โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

วิวัฒนาการของดาวฤกษ์

ดัชนี วิวัฒนาการของดาวฤกษ์

้นเวลาแสดงอายุของดวงอาทิตย์ วิวัฒนาการของดาวฤกษ์ เป็นกระบวนการที่ดาวฤกษ์เปลี่ยนแปลงองค์ประกอบภายในตามลำดับไปในช่วงอายุของมัน ซึ่งจะมีลักษณะแตกต่างกันตามขนาดของมวลของดาวฤกษ์นั้นๆ อายุของดาวฤกษ์มีตั้งแต่ไม่กี่ล้านปี (สำหรับดาวฤกษ์ที่มีมวลมากๆ) ไปจนถึงหลายล้านล้านปี (สำหรับดาวฤกษ์ที่มีมวลน้อย) ซึ่งอาจจะมากกว่าอายุของเอกภพเสียอีก การศึกษาวิวัฒนาการของดาวฤกษ์มิได้ทำเพียงการเฝ้าสังเกตดาวดวงหนึ่งดวงใด ดาวฤกษ์ส่วนใหญ่มีการเปลี่ยนแปลงอย่างช้ามากจนยากจะตรวจจับได้แม้เวลาจะผ่านไปหลายศตวรรษ นักฟิสิกส์ดาราศาสตร์ทำความเข้าใจกับวิวัฒนาการของดาวฤกษ์โดยการสังเกตการณ์ดาวจำนวนมาก โดยที่แต่ละดวงอยู่ที่ช่วงอายุแตกต่างกัน แล้วทำการจำลองโครงสร้างของดาวออกมาโดยใช้แบบจำลองคอมพิวเตอร์ช่ว.

32 ความสัมพันธ์: ฟิสิกส์ดาราศาสตร์การหลอมนิวเคลียสมวลมวลดวงอาทิตย์มหานวดาราวงจรซีเอ็นโอสภาวะสมดุลอุทกสถิตหลุมดำอุณหภูมิฮีเลียมดวงอาทิตย์ดาราจักรไทรแองกูลัมดาวพฤหัสบดีดาวยักษ์ดาวฤกษ์ดาวฤกษ์ก่อนเกิดดาวนิวตรอนดาวแคระขาวดาวแคระน้ำตาลดาวแคระแดงดิวเทอเรียมความร้อนความดันความโน้มถ่วงปีแสงแถบลำดับหลักไฮโดรเจนไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์เมฆโมเลกุลเอกภพเคลวินเนบิวลา

ฟิสิกส์ดาราศาสตร์

ฟิสิกส์ดาราศาสตร์ (อังกฤษ: Astrophysics) เป็นแขนงวิชาทางดาราศาสตร์ ว่าด้วยสมบัติทางกายภาพของวัตถุในอวกาศ ไม่ว่าจะเป็นดาวฤกษ์ ดาราจักร และเอกภพทั้งหลายทั้งมวล จะเน้นศึกษาแขนงวิชาที่กว่ามาข้างต้น มากกว่าศึกษาตำแหน่งหรือการเคลื่อนที่ของวัถตุต่าง ๆ ในอวกาศ วิชาฟิสิกส์ดาราศาสตร์จะศึกษาเกี่ยวกับดวงอาทิตย์, ดาวฤกษ์ต่าง ๆ, กาแล็กซีต่าง ๆ, ดาวเคราะห์นอกระบบ, มวลสารระหว่างดาว, รังสีไมโครเวฟพื้นหลังของจักรวาล สาขาวิชานี้จะตรวจสอบและศึกษาอย่างละเอียดเกี่ยวกับสเปกตรัมแม่เหล็กไฟฟ้า และปัจจัยต่าง ๆ อาทิ ความเข้มแสง, ความหนาแน่น, อุณหภูมิ และสารประกอบเคมี เนื่องจากวิชาฟิสิกส์ดาราศาสตร์นั้นครอบคลุมเนื้อหาและแขนงวิชาต่าง ๆ ในบริเวณกว้าง จึงสามารถรวมอีกหลายแขนงวิชาเข้ามาในวิชาฟิสิกส์ดาราศาสตร์นี้ได้ด้วย อาทิ กลศาสตร์, การศึกษาแรงแม่เหล็กไฟฟ้า, กลศาสตร์สถิติ, อุณหพลศาสตร์, กลศาสตร์ควอนตัม, ทฤษฎีสัมพันธภาพ, ฟิสิกส์นิวเคลียร์, ฟิสิกส์อะตอม โมเลกุล และทัศนศาสตร.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และฟิสิกส์ดาราศาสตร์ · ดูเพิ่มเติม »

การหลอมนิวเคลียส

้นโค้งพลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที การหลอมนิวเคลียส (nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่​​ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike) การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และการหลอมนิวเคลียส · ดูเพิ่มเติม »

มวล

มวล เป็นคุณสมบัติหนึ่งของวัตถุ ที่บ่งบอกปริมาณ ของสสารที่วัตถุนั้นมี มวลเป็นแนวคิดหลักอันเป็นหัวใจของกลศาสตร์แบบดั้งเดิม รวมไปถึงแขนงวิชาที่เกี่ยวข้อง หากแจกแจงกันโดยละเอียดแล้ว จะมีปริมาณอยู่ 3 ประเภทที่ถูกนิยามว่า มวล ได้แก.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และมวล · ดูเพิ่มเติม »

มวลดวงอาทิตย์

มวลดวงอาทิตย์ เป็นวิธีพื้นฐานในการบรรยายค่ามวลในทางดาราศาสตร์ สำหรับใช้อธิบายถึงมวลดาวฤกษ์หรือมวลดาราจักร มีค่าเท่ากับมวลของดวงอาทิตย์ คือประมาณ 2 โนนิลเลียนกิโลกรัม หรือเท่ากับ 332,950 เท่าของมวลของโลก หรือ 1,048 เท่าของมวลของดาวพฤหัสบดี สัญลักษณ์และค่าพื้นฐานของมวลดวงอาทิตย์แสดงได้ดังนี้ เราสามารถบรรยายมวลดวงอาทิตย์ในรูปของระยะทางเป็นปี คือระยะห่างจากโลกถึงดวงอาทิตย์ (หนึ่งหน่วยดาราศาสตร์ หรือ AU) กับค่าคงที่แรงโน้มถ่วง (G) ได้ดังนี้ จนกระทั่งปัจจุบันยังไม่สามารถบอกตัวเลขที่แท้จริงของหน่วยดาราศาสตร์หรือค่าคงที่แรงโน้มถ่วงได้อย่างถูกต้อง อย่างไรก็ดี การอธิบายถึงมวลสัมพันธ์ของดาวเคราะห์อื่นในระบบสุริยะหรือในระบบดาวคู่ด้วยหน่วยของมวลดวงอาทิตย์ มิได้มีความจำเป็นต้องทราบถึงค่าแท้จริงเหล่านั้น ดังนั้นการบรรยายถึงมวลต่างๆ ด้วยหน่วยของมวลดวงอาทิตย์จึงเป็นวิธีที่มีประโยชน์ที.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และมวลดวงอาทิตย์ · ดูเพิ่มเติม »

มหานวดารา

ำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง มหานวดารา นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และมหานวดารา · ดูเพิ่มเติม »

วงจรซีเอ็นโอ

วงจรซีเอ็นโอ (CNO Cycle) มาจากวงจรปฏิกิริยาคาร์บอน-ไนโตรเจน-ออกซิเจน บางครั้งก็เรียกว่า วงจรเบเทอ-ไวซ์เซกเกอร์ (Bethe-Weizsäcker Cycle) คือปฏิกิริยาฟิวชั่นชนิดหนึ่งในจำนวนสองชนิดซึ่งดาวฤกษ์ใช้ในการแปลงไฮโดรเจนไปเป็นฮีเลียม ปฏิกิริยาอีกชนิดหนึ่งคือห่วงโซ่โปรตอน-โปรตอน สิ่งที่วงจรซีเอ็นโอต่างจากห่วงโซ่โปรตอน-โปรตอนคือมันเป็นวงจรเร่งปฏิกิริยา (Catalytic Cycle) แบบจำลองทางทฤษฎีแสดงให้เห็นว่าวงจรซีเอ็นโอนั้นเป็นแหล่งกำเนิดหลักของพลังงานในดาวฤกษ์ที่มีมวลมากกว่า 1.3 เท่าของมวลดวงอาทิตย์ ส่วนห่วงโซ่โปรตอน-โปรตอนนั้นจะมีความสำคัญในดาวฤกษ์ที่มีมวลประมาณเท่ากับดวงอาทิตย์หรือน้อยกว่า ความแตกต่างนี้มีเหตุจากระดับอุณหภูมิที่แตกต่างกัน คือ ในห่วงโซ่โปรตอน-โปรตอน ปฏิกิริยาจะเริ่มต้นที่อุณหภูมิประมาณ 4 x 106 เคลวิน ซึ่งทำให้มันเป็นแรงหลักในดาวฤกษ์ขนาดเล็ก ห่วงโซ่ซีเอ็นโอเริ่มต้นที่อุณหภูมิประมาณ 13 x 106 เคลวิน แต่พลังงานที่ได้ออกมานั้นเพิ่มขึ้นเร็วกว่าการเพิ่มขึ้นของอุณหภูมิ ที่ประมาณ 17 x 106 เคลวิน วงจรซีเอ็นโอก็จะเริ่มเป็นแหล่งกำเนิดพลังงานหลัก ดวงอาทิตย์มีอุณหภูมิที่แกนกลางประมาณ 15.7 x 106 เคลวิน และมีเพียง 1.7% ของนิวเคลียสฮีเลียมที่เกิดขึ้นในดวงอาทิตย์ที่มีกำเนิดมาจากวงจรซีเอ็นโอ ผู้เสนอกระบวนการซีเอ็นโอมี 2 คนซึ่งต่างก็ทำงานแยกกัน ได้แก่ คาร์ล ฟอน ไวซ์เซกเกอร์ และ ฮานส์ เบเทอ โดยค้นพบในปี..

ใหม่!!: วิวัฒนาการของดาวฤกษ์และวงจรซีเอ็นโอ · ดูเพิ่มเติม »

สภาวะสมดุลอุทกสถิต

้าปริมาตรแก๊สส่วนที่ระบายสีไม่มีการเคลื่อนที่ แรงที่กระทำต่อแก๊สทางด้านขึ้นจะต้องเท่ากับแรงที่กระทำทางด้านลง สภาวะสมดุลอุทกสถิต (Hydrostatic equilibrium) เป็นสภาวะที่เกิดขึ้นเมื่อแรงกดจากความโน้มถ่วงมีค่าเท่ากับแรงดันต้านที่เกิดจากความดันในทิศทางตรงกันข้าม ตามกฎของนิวตัน แรงที่กระทำต่อปริมาตรของไหลที่ไม่มีการเคลื่อนที่ หรือมีการเคลื่อนที่ในอัตราคงที่ จะต้องมีผลรวมแรงเท่ากับศูนย์ กล่าวคือ แรงกระทำทางด้านขึ้นต้องเท่ากับแรงกระทำทางด้านลง สมดุลของแรงในลักษณะนี้เรียกว่า "สมดุลอุทกสถิต" (hydrostatic balance).

ใหม่!!: วิวัฒนาการของดาวฤกษ์และสภาวะสมดุลอุทกสถิต · ดูเพิ่มเติม »

หลุมดำ

มุมมองจำลองของหลุมดำด้านหน้าของทางช้างเผือก โดยมีมวลเทียบเท่าดวงอาทิตย์ 10 ดวงจากระยะทาง 600 กิโลเมตร หลุมดำ (black hole) หมายถึงเทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้แต่แสง ยกเว้นหลุมดำด้วยกัน เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ ที่ตำแหน่งรัศมีชวาร์สชิลด์ ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึงจะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า "หลุมดำ" เราไม่สามารถมองเห็นหลุมดำด้วยกล้องโทรทรรศน์ใดๆ เนื่องจากหลุมดำไม่เปล่งแสงหรือรังสีใดเลย แต่สามารถตรวจพบได้ด้วยกล้องโทรทรรศน์วิทยุ และคลื่นโน้มถ่วงของหลุมดำ (ในเชิงทฤษฎี โครงการแอลไอจีโอ) และจนถึงปัจจุบันได้ค้นพบหลุมดำในจักรวาลแล้วอย่างน้อย 6 แห่ง หลุมดำเป็นซากที่สิ้นสลายของดาวฤกษ์ที่ถึงอายุขัยแล้ว สสารที่เคยประกอบกันเป็นดาวนั้นได้ถูกอัดตัวด้วยแรงดึงดูดของตนเองจนเหลือเป็นเพียงมวลหนาแน่นที่มีขนาดเล็กยิ่งกว่านิวเคลียสของอะตอมเดียว ซึ่งเรียกว่า ภาวะเอกฐาน หลุมดำแบ่งได้เป็น 4 ประเภท คือ หลุมดำมวลยวดยิ่ง เป็นหลุมดำในใจกลางของดาราจักร, หลุมดำขนาดกลาง, หลุมดำจากดาวฤกษ์ ซึ่งเกิดจากการแตกดับของดาวฤกษ์, และ หลุมดำจิ๋วหรือหลุมดำเชิงควอนตัม ซึ่งเกิดขึ้นในยุคเริ่มแรกของเอกภพ แม้ว่าจะไม่สามารถมองเห็นภายในหลุมดำได้ แต่ตัวมันก็แสดงการมีอยู่ผ่านการมีผลกระทบกับวัตถุที่อยู่ในวงโคจรภายนอกขอบฟ้าเหตุการณ์ ตัวอย่างเช่น หลุมดำอาจจะถูกสังเกตเห็นได้โดยการติดตามกลุ่มดาวที่โคจรอยู่ภายในศูนย์กลางหลุมดำ หรืออาจมีการสังเกตก๊าซ (จากดาวข้างเคียง) ที่ถูกดึงดูดเข้าสู่หลุมดำ ก๊าซจะม้วนตัวเข้าสู่ภายใน และจะร้อนขึ้นถึงอุณหภูมิสูง ๆ และปลดปล่อยรังสีขนาดใหญ่ที่สามารถตรวจจับได้จากกล้องโทรทรรศน์ที่โคจรอยู่รอบโลก การสำรวจให้ผลในทางวิทยาศาสตร์เห็นพ้องต้องกันว่าหลุมดำนั้นมีอยู่จริงในเอกภพ แนวคิดของวัตถุที่มีแรงดึงดูดมากพอที่จะกันไม่ให้แสงเดินทางออกไปนั้นถูกเสนอโดยนักดาราศาสตร์มือสมัครเล่นชาวอังกฤษ จอห์น มิเชล ในปี 1783 และต่อมาในปี 1795 นักฟิสิกส์ชาวฝรั่งเศส ปีแยร์-ซีมง ลาปลาส ก็ได้ข้อสรุปเดียวกัน ตามความเข้าใจล่าสุด หลุมดำถูกอธิบายโดยทฤษฎีสัมพัทธภาพทั่วไป ซึ่งทำนายว่าเมื่อมีมวลขนาดใหญ่มากในพื้นที่ขนาดเล็ก เส้นทางในพื้นที่ว่างนั้นจะถูกทำให้บิดเบี้ยวไปจนถึงศูนย์กลางของปริมาตร เพื่อไม่ให้วัตถุหรือรังสีใดๆ สามารถออกมาได้ ขณะที่ทฤษฏีสัมพัทธภาพทั่วไปอธิบายว่าหลุมดำเป็นพื้นที่ว่างที่มีความเป็นภาวะเอกฐานที่จุดศูนย์กลางและที่ขอบฟ้าเหตุการณ์บริเวณขอบ คำอธิบายนี่เปลี่ยนไปเมื่อค้นพบกลศาสตร์ควอนตัม การค้นคว้าในหัวข้อนี้แสดงให้เห็นว่านอกจากหลุมดำจะดึงวัตถุไว้ตลอดกาล แล้วยังมีการค่อย ๆ ปลดปล่อยพลังงานภายใน เรียกว่า รังสีฮอว์คิง และอาจสิ้นสุดลงในที่สุด อย่างไรก็ตาม ยังไม่มีคำอธิบายเกี่ยวกับหลุมดำที่ถูกต้องตามทฤษฎีควอนตัม.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และหลุมดำ · ดูเพิ่มเติม »

อุณหภูมิ

อุณหภูมิของก๊าซอุดมคติอะตอมเดี่ยวสัมพันธ์กับค่าเฉลี่ยพลังงานจลน์ของอะตอม อุณหภูมิ คือการวัดค่าเฉลี่ยของพลังงานจลน์ของอนุภาคในสสารใดๆ ซึ่งสอดคล้องกับความร้อนหรือเย็นของสสารนั้น ในอดีตมีแนวคิดเกี่ยวกับอุณหภูมิเกิดขึ้นเป็น 2 แนวทาง คือตามแนวทางของหลักอุณหพลศาสตร์ และตามการอธิบายเชิงจุลภาคทางฟิสิกส์เชิงสถิติ แนวคิดทางอุณหพลศาสตร์นั้น ถูกพัฒนาขึ้นโดยลอร์ดเคลวิน โดยเกี่ยวข้องกับการวัดในเชิงมหภาค ดังนั้นคำจำกัดความอุณหภูมิในเชิงอุณหพลศาสตร์ในเบื้องแรก จึงระบุเกี่ยวกับค่าตัวแปรต่างๆ ที่สามารถตรวจวัดได้จากการสังเกต ส่วนแนวทางของฟิสิกส์เชิงสถิติจะให้ความเข้าใจในเชิงลึกยิ่งกว่าอุณหพลศาสตร์ โดยอธิบายถึงการสะสมจำนวนอนุภาคขนาดใหญ่ และตีความพารามิเตอร์ต่างๆ ในอุณหพลศาสตร์ (เชิงมหภาค) ในฐานะค่าเฉลี่ยทางสถิติของพารามิเตอร์ของอนุภาคในเชิงจุลภาค ในการศึกษาฟิสิกส์เชิงสถิติ สามารถตีความคำนิยามอุณหภูมิในอุณหพลศาสตร์ว่า เป็นการวัดพลังงานเฉลี่ยของอนุภาคในแต่ละองศาอิสระในระบบอุณหพลศาสตร์ โดยที่อุณหภูมินั้นสามารถมองเป็นคุณสมบัติเชิงสถิติ ดังนั้นระบบจึงต้องประกอบด้วยปริมาณอนุภาคจำนวนมากเพื่อจะสามารถบ่งบอกค่าอุณหภูมิอันมีความหมายที่นำไปใช้ประโยชน์ได้ ในของแข็ง พลังงานนี้พบในการสั่นไหวของอะตอมของสสารในสภาวะสมดุล ในแก๊สอุดมคติ พลังงานนี้พบในการเคลื่อนไหวไปมาของอนุภาคโมเลกุลของแก.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และอุณหภูมิ · ดูเพิ่มเติม »

ฮีเลียม

ีเลียม (Helium) เป็นธาตุเคมีที่มีสัญลักษณ์ว่า He และมีเลขอะตอมเท่ากับ 2 ฮีเลียมเป็นแก๊สไม่มีสี ไม่มีกลิ่น ไม่มีรส ไม่เป็นพิษ เฉื่อย มีอะตอมเดี่ยวซึ่งถูกจัดให้อยู่ในหมู่แก๊สมีตระกูลบนตารางธาตุ จุดเดือดและจุดหลอมเหลวของฮีเลียม มีค่าต่ำสุดกว่าบรรดาธาตุทั้งหมดในตารางธาตุ และมันจะปรากฏในอยู่รูปของแก๊สเท่านั้น ยกเว้นในสภาวะที่เย็นยิ่งยว.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และฮีเลียม · ดูเพิ่มเติม »

ดวงอาทิตย์

วงอาทิตย์เป็นดาวฤกษ์ ณ ใจกลางระบบสุริยะ เป็นพลาสมาร้อนทรงเกือบกลมสมบูรณ์ โดยมีการเคลื่อนท่พาซึ่งผลิตสนามแม่เหล็กผ่านกระบวนการไดนาโม ปัจจุบันเป็นแหล่งพลังงานสำคัญที่สุดสำหรับสิ่งมีชีวิตบนโลก มีเส้นผ่านศูนย์กลางประมาณ 1.39 ล้านกิโลเมตร ใหญ่กว่าโลก 109 เท่า และมีมวลประมาณ 330,000 เท่าของโลก คิดเป็นประมาณ 99.86% ของมวลทั้งหมดของระบบสุริยะ มวลประมาณสามในสี่ของดวงอาทิตย์เป็นไฮโดรเจน ส่วนที่เหลือเป็นฮีเลียมเป็นหลัก โดยมีปริมาณธาตุหนักกว่าเล็กน้อย รวมทั้งออกซิเจน คาร์บอน นีออนและเหล็ก ดวงอาทิตย์เป็นดาวฤกษ์ลำดับหลักระดับจี (G2V) ตามการจัดประเภทดาวฤกษ์ ซึ่งเรียกอย่างไม่เป็นทางการว่า "ดาวแคระเหลือง" ดวงอาทิตย์เกิดเมื่อประมาณ 4.6 พันล้านปีก่อนจากการยุบทางความโน้มถ่วงของสสารภายในบริเวณเมฆโมเลกุลขนาดใหญ่ สสารนี้ส่วนใหญ่รวมอยู่ที่ใจกลาง ส่วนที่เหลือแบนลงเป็นแผ่นโคจรซึ่งกลายเป็นระบบสุริยะ มวลใจกลางร้อนและหนาแน่นมากจนเริ่มเกิดปฏิกิริยานิวเคลียร์ฟิวชั่น ณ แก่น ซึ่งเชื่อว่าเป็นกระบวนการเกิดดาวฤกษ์ส่วนใหญ่ ดวงอาทิตย์มีอายุประมาณครึ่งอายุขัย ไม่มีการเปลี่ยนแปลงมากนักเป็นเวลากว่า 4 พันล้านปีมาแล้วและจะค่อนข้างเสถียรไปอีก 5 พันล้านปี หลังฟิวชันไฮโดรเจนในแก่นของมันลดลงถึงจุดที่ไม่อยู่ในดุลยภาพอุทกสถิตต่อไป แก่นของดวงอาทิตย์จะมีความหนาแน่นและอุณหภูมิเพิ่มขึ้นส่วนชั้นนอกของดวงอาทิตย์จะขยายออกจนสุดท้ายเป็นดาวยักษ์แดง มีการคำนวณว่าดวงอาทิตย์จะใหญ่พอกลืนวงโคจรปัจจุบันของดาวพุทธและดาวศุกร์ และทำให้โลกอาศัยอยู่ไม่ได้ มนุษย์ทราบความสำคัญของดวงอาทิตย์ที่มีโลกมาตั้งแต่สมัยก่อนประวัติศาสตร์ และบางวัฒนธรรมถือดวงอาทิตย์เป็นเทวดา การหมุนของโลกและวงโคจรรอบดวงอาทิตย์ของโลกเป็นรากฐานของปฏิทินสุริยคติ ซึ่งเป็นปฏิทินที่ใช้กันแพร่หลายในปัจจุบัน.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดวงอาทิตย์ · ดูเพิ่มเติม »

ดาราจักรไทรแองกูลัม

ราจักรไทรแองกูลัม หรือ ดาราจักรสามเหลี่ยม (Triangulum Galaxy; หรือที่รู้จักในชื่อ วัตถุเมสสิเยร์ M33 หรือ NGC 598) เป็นดาราจักรชนิดก้นหอยที่อยู่ห่างออกไปประมาณ 3 ล้านปีแสงในบริเวณกลุ่มดาวสามเหลี่ยม บางครั้งในหมู่นักดาราศาสตร์สมัครเล่นอาจเรียกอย่างไม่เป็นทางการว่า ดาราจักรเครื่องปั่นด้าย (Pinwheel Galaxy) รวมถึงในเว็บไซต์สาธารณะทั่วไป อย่างไรก็ดีในฐานข้อมูลดาราศาสตร์ SIMBAD นักวิชาการด้านดาราศาสตร์จะใช้คำว่า "Pinwheel Galaxy" กับวัตถุเมสสิเยร์ M101 รวมถึงนักดาราศาสตร์สมัครเล่นอีกส่วนหนึ่งหรือเว็บไซต์ทั่วไปก็อ้างอิงถึงวัตถุเมสสิเยร์ M101 ด้วยชื่อ "Pinwheel Galaxy" เช่นเดียวกัน ดาราจักรสามเหลี่ยมเป็นดาราจักรที่ใหญ่เป็นอันดับที่สามในกลุ่มท้องถิ่น โดยเล็กกว่าดาราจักรแอนดรอเมดาและทางช้างเผือก มันอาจมีแรงโน้มถ่วงที่ดึงดูดอยู่กับดาราจักรแอนดรอเมดาด้วย ขณะเดียวกัน ดาราจักรปลา (LGS 3) ซึ่งเป็นดาราจักรสมาชิกเล็กๆ แห่งหนึ่งในกลุ่มท้องถิ่น อาจจะเป็นดาราจักรบริวารของดาราจักรสามเหลี่ยมก็ได้.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาราจักรไทรแองกูลัม · ดูเพิ่มเติม »

ดาวพฤหัสบดี

ไม่มีคำอธิบาย.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวพฤหัสบดี · ดูเพิ่มเติม »

ดาวยักษ์

ESO'' ดาวยักษ์ (Giant star) คือดาวฤกษ์ชนิดหนึ่งที่มีรัศมีและความส่องสว่างมากกว่าดาวฤกษ์ในแถบลำดับหลักที่มีอุณหภูมิพื้นผิวเท่ากันGiant star, entry in Astronomy Encyclopedia, ed.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวยักษ์ · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวฤกษ์ · ดูเพิ่มเติม »

ดาวฤกษ์ก่อนเกิด

วาดดาวฤกษ์ก่อนเกิด ในจินตนาการของศิลปิน ดาวฤกษ์ก่อนเกิด (Protostar) คือวัตถุขนาดใหญ่ที่ก่อตัวขึ้นจากการรวมกลุ่มกันของแก๊สในเมฆโมเลกุลขนาดยักษ์ซึ่งอยู่ในสสารระหว่างดาว ช่วงการก่อตัวนี้เป็นขั้นตอนเริ่มต้นของกระบวนการก่อตัวของดาวฤกษ์ สำหรับดาวฤกษ์ที่มีมวลขนาดดวงอาทิตย์ ช่วงเวลาในการก่อตัวนี้ใช้เวลาประมาณ 100,000 ปี โดยค่อยๆ เพิ่มความหนาแน่นที่แกนกลางภายในเมฆโมเลกุล แล้วจึงก่อตัวเป็นดาวฤกษ์แบบ ที วัว จากนั้นจึงจะวิวัฒนาการไปสู่ดาวฤกษ์ในแถบลำดับหลัก.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวฤกษ์ก่อนเกิด · ดูเพิ่มเติม »

ดาวนิวตรอน

วนิวตรอน (Neutron Star) เป็นซากที่เหลือจากยุบตัวของการระเบิดแบบซูเปอร์โนวาชนิด II,Ib หรือ Ic และจะเกิดเฉพาะดาวฤกษ์มวลมากมีส่วนประกอบเพียงนิวตรอนที่อะตอมไร้กระแสไฟฟ้า (นิวตรอนมีมวลสารใกล้เคียงโปรตอน) และดาวประเภทนี้สามารถคงตัวอยู่ได้ด้วยหลักการกีดกันของเพาลีเกี่ยวกับแรงผลักระหว่างนิวตรอน ดาวนิวตรอนมีมวลประมาณ 1.35 ถึง 2.1 เท่ามวลดวงอาทิตย์ และมีรัศมี 20 ถึง 10 กิโลเมตรตามลำดับ (เมื่อดาวนิวตรอนมีมวลเพิ่มขึ้น รัศมีของดาวจะลดลง) ดาวนิวตรอนจึงมีขนาดเล็กกว่าดวงอาทิตย์ 30,000 ถึง 70,000 เท่า ดังนั้นดาวนิวตรอนจึงมีความหนาแน่นที่ 8*1013 ถึง 2*1015 กรัมต่อลูกบากศ์เซนติเมตร ซึ่งเป็นช่วงของความหนาแน่นของนิวเคลียสอะตอม ต้องใช้ความเร็วหลุดพ้นประมาณ 150,000 กิโลเมตรต่อวินาที หรือประมาณครึ่งหนึ่งของความเร็วแสง โดยทั่วไปแล้ว ดาวที่มีมวลน้อยกว่า 1.44 เท่ามวลดวงอาทิตย์ จะเป็นดาวแคระขาวตามขีดจำกัดของจันทรสิกขาร์ ถ้าอยู่ระหว่าง 2 ถึง 3 เท่ามวลดวงอาทิตย์อาจจะเป็นดาวควาร์ก (แต่ก็ยังเป็นที่ถกเถียงกันอยู่) ส่วนดาวที่มีมวลมากกว่านี้จะกลายเป็นหลุมดำไป เมื่อดาวฤกษ์มวลมากเกิดซูเปอร์โนวาและกลายเป็นดาวนิวตรอน ส่วนแก่นของมันจะได้รับโมเมนตัมเชิงมุมมา ซึ่งการเปลี่ยนแปลงรัศมีจากใหญ่ไปเล็กนั้นจะทำให้ความเร็วในการหมุนรอบตัวเองขึ้น แต่เมื่อเวลาผ่านไปก็จะหมุนรอบตัวเองช้าลงทีละน้อย ความเร็วในการหมุนรอบตัวเองของดาวนิวตรอนที่มีการบันทึกได้นั้นอยู่ระหว่าง 700 รอบต่อวินาทีไปจนถึง 30 วินาทีต่อรอบ ความเร่งที่พื้นผิวอยู่ที่ 2*1011 ถึง 3*1012 เท่ามากกว่าโลก ด้วยเหตุนี้ดาวนิวตรอนจึงสามารถส่งคลื่นวิทยุออกมาเป็นช่วงหรือพัลซาร์ และกระแสแม่เหล็กออกมาปริมาณมหาศาล การที่ดาวนิวตรอนสามารถส่งคลื่นวิทยุออกมาเป็นช่วงๆ นั้นทำได้อย่างไร ยังคงเป็นคำถามที่ไม่มีคำตอบ แม้ว่าจะมีการวิจัยเรื่องนี้มานานกว่า 40 ปีแล้วก็ตามในดาราจักรของเรานั้นเราพบเพียงไม่กี่สิบดวงเท่านั้น เรายังพบอีกว่า ดาวนิวตรอนน่าจะเป็นต้นกำเนิดของ แสงวาบรังสีแกมมา ที่มีความสว่างมากกว่าซูเปอร์โนวา หลายเท.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวนิวตรอน · ดูเพิ่มเติม »

ดาวแคระขาว

ซิริอุส เอ และ บี ที่ถ่ายโดยกล้องโทรทรรศน์อวกาศฮับเบิล ซิริอุส บี ที่เป็นดาวแคระขาวสามารถเห็นเป็นจุดจาง ๆ อยู่ทางด้านล่างซ้ายของดาว Sirius A ที่สว่างกว่ามาก ๆ ดาวแคระขาว (White dwarf) หรือบางครั้งเรียกว่า ดาวแคระเสื่อม (Degenerate dwarf) เป็นดาวขนาดเล็กที่ส่วนใหญ่ประกอบไปด้วยอิเล็กตรอนที่เป็นสสารเสื่อม เนื่องจากดาวแคระขาวที่มีมวลเท่ากับดวงอาทิตย์จะมีปริมาตรใกล้เคียงกับโลก ทำให้มันมีความหนาแน่นสูงและมีกำลังส่องสว่างน้อยมาจากความร้อนที่สะสมไว้, Jennifer Johnson, lecture notes, Astronomy 162, Ohio State University.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวแคระขาว · ดูเพิ่มเติม »

ดาวแคระน้ำตาล

วแคระน้ำตาล (ดวงเล็กกว่า) โคจรรอบดาว กลีส 229 ซึ่งอยู่ในกลุ่มดาวกระต่ายป่า ห่างจากโลก 19 ปีแสง ดาวแคระน้ำตาลดวงนี้มีชื่อว่า กลีส 229 บี มีขนาดประมาณ 20-50 เท่าของมวลดาวพฤหัสบดี ดาวแคระน้ำตาล (Brown dwarf) คือวัตถุกึ่งดาวฤกษ์ชนิดหนึ่งที่มีมวลต่ำเกินกว่าจะสามารถจุดการเผาไหม้ไฮโดรเจนด้วยปฏิกิริยานิวเคลียร์ฟิวชั่นที่แกนกลางได้ดังดาวฤกษ์บนแถบลำดับหลักทั่วไป ทว่ายังมีเนื้อในและพื้นผิวที่สามารถแผ่ความร้อนได้ และไม่มีความแตกต่างทางเคมีตามระดับความลึก ดาวแคระน้ำตาลจะมีมวลอยู่ระหว่างดาวเคราะห์แก๊สยักษ์ขนาดใหญ่ กับดาวฤกษ์ที่มีมวลน้อยที่สุด โดยขนาดมวลสูงสุดของดาวแคระน้ำตาลอยู่ที่ประมาณ 75-80 มวลดาวพฤหัสบดี (M_J) จนถึงปัจจุบันยังมีการถกเถียงกันอยู่ว่าด้วยการนิยามและแยกแยะระหว่างดาวแคระน้ำตาลกับดาวเคราะห์แก๊สยักษ์สำหรับดวงที่มีมวลต่ำมากๆ (~13 M_J) และข้อถกเถียงว่าจำเป็นหรือไม่ที่ดาวแคระน้ำตาลจะต้องเคยดำรงปฏิกิริยาฟิวชั่นมาก่อนในอดีต อย่างไรก็ดี ดาวแคระน้ำตาลที่มีมวลมากกว่า 13 M_J สามารถเผาผลาญดิวเทอเรียมได้ และดวงที่มีมวลมากกว่า ~65 M_J สามารถเผาผลาญลิเทียมได้ ดาวเคราะห์นอกระบบที่โคจรรอบดาวแคระน้ำตาลเท่าที่รู้จักกันในปัจจุบัน มีเพียง 2 เอ็ม 1207 บี และ เอ็มโอเอ-2007-บีแอลจี-192 เอล บี เท่านั้น.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวแคระน้ำตาล · ดูเพิ่มเติม »

ดาวแคระแดง

วาดแสดงลักษณะของดาวแคระแดง ซึ่งเป็นดาวฤกษ์จำนวนมากที่สุดบนท้องฟ้า อธิบายตามไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ ดาวแคระแดง (Red dwarf) คือดาวฤกษ์ที่มีขนาดเล็กและมีอุณหภูมิที่ค่อนข้างต่ำมาก เทียบกับบรรดาดาวฤกษ์บนแถบลำดับหลักทั้งหมด โดยมีค่าสเปกตรัมประมาณตอนปลายของประเภท K หรือ M ดาวฤกษ์ประเภทนี้มีจำนวนมากที่สุดในบรรดาดาวฤกษ์ทั้งหมด มีมวลน้อยกว่าครึ่งหนึ่งของดวงอาทิตย์ (หากต่ำถึง 0.075 เท่าของมวลดวงอาทิตย์ จะเรียกว่า ดาวแคระน้ำตาล) และมีอุณหภูมิพื้นผิวต่ำกว่า 3,500 เคลวิน.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดาวแคระแดง · ดูเพิ่มเติม »

ดิวเทอเรียม

วเทอเรียม (Deuterium) สัญญลักษณ์ 2H ถูกเรียกอีกชื่อหนึ่งว่าไฮโดรเจนหนัก เป็นหนึ่งในสองของไอโซโทปของไฮโดรเจนที่เสถียร โดยที่นิวเคลียสของอะตอมมีโปรตอน 1 ตัวและนิวตรอน 1 ตัว ในขณะที่ไอโซโทปของไฮโดรเจนที่รู้จักกันทั่วไปมากกว่าที่เรียกอีกอย่างหนึ่งว่า โปรเทียม (protium) มีเพียงโปรตอนเดียวเท่านั้น ไม่มีนิวตรอน ดิวเทอเรียมมี'ความอุดมในธรรมชาติ' โดยพบในมหาสมุทรทั่วไปประมาณหนึ่งอะตอมใน 6420 อะตอมของไฮโดรเจน ทำให้ดิวเทอเรียมมีสัดส่วนที่ประมาณ 0.0156% (หรือ 0.0312% ถ้าคิดตามมวล) ของไฮโดรเจนที่เกิดในธรรมชาติทั้งหมดในมหาสมุทร ในขณะที่โปรเทียมมีสัดส่วนมากกว่า 99.98% ความอุดมของดิวเทอเรียมเปลี่ยนแปงเล็กน้อยตามชนิดของน้ำตามธรรมชาติ (ดู ค่าเฉลี่ยของน้ำในมหาสมุทรตามมาตรฐานเวียนนา) นิวเคลียสของดิวเทอเรียมเรียกว่าดิวเทอรอน เราใช้สัญลักษณ์ 2H แทนดิวเทอเรียม อย่างไรก็ตาม บ่อยครั้งที่เราใช้ D แทนดิวเทอเรียม เช่นเมื่อเราต้องการจะเขียนสัญลักษณ์แทนโมเลกุลก๊าซดิวเทอเรียม จะสามารถเขียนแทนได้ว่า 2H2 หรือ D2 ก็ได้ หากแทนที่ดิวเทอเรียมในโมเลกุลของน้ำ จะทำให้เกิดสารดิวเทอเรียมออกไซด์หรือที่เรียกว่าน้ำมวลหนักขึ้น ถึงแม้น้ำชนิดหนักจะไม่เป็นสารพิษที่ร้ายแรงมากนัก แต่ก็ไม่เคยถูกนำมาใช้ในการอุปโภคบริโภค การมีอยู่ของดิวเทอเรียมในดาวฤกษ์เป็นข้อมูลสำคัญในวิชาจักรวาลวิทยา โดยปฏิกