอย่างหนึ่งของอะตอม) เป็นเลปตอน แบริออนแต่ละตัวจะมีคู่ปฏิยานุภาคที่เรียกว่า ปฏิแบริออน ซึ่งควาร์กจะถูกแทนที่ด้วยคู่ตรงข้ามของมันคือ ปฏิควาร์ก ตัวอย่างเช่น โปรตอนประกอบด้วย 2 อัพควาร์ก และ 1 ดาวน์ควาร์ก คู่ปฏิยานุภาคของมันคือ ปฏิโปรตอน ประกอบด้วย 2 อัพปฏิควาร์ก และ 1 ดาวน์ปฏิควาร์ก จนถึงเร็ว ๆ นี้ ยังคิดกันว่ามีการทดลองบางอย่างที่สามารถแสดงถึงการมีอยู่ของ เพนตาควาร์ก หรือแบริออนประหลาดที่ประกอบด้วยควาร์ก 4 ตัวกับแอนติควาร์ก 1 ตัว ชุมชนนักฟิสิกส์อนุภาคทั้งหมดไม่เคยมองการมีอยู่ของอนุภาคในลักษณะนี้มาก่อนจนกระทั่ง..

ใหม่!!: นิวตรอนและแบริออน · ดูเพิ่มเติม »

แฟรนเซียม

มาร์เกอริต เปอแร ผู้ค้นพบแฟรนเซียม แฟรนเซียม (Francium) เป็นธาตุที่มีเลขอะตอม 87 สัญลักษณ์ Fr แฟรนเซียมเคยเป็นที่รู้จักในชื่อ เอคา-ซีเซียม และ แอกทิเนียม Kไอโซโทปที่ไม่เสถียรน้อยที่สุดจริง ๆ คือ แฟรนเซียม-223 มันเป็นหนึ่งในสองธาตุที่มีอิเล็กโตรเนกาติวิตีต่ำที่สุด อีกหนึ่งคือ ซีเซียม แฟรนเซียมเป็นกัมมันตรังสีอย่างสูง สามารถสลายไปเป็นแอสทาทีน เรเดียม และเรดอนได้ ด้วยที่มันเป็นโลหะแอลคาไล มันจึงมีเวเลนซ์อิเล็กตรอนเพียงตัวเดียว ยังไม่เคยมีใครเห็นแฟรนเซียมเป็นก้อนในปริมาณมากเลย คุณสมบัติทั่วไปของธาตุอื่น ๆ ในแถวเดียวกัน ทำให้นักวิทยาศาสตร์สันนิษฐานว่าแฟรนเซียมเป็นโลหะที่สะท้อนแสงได้สูง ถ้าเก็บแฟรนเซียมมาไว้รวมกันเป็นก้อนหรือของเหลวปริมาณมากพอ การได้สารตัวอย่างดังกล่าวมานั้นแทบจะเป็นไปไม่ได้ เนื่องจากความร้อนจากการสลายตัว (ครึ่งชีวิตของไอโซโทปที่ยาวนานที่สุดคือเพียง 22 นาที) จะทำให้ธาตุปริมาณมากพอที่จะมองเห็น กลายเป็นไอได้ แฟรนเซียมถูกค้นพบโดยมาร์เกอริต เปอแรที่ฝรั่งเศส (ซึ่งได้นำมาตั้งเป็นชื่อธาตุนี้) ในปี..

ใหม่!!: นิวตรอนและแฟรนเซียม · ดูเพิ่มเติม »

แรงนิวเคลียร์

แรงนิวเคลียร์ (Nuclear force) คือแรงระหว่างนิวคลีออนสองตัวหรือมากกว่านั้น เป็นเหตุของการยึดเหนี่ยวระหว่างโปรตอนกับนิวตรอนให้อยู่ด้วยกันเป็นนิวเคลียสอะตอมได้ พลังงานนิวเคลียร์ยึดเหนี่ยวที่ปลดปล่อยออกมาทำให้มวลของนิวเคลียสน้อยกว่ามวลรวมของโปรตอนและนิวตรอนรวมกัน แรงนี้เป็นแรงดูดที่มีกำลังแรงระหว่างนิวคลอนที่อยู่ห่างกันประมาณ 1 เฟมโตเมตร (fm) วัดจากจุดศูนย์กลาง แต่จะอ่อนกำลังลงอย่างรวดเร็วที่ระยะห่างมากกว่า 2.5 fm ที่ระยะใกล้กว่า 0.7 fm แรงนี้จะกลายเป็นแรงผลัก และเป็นตัวการสำหรับรูปร่างทางกายภาพของนิวเคลียส เพราะนิวคลีออนจะไม่สามารถเข้าใกล้กันมากกว่าที่แรงนี้ยอมให้เป็นไปได้ ปัจจุบันนี้เข้าใจกันว่า แรงนิวเคลียร์เป็นปรากฏการณ์ตกค้างจากแรงที่มีกำลังมากกว่า คืออันตรกิริยาอย่างเข้ม ซึ่งเป็นแรงดูดที่ยึดเหนี่ยวอนุภาคที่เรียกว่า ควาร์ก เอาไว้ด้วยกัน เพื่อก่อให้เกิดเป็นนิวคลีออน แรงซึ่งมีกำลังมากกว่านี้มีอนุภาคพาหะที่เรียกว่า กลูออน กลูออนยึดเหนี่ยวควาร์กเอาไว้ด้วยกันด้วยแรงเหมือนกับประจุไฟฟ้า แต่มีกำลังมากกว่า หลักการของแรงนิวเคลียร์เริ่มก่อสร้างขึ้นในปี 1934 ไม่นานหลังจากการค้นพบนิวตรอนซึ่งเผยให้เห็นว่า นิวเคลียสอะตอมประกอบขึ้นด้วยโปรตอนกับนิวตรอน ที่ยึดเหนี่ยวกันและกันเอาไว้ด้วยแรงดึงดูด เวลานั้นเชื่อกันว่าแรงนิวเคลียร์ถูกส่งผ่านด้วยอนุภาคที่เรียกว่า มีซอน ซึ่งเป็นอนุภาคที่ทำนายเอาไว้ในทฤษฎี ก่อนจะมีการค้นพบจริงในปี..

ใหม่!!: นิวตรอนและแรงนิวเคลียร์ · ดูเพิ่มเติม »

แหล่งกำเนิดนิวตรอน

ต้นกำเนิดนิวตรอน (neutron source) หมายถึงอุปกรณ์ต่างๆที่ปลดปล่อยนิวตรอนออกมา ไม่จำกัดแค่เครื่องกลไกที่ใช้สร้างนิวตรอนเท่านั้น ตัวแปรต่างๆของต้นกำเนิดนิวตรอนนั้นขึ้นกับ พลังของนิวตรอนที่ปล่อยออกมาจากต้นกำเนิด อัตราการปลดปล่อยนิวตรอนของต้นกำเนิด ขนาดของต้นกำเนิด ราคาการดูแลรักษาต้นกำเนิด และ ข้อบังคับทางราชการที่เกี่ยวข้องกับต้นกำเนิด อุปกรณ์นี้มีใช้ในหลากหลายสาขา ไม่ว่าจะเป็นฟิสิกส์ วิศวกรรม เวชกรรม อาวุธนิวเคลียร์ การสำรวจปิโตรเลียม ชีววิทยา เคมี พลังงานนิวเคลียร์ และ อุตสาหกรรมอื่น.

ใหม่!!: นิวตรอนและแหล่งกำเนิดนิวตรอน · ดูเพิ่มเติม »

แฮดรอน

แฮดรอน (Hadron) (ἁδρός, hadrós, "stout, thick") ในสาขา ฟิสิกส์ของอนุภาค เป็น อนุภาคผสม ทำจาก ควาร์ก หลายตัวเกี่ยวพันอยู่ด้วยกันโดยแรงนิวเคลียร์อย่างเข้ม (เหมือนกับที่โมเลกุลเกี่ยวพันอยู่ด้วยกันด้วยแรงเคลื่อนไฟฟ้า) แฮดรอนแบ่งออกเป็นสองตระกูล ได้แก่ แบริออน ทำจาก ควาร์ก 3 ตัว และ มีซอน ทำจากควาร์ก 1 ตัวและ แอนติควาร์ก 1 ตัว.

ใหม่!!: นิวตรอนและแฮดรอน · ดูเพิ่มเติม »

แคลิฟอร์เนียม

แคลิฟอร์เนียม (Californium) คือธาตุที่มีหมายเลขอะตอม 98 และสัญลักษณ์คือ Cf เป็นธาตุโลหะหนักกัมมันตรังสี มีลักษณะสีเงินวาว อยู่ในกลุ่มแอกทิไนด์ (actinide group) แคลิฟอร์เนียมถูกสังเคราะห์ขึ้นครั้งแรกโดยการยิงคูเรียมด้วยอนุภาคแอลฟา (ฮีเลียมไอออน) ธาตุใหม่ที่ได้ตั้งชื่อตามรัฐแคลิฟอร์เนีย Cf-252 เป็นไอโซโทปที่มีครึ่งชีวิตเท่ากับ 2.6 ปี เป็นตัวปลดปล่อยนิวตรอนอย่างรุนแรง และเป็นธาตุกัมมันตรังสีที่อันตรายมาก คลิฟอร์เนียมค้นพบโดย S.G. Thompson, A. Ghiorso, K. Street และ G.T. Seaborg ในวันที่ 9 กุมภาพัน..

ใหม่!!: นิวตรอนและแคลิฟอร์เนียม · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: นิวตรอนและโปรตอน · ดูเพิ่มเติม »

ไอน์สไตเนียม

ไอน์สไตเนียม (Einsteinium) คือธาตุที่มีหมายเลขอะตอม 99 และสัญลักษณ์คือ Es เป็นธาตุโลหะหนักกัมมันตรังสี มีลักษณะสีเงินวาว อยู่ในกลุ่มแอกทิไนด์ (actinide group) ไอน์สไตเนียมสังเคราะห์ครั้งแรกโดยการยิงธาตุพลูโทเนียมด้วยอนุภาคนิวตรอน ธาตุใหม่ที่ได้ตั้งชื่อตาม อัลเบิร์ต ไอน์สไตน์ (Albert Einstein) ไอน์สไตเนียมพบในซากปรักหักพังของการทดลองระเบิดไฮโดรเจนด้วย อไน์สตไนเอียม อไน์สตไนเอียม อไน์สตไนเอียม อไน์สตไนเอียม.

ใหม่!!: นิวตรอนและไอน์สไตเนียม · ดูเพิ่มเติม »

ไอโซโทป

แสดงไอโซโทปของไฮโดรเจนที่เกิดในธรรมชาติทั้งสามตัว ความจริงที่ว่าแต่ละไอโซโทปมีโปรตอนเพียงหนึ่งตัว ทำให้พวกมันทั้งหมดเป็นไฮโดรเจนที่แตกต่างกัน นั่นคือ ตัวตนของไอโซโทปถูกกำหนดโดยจำนวนของนิวตรอน จากซ้ายไปขวา ไอโซโทปเป็นโปรเทียม (1H) ที่มีนิวตรอนเท่ากับศูนย์, ดิวเทอเรียม (2H) ที่มีนิวตรอนหนึ่งตัว, และ ทริเทียม (3H) ที่มีสองนิวตรอน ไอโซโทป (isotope) เป็นความแตกต่างขององค์ประกอบทางเคมีที่เฉพาะเจาะจงของธาตุนั้นซึ่งจะแตกต่างกันในจำนวนของนิวตรอน นั่นคืออะตอมทั้งหลายของธาตุชนิดเดียวกัน จะมีจำนวนโปรตอนหรือเลขอะตอมเท่ากัน แต่มีจำนวนนิวตรอนต่างกัน ส่งผลให้เลขมวล(โปรตอน+นิวตรอน)ต่างกันด้วย และเรียกเป็นไอโซโทปของธาตุนั้น.

ใหม่!!: นิวตรอนและไอโซโทป · ดูเพิ่มเติม »

ไอโซโทปของพลูโทเนียม

ลูโทเนียม (Pu) ไม่มีไอโซโทปที่เสถียร จึงไม่มีมวลอะตอมพื้นฐาน.

ใหม่!!: นิวตรอนและไอโซโทปของพลูโทเนียม · ดูเพิ่มเติม »

ไอโซโทปของแฟรนเซียม

แฟรนเซียม (Fr) ไม่มีไอโซโทปที่เสถียรทำให้มวลอะตอมของแฟรนเซียมไม่มีค่าที่คงตัว ไอโซโทปของแฟรนเซียมที่เสถียรที่สุดคือ 223Fr ด้วยครึ่งชีวิต 22 นาที ซึ่งไอโซโทปนี้ได้จากการสลายตัวของ 235U ส่วนไอโซโทปธรรมชาติอื่นๆ คือ 221Fr.

ใหม่!!: นิวตรอนและไอโซโทปของแฟรนเซียม · ดูเพิ่มเติม »

ไอโซโทปเสถียร

ไอโซโทปเสถียร (stable isotope) คือ ไอโซโทปของธาตุที่ไม่มีการสลายต่อไป ธาตุหนึ่งอาจมีทั้งที่ไม่เสถียรคือมีการสลายต่อไป ที่เรียกว่า ไอโซโทปกัมมันตรังสี (radioisotopes) และไอโซโทปเสถียร เช่น ไอโซโทปของตะกั่วมี 5 ชนิด ซึ่งแบ่งออกเป็น ไอโซโทปกัมมันตรังสี 2 ชนิด คือ ตะกั่ว -210 และตะกั่ว -214 และไอโซโทปเสถียร 3 ชนิด คือ ตะกั่ว -206 ตะกั่ว -207 และตะกั่ว -208 สำหรับธาตุบางธาตุอาจมีไอโซโทปกัมมันตรังสีก็ได้ เมื่อพิจารณาอนุกรมการสลายของธาตุกัมมันตรังสีจะพบว่ามีนิวเคลียสบางกลุ่ม ที่มีเลขอะตอมเท่ากัน แต่มีเลขมวลต่างกัน เช่น กลุ่มของยูเรเนียม ซึ่งประกอบด้วยยูเรเนียม -234 ยูเรเนียม -235 และยูเรเนียม -238 นิวเคลียสต่างๆ ในกลุ่มนี้มีเลขอะตอมเท่ากัน คือ 92 แต่มีเลขมวลต่างกัน นั่นคือ นิวเคลียสเหล่านี้มีจำนวนโปรตอนเท่ากัน แต่จำนวนนิวตรอนต่างกัน เราเรียกนิวเคลียสที่มีจำนวนโปรตอนเท่ากัน แต่มีจำนวนนิวตรอนต่างกันนี้ว่า เป็น ไอโซโทป (isotopes) ของธาตุเดียวกัน เนื่องจากไอโซโทปของธาตุเดียวกันมีเลขอะตอมเท่ากันแต่เลขมวลต่างกัน จึงมีสมบัติทางเคมีเหมือนกัน แต่สมบัติทางกายภาพต่างกัน ดังนั้นการวิเคราะห์ไอโซโทปของธาตุชนิดหนึ่ง จึงไม่สามารถกระทำได้โดยอาศัยปฏิกิริยาเคมี แต่ด้วยเหตุที่ไอโซโทปเหล่านี้มีสมบัติทางกายภาพต่างกัน เช่น มีมวลต่างกัน การวิเคราะห์ไอโซโทปเหล่านี้ จึงทำได้โดยจำแนกมวล เพราะเหตุว่ามวลของไอโซโทปของธาตุชนิดเดียวกันจะแตกต่างกันน้อยมาก ดังนั้นการวิเคราะห์ ไอโซโทปจึงต้องใช้เครื่องมือ ที่วัดมวลได้ละเอียดมาก เครื่องมือประเภทนี้ได้แก่ แมสสเปกโทรมิเตอร์ (mass spectrometer) หมวดหมู่:ไอโซโทป อไอโซโทปเสถียร de:Isotop#Stabile Isotope sv:Stabil isotop.

ใหม่!!: นิวตรอนและไอโซโทปเสถียร · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ใหม่!!: นิวตรอนและไฮโดรเจน · ดูเพิ่มเติม »

เชื้อเพลิงนิวเคลียร์

ื้อเพลิงนิวเคลียร์ เป็นเชื้อเพลิงทางเลือกชนิดหนึ่งที่ประเทศไทยโดยการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย เลือกใช้ผลิตกระแสไฟฟ้า เพื่อให้เพียงพอต่อความต้องการใช้ไฟฟ้าปริมาณมากของคนไทย โดยเชื้อเพลิงนิวเคลียร์นี้ผลิตจากแร่ยูเรเนียม ที่ผ่านกระบวนการสกัด แปลงสภาพ และทำให้เข้มข้น (Enriched) ก่อนที่จะทำเป็นเม็ดแล้วนำไปบรรจุในท่อ ซึ่งจะนำไปรวมเป็นมัดเชื้อเพลิงบรรจุในแกนปฏิกรณ์เพื่อใช้งาน เชื้อเพลิงนิวเคลียร์ให้ความร้อนโดยอาศัยปฏิกิริยาแตกตัว (Nuclear fission) แตกต่างจากเชื้อเพลิงทั่วไป ซึ่งให้ความร้อนโดยกระบวนการสันดาป นอกจากนี้ยังมีลักษณะเด่น ดังนี้.

ใหม่!!: นิวตรอนและเชื้อเพลิงนิวเคลียร์ · ดูเพิ่มเติม »

เฟอร์มิออน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน เฟอร์มิออนปรากฏอยู่ในสามหมู่แรก เฟอร์มิออน ในฟิสิกส์อนุภาคหมายถึงอนุภาคประเภทหนึ่งที่เป็นไปตามการกระจายตัวแบบแฟร์มี-ดิแรก เฟอร์มิออนจะมีเลขสปินเป็นจำนวนครึ่งเท่า และเฟอร์มิออนสองตัวจะมีสถานะเชิงควอนตัมเดียวกันไม่ได้ตามกฎการกีดกันของเพาลี เฟอร์มิออนมีความหมายตรงข้ามกับโบซอน โบซอนจะมีเลขสปินเป็นจำนวนเต็มเท่า และโบซอนมากกว่าสองตัวสามารถมีสถานะเชิงควอนตัมเดียวกันได้ เฟอร์มิออนสามารถเป็นได้ทั้งอนุภาคมูลฐาน เช่นอิเล็กตรอน หรือเป็นอนุภาคประกอบ เช่นโปรตอน เฟอร์มิออนที่เป็นอนุภาคมูลฐานในแบบจำลองมาตรฐาน มีทั้งหมด 24 ตัวแบ่งเป็น ควาร์ก 6 ตัวและเลปตอน 6 ตัว รวมกับปฏิยานุภาคของมันเป็น 24 ตัว เฟอร์มิออนประกอบเช่น โปรตอน นิวตรอน เป็นองค์ประกอบสำคัญในอะตอมของสสาร ต่างจากโบซอนที่มักเป็นพาหะของแรง แต่เฟอร์มิออนอันตรกิริยาแบบอ่อน (Weakly interacting fermion) สามารถมีพฤติกรรมแบบโบซอนภายใต้เงื่อนไขพิเศษ เช่นการสร้างตัวนำยิ่งยวด คำว่า เฟอร์มิออน มาจากชื่อนักฟิสิกส์อนุภาค เอนรีโก แฟร์มี.

ใหม่!!: นิวตรอนและเฟอร์มิออน · ดูเพิ่มเติม »

เฟอร์เมียม

เฟอร์เมียม (Fermium.) เป็นธาตุในกลุ่มแอกทิไนด์ (actinide group) มีเลขอะตอม 100 และสัญลักษณ์ Fm โดยตั้งชื่อตามนักฟิสิกส์นิวเคลียร์ชื่อ เอนรีโก แฟร์มี (Enrico Fermi) มีสีเงินวาว เป็นธาตุโลหะหนักกัมมันตรังสี และเป็นธาตุสังเคราะห์โดยสังเคราะห์ได้ครั้งแรกจากการยิงพลูโทเนียมด้วยนิวตรอน หมวดหมู่:ธาตุเคมี หมวดหมู่:สารกัมมันตรังสี หมวดหมู่:วัสดุศาสตร์.

ใหม่!!: นิวตรอนและเฟอร์เมียม · ดูเพิ่มเติม »

เลขมวล

ลขมวล (mass number, A), หรือ เลขมวลอะตอม หรือ เลขนิวคลีออน เป็นผลรวมของจำนวนโปรตอนและนิวตรอน (โปรตอนและนิวตรอมเรียกรวมกันว่านิวคลีออน) ในนิวเคลียสอะตอม เพราะโปรตอนและนิวตรอนต่างก็เป็นแบริออน เลขมวล A ก็คือเลขแบริออน B ของนิวเคลียสของอะตอมหรือไอออน เลขมวลจะต่างกันถ้าเป็นไอโซโทปที่ต่างกันของธาตุเคมี เลขมวลไม่เหมือนกับเลขอะตอม (Z) ที่แสดงถึงจำนวนโปรตอนในนิวเคลียสและสามารถใช้ระบุบธาตุได้ ดังนั้นค่าที่ต่างกันระหว่างเลขมวลและเลขอะตอมจะบ่งบอกถึงจำนวนนิวตรอน (N) ในนิวเคลียส: N.

ใหม่!!: นิวตรอนและเลขมวล · ดูเพิ่มเติม »

เลขนิวตรอน

ลขนิวตรอน (neutron number) ใช้สัญลักษณ์ N คือจำนวนของนิวตรอนที่อยู่ในนิวไคลด์หนึ่งๆ เลขอะตอม (หรือเลขโปรตอน) บวกกับเลขนิวตรอน แล้ว จะได้เท่ากับเลขมวล: Z+N.

ใหม่!!: นิวตรอนและเลขนิวตรอน · ดูเพิ่มเติม »

เลปตอน

อนุภาคต่างๆ ใน แบบจำลองมาตรฐาน เลปตอน (Lepton) เป็นอนุภาคมูลฐานชนิดหนึ่งที่มีสปิน (ฟิสิกส์)ครึ่งจำนวนเต็ม (สปิน) และไม่ประสพกับอันตรกิริยาอย่างเข้ม เลปตอนแบ่งออกเป็นสองชั้นหลัก ได้แก่ เลปตอนที่มีประจุไฟฟ้า (หรือที่เรียกว่า เลปตอนที่เหมือนอิเล็กตรอน) และเล็ปตอนนิวทรัล (เล็ปตอนเป็นกลาง) (หรือที่เรียกว่า นิวทรืโน) เลปตอนที่มีประจุสามารถรวมกับอนุภาคอื่นกลายเป็น อนุภาคผสมหลายอย่าง เช่นอะตอมและโพซิโทรเนียม ในขณะที่นิวทริโนยากที่จะปฏิสัมพันธ์กับผู้อื่น ดังนั้นมันจึงยากที่จะถูกพบเห็น พวกเลปตอนที่รู้จักกันดีคือ อิเล็กตรอน มีเลปตอนอยู่ทั้งสิ้น 6 ชนิด (flavour) แยกเป็น 3 ชั่วรุ่น (generation) ชั่วรุ่นที่หนึ่งเรียกว่า เลปตอนอิเล็กตรอน ประกอบด้วยอิเล็กตรอน (e-) และอิเล็กตรอนนิวตริโน (Ve) ชั่วรุ่นที่สองคือ เลปตอนมิวออน ประกอบด้วย มิวออน (μ-) และ มิวออนนิวตริโน (Vμ) ชั่วรุ่นที่สามคือ เลปตอนเทา ประกอบด้วย เทา (อนุภาค) (T-) และ เทานิวตริโน (VT) อิเล็กตรอนมีมวลน้อยที่สุดในหมู่เลปตอนที่มีประจุทั้งหมด มิวออนและเทาที่หนักที่สุดจะเปลี่ยนอย่างรวดเร็วไปเป็นอิเล็กตรอนผ่านทางกระบวนการของการสลายอนุภาค ซึ่งเป็นการแปลงจากสถานะมวลมากไปเป็นสถานะมวลน้อย ดังนั้นอิเล็กตรอนจึงเสถียรและเป็นเลปตอนแบบมีประจุที่พบมากที่สุดในจักรวาล ในขณะที่มิวออนและเทาสามารถถูกสร้างขึ้นมาได้เพียงแต่ในการชนกันที่พลังงานฟิสิกส์ที่สูงเท่านั้น (เช่นพวกที่เกี่ยวกับรังสีคอสมิกและพวกที่เกิดขึ้นในเครื่องเร่งอนุภาค เลปตอนมีคุณสมบัติที่เป็นเนื้อแท้หลายอย่าง รวมทั้ง ประจุไฟฟ้า สปิน และ มวล อย่างไรก็ตาม มันแตกต่างจากควาร์ก เพราะไม่อยู่ภายใต้ อันตรกิริยาอย่างเข้ม แต่อาจอยู่ภายใต้อันตรกิริยาพื้นฐานอื่นอีกสามอย่าง ซึ่งได้แก่ แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า (ไม่รวมพวกนิวทริโนซึ่งเป็นกลางทางไฟฟ้า) และ อันตรกิริยาอย่างอ่อน สำหรับทุกเฟลเวอร์ของเลปตอน พวกมันมี ปฏิยานุภาค เรียกว่า ปฏิเลปตอน ที่แตกต่างกันเฉพาะบางส่วนของคุณสมบัติ ซึ่งปฏิเลปตอนจะมี 'ขนาดเท่ากันแต่เครื่องหมายตรงข้าม' และบางทฤษฎีกล่าวว่านิวทริโนอาจเป็นตัวปฏิปักษ์ของมันเอง ซึ่งปัจจุบันยังไม่มีใครรู้ว่าเป็นเช่นนั้นจริงหรือไม่ เลปตอนที่มีประจุตัวแรกคือ อิเล็กตรอน ถูกตั้งทฤษฎีในกลางศตวรรษที่ 19 โดยนักวิทยาศาสตร์หลายคน และถูกค้นพบในปี 1897 โดย J. J. Thomson. เลปตอนตัวต่อมาที่ถูกค้นพบคือมิวออน โดย Carl D. Anderson ในปี 1936 ซึ่งในขณะนั้นถูกระบุว่าเป็นมีซอน การศึกษาต่อมาพบว่า มิวออนไม่มีคุณสมบัติของมีซอนอย่างที่คาดไว้ แต่ประพฤฒิตัวเหมือนอิเล็กตรอน เพียงแต่มีมวลมากกว่า ต้องใช้เวลาถึงปี 1947 เพื่อให้ได้หลักการของ "เลปตอน" ว่าเป็นครอบครัวหนึ่งของอนุภาคที่จะถูกนำเสนอ นิวทริโน และ อิเล็กตรอนนิวทริโน ถูกนำเสนอโดย Wolfgang Pauli ในปี 1930 เพื่ออธิบายลักษณะที่แน่นอนของ การสลายให้อนุภาคบีตา มันถูกสังเกตเห็นในการทดลองของ Cowan–Reines ที่ดำเนินการโดย Clyde Cowan และ Frederick Reines ในปี 1956. มิวออนนิวทริโน ถูกค้นพบในปี 1962 โดย Leon M. Lederman, Melvin Schwartz และ Jack Steinberger, และ เทา ถูกค้นพบระหว่างปี 1974 ถีงปี 1977 โดย Martin Lewis Perl และเพื่อนร่วมงานจาก Stanford Linear Accelerator Center และ Lawrence Berkeley National Laboratory. ขณะที่ เทานิวทริโน เพิ่งถูกประกาศการค้นพบ เมื่อ กรกฎาคม 2000 โดย DONUT collaboration จาก Fermilab เลปตอนเป็นชิ้นส่วนสำคัญใน แบบจำลองมาตรฐาน อิเล็กตรอนเป็นองค์ประกอบของอะตอม เคียงข้างกับ โปรตอน และ นิวตรอน ขณะที่ อะตอมแปลก ซึ่งมีมิวออนและเทา แทนที่จะเป็นอิเล็กตรอน สามารถถูกสังเคราะห์ขึ้นได้ เช่นเดียวกับอนุภาค เลปตอน-ปฏิเลปตอน เช่น โพซิโทรเนียม.

ใหม่!!: นิวตรอนและเลปตอน · ดูเพิ่มเติม »

เส้นเวลาของบิกแบง

ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา คำว่า เส้นเวลาของบิกแบง คือประวัติของการเกิดจักรวาลที่สอดคล้องกับทฤษฏีบิกแบง โดยใช้ตัวแปรทางเวลาของจักรวาลในพิกัดเคลื่อนที่ เมื่อพิจารณาตรรกะจากการขยายตัวของเอกภพโดยใช้ทฤษฎีสัมพัทธภาพทั่วไป หากเวลาย้อนหลังไปจะทำให้ความหนาแน่นและอุณหภูมิมีค่าสูงขึ้นอย่างไม่จำกัดขณะที่เวลาในอดีตจำกัดอยู่ค่าหนึ่ง ภาวะเอกฐานเช่นนี้เป็นไปไม่ได้เพราะขัดแย้งกับทฤษฎีสัมพัทธภาพทั่วไป เป็นที่ถกเถียงกันอยู่มากกว่าเราสามารถประมาณภาวะเอกฐานได้ใกล้สักเพียงไหน (ซึ่งไม่มีทางประมาณไปได้มากเกินกว่ายุคของพลังค์) ภาวะเริ่มแรกที่มีความร้อนและความหนาแน่นสูงอย่างยิ่งนี้เองที่เรียกว่า "บิกแบง" และถือกันว่าเป็น "จุดกำเนิด" ของเอกภพของเราจากผลการตรวจวัดการขยายตัวของซูเปอร์โนวาประเภท Ia การตรวจวัดความแปรเปลี่ยนของอุณหภูมิในไมโครเวฟพื้นหลัง และการตรวจวัดลำดับวิวัฒนาการของดาราจักร เชื่อว่าเอกภพมีอายุประมาณ 13.73 ± 0.12 พันล้านปีG.

ใหม่!!: นิวตรอนและเส้นเวลาของบิกแบง · ดูเพิ่มเติม »

เส้นเวลาของยุคใหม่

ไม่มีคำอธิบาย.

ใหม่!!: นิวตรอนและเส้นเวลาของยุคใหม่ · ดูเพิ่มเติม »

เอนรีโก แฟร์มี

อนริโก แฟร์มี เอนริโก แฟร์มี (Enrico Fermi) (29 กันยายน พ.ศ. 2444 – 28 พฤศจิกายน พ.ศ. 2497) นักฟิสิกส์รางวัลโนเบลชาวอิตาลีผู้มีบทบาทสำคัญในการพัฒนาวิชานิวเคลียร์ฟิสิกส์ เป็นนักฟิสิกส์ที่เชี่ยวชาญทั้งการทดลองและทฤษฎี ซึ่งหาได้ยากยิ่งในวงการฟิสิกส์ปัจจุบัน.

ใหม่!!: นิวตรอนและเอนรีโก แฟร์มี · ดูเพิ่มเติม »

เอ็ดเวิร์ด เทลเลอร์

อ็ดเวิร์ด เทลเลอร์ (Edward Teller, 15 มกราคม ค.ศ. 1908 - 9 กันยายน ค.ศ. 2003) เป็นบิดาของระเบิดไฮโดรเจนที่ใช้ปฏิกิริยานิวเคลียร์ฟิวชันแทนปฏิกิริยานิวเคลียร์ฟิชชันในระเบิดนิวเคลียร์แบบดั้งเดิม.

ใหม่!!: นิวตรอนและเอ็ดเวิร์ด เทลเลอร์ · ดูเพิ่มเติม »

เครื่องปฏิกรณ์ความร้อนนิวตรอน

รื่องปฏิกรณ์ความร้อนนิวตรอน (Thermal-neutron reactor) คือ เครื่องปฏิกรณ์นิวเคลียร์แบบใช้ช้าหรือความร้อนนิวตรอน ("ความร้อน" ที่นี้ไม่ได้หมายความถึงความร้อนในทางความรู้สึกจริง แต่หมายถึงในทางสภาพสมดุลทางความร้อนด้วยปฏิกิริยาระดับกลางของเชื้อเพลงเครื่องปฏิกรณ์ ตัวหน่วงความเร็ว และโครงสร้าง ซึ่งมีพลังงานต่ำกว่านิวตรอนเร็วที่เป็นผลิตภัณฑ์ขั้นต้นของการแบ่งแยกนิวเคลียส (ฟิชชัน)) ในเครื่องปฏิกรณ์โรงไฟฟ้านิวเคลียร์ส่วนมากเป็นเครื่องปฏิกรณ์ความร้อนและใข้ตัวหน่วงนิวตรอนในการลดความเร็วนิวตรอน จนกว่ามันจะเข้าใกล้พลังงานจลน์โดยเฉลี่ยของอนุภาคโดยรอบ นั่นคือเพื่อลดความเร็วของนิวตรอนให้ความร้อนนิวตรอนต่ำลง นิวตรอนไม่มีประจุไฟฟ้าช่วยให้พวกมันทะลวงลึกลงไปถึงเป้าหมายและใกล้กับนิวเคลียสได้Squires, G.L. (2012, March 29).

ใหม่!!: นิวตรอนและเครื่องปฏิกรณ์ความร้อนนิวตรอน · ดูเพิ่มเติม »

เครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด

กรวดเชื้อเพลิงสำหรับการทำปฏิกิริยา เครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด (Pebble bed reactor (PBR)) เป็นเครื่องปฏิกรณ์นิวเคลียร์ในยุคที่ 3+ จัดว่าเป็นเทคโนโลยีพลังงานนิวเคลียร์ที่ทันสมัยที่สุดในปัจจุบัน ซึ่งใช้เทคโนโลยีที่มีความปลอดภัยและประสิทธิภาพสูงมากขึ้นและมีต้นทุนถูกกว่าจากเครื่องปฏิกรณ์แบบทั่วไปที่ใช้น้ำเป็นสารหน่วงนิวตรอน และใช้เป็นสารระบายความร้อนด้วย ในขณะที่เครื่องปฏิกรณ์แบบถังกรวดใช้ pyrolytic graphite เป็นสารหน่วงนิวตรอน และใช้ก๊าซเฉื่อย เป็นสารระบายความร้อนที่มีอุณหภูมิสูงมาก ในการขับกังหันของเครื่องกำเนิดไฟฟ้าโดยตรง ทำให้ไม่ต้องใช้ระบบเครื่องกำเนิดไอน้ำที่มีความซับซ้อน รวมทั้งเป็นการเพิ่มประสิทธิภาพในการถ่ายเทพลังงาน โดยทำให้สัดส่วนของการผลิตไฟฟ้าต่อความร้อน มีค่าประมาณ 50% นอกจากนั้น ก๊าซจะไม่ละลายส่วนประกอบที่ปนเปื้อนรังสีออกมา และไม่ดูดกลืนนิวตรอนเหมือนกับการใช้น้ำ ดังนั้นแกนเครื่องปฏิกรณ์จึงมีของเหลวที่มีกัมมันตภาพรังสีในปริมาณที่น้อยกว่าแบบเดิมมาก จึงมีความเสี่ยงด้านผลกระทบทางรังสีที่น้อยลง และยังทำให้ต้นทุนต่ำกว่าเครื่องปฏิกรณ์แบบใช้น้ำมวล.

ใหม่!!: นิวตรอนและเครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด · ดูเพิ่มเติม »

เซอร์โคเนียม

ซอร์โคเนียม (Zirconium) คือธาตุที่มีหมายเลขอะตอม 40 และสัญลักษณ์คือ Zr เป็นโลหะทรานซิชันมีสีขาวเทาคล้ายไทเทเนียม สามารถสกัดได้จากแร่เซอร์คอนมันทนต่อการกันกร่อนมาก เซอร์โคเนียมในรูปของออกไซด์ค้นพบโดย N.H. Klaproth ในปี ค.ศ. 1789 ขณะที่ทำการศึกษาแร่ zircon ซึ่งเป็นซิลิเกตของเซอร์โคเนียม, (ZrSio5) ในรูปของพลอย (gemstone) จากซีลอน พลอย zircon มีชื่อมาจากภาษาอาหรับ zargum หมายถึงสีทองคำ และ Klaproth ตั้งชื่อธาตุนี้ว่า zirconium ในปี..

ใหม่!!: นิวตรอนและเซอร์โคเนียม · ดูเพิ่มเติม »

เนบิวลา

อ็นจีซี 604 (NGC 604) เป็นเนบิวลาที่อยู่ภายในแขนของดาราจักรเอ็ม 33 (M33) ในกลุ่มดาวสามเหลี่ยม อยู่ห่างจากโลก 2.7 ล้านปีแสง เนบิวลานี้เป็นบริเวณก่อตัวของดาวฤกษ์ดวงใหม่ เนบิวลานาฬิกาทราย (MyCn18) เป็นเนบิวลาดาวเคราะห์อายุน้อย อยู่ห่างจากโลกประมาณ 8,000 ปีแสง ภาพนี้ถ่ายด้วยกล้องถ่ายภาพที่ติดตั้งบนกล้องโทรทรรศน์อวกาศฮับเบิลขององค์การนาซา เนบิวลา (Nebula - มาจากภาษาละติน nebula (พหูพจน์ nebulae) หมายถึง "หมอก") เป็นกลุ่มเมฆหมอกของฝุ่น แก๊ส และพลาสมาในอวกาศ เดิมคำว่า "เนบิวลา" เป็นชื่อสามัญ ใช้เรียกวัตถุทางดาราศาสตร์ที่เป็นปื้นบนท้องฟ้าซึ่งรวมถึงดาราจักรที่อยู่ห่างไกลออกไปจากทางช้างเผือก (ตัวอย่างเช่น ในอดีตเคยเรียกดาราจักรแอนดรอเมดาว่าเนบิวลาแอนดรอเมดา).

ใหม่!!: นิวตรอนและเนบิวลา · ดูเพิ่มเติม »

HE 1523-0901

วาดดาวฤกษ์ที่เก่าแก่ที่สุดในดาราจักรของเรา HE 1523-0901 คือรหัสใช้เรียกดาวยักษ์แดงซึ่งตั้งอยู่ในดาราจักรทางช้างเผือกห่างจากเราไปประมาณ 7500 ปีแสง เชื่อว่าเป็นดาวฤกษ์ชนิดดารากร 2 หมายความว่าเป็นดาวที่มีโลหะเป็นส่วนประกอบอยู่น้อย แอนนา ฟรีเบล และคณะ ใช้กล้องสำรวจ Hamburg/ESO Survey ตรวจพบดาวดวงนี้อยู่ในกลุ่มตัวอย่างดาวฤกษ์ฮาโลสว่างที่มีโลหะน้อย งานวิจัยของคณะนี้ได้ตีพิมพ์เผยแพร่เมื่อ 10 พฤษภาคม 2007 ใน Astrophysical Journal กล้องดูดาวขนาดใหญ่มาก (Very Large Telescope) ของหอดูดาวยุโรปใต้ ประมาณการอายุของดาวดวงนี้ไว้ที่ประมาณ 13,200 ล้านปี ทำให้มันเป็นวัตถุที่มีอายุมากที่สุดเท่าที่มีการค้นพบในดาราจักรในปัจจุบัน และเกือบจะมีอายุเก่าแก่เท่ากับอายุโดยประมาณของเอกภพ (13,700 ล้านปี จากการประมาณการของ WMAP) HE 1523-0901 เป็นดาวดวงแรกที่ใช้การประมาณการอายุด้วยเทคนิคตรวจสอบการเสื่อมสลายของธาตุกัมมันตรังสียูเรเนียมและทอเรียม โดยการตรวจวัดธาตุที่ตรวจจับนิวตรอน เชื่อกันว่า มันเกิดขึ้นมาจากเศษซากดาวฤกษ์ยุคแรกโดยตรง ซึ่งหมดอายุขัยและระเบิดเป็นซูเปอร์โนวานับแต่ยุคแรกๆ ของประวัติศาสตร์เอก.

ใหม่!!: นิวตรอนและHE 1523-0901 · ดูเพิ่มเติม »

S-process

S-process หรือ กระบวนการจับตัวของนิวตรอนแบบช้า (slow-neutron-capture-process) คือกระบวนการสังเคราะห์นิวเคลียสที่เกิดขึ้นภายใต้สภาวะความหนาแน่นนิวตรอนต่ำและอุณหภูมิดาวฤกษ์ปานกลาง ภายใต้สภาวะนี้ อัตราการจับตัวของนิวตรอนโดยนิวเคลียสอะตอมจะต่ำมากเมื่อเทียบกับอัตราการสลายให้อนุภาคบีตาของสารกัมมันตรังสี ในกระบวนการ S-process ไอโซโทปที่เสถียรหนึ่งตัวจะจับกับนิวตรอนหนึ่งตัว แต่ไอโซโทปของสารกัมมันตรังสีที่เกิดขึ้นทำให้ตัวลูกที่เสถียรเกิดการสลายตัวก่อนที่นิวตรอนตัวถัดไปจะถูกจับตัวได้ ประมาณการว่า กระบวนการ S-process นี้สร้างไอโซโทปของธาตุที่หนักกว่าเหล็กประมาณครึ่งหนึ่งของไอโซโทปที่มีในเอกภพ ดังนั้นจึงมีบทบาทสำคัญยิ่งในวิวัฒนาการทางเคมีของดาราจักร S-process แตกต่างกับ R-process อันเป็นกระบวนการจับตัวของนิวตรอนที่รวดเร็วกว่า หมวดหมู่:ฟิสิกส์นิวเคลียร์ หมวดหมู่:นิวตรอน หมวดหมู่:ฟิสิกส์ดาราศาสตร์ หมวดหมู่:การสังเคราะห์นิวเคลียส.

ใหม่!!: นิวตรอนและS-process · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Neutron

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »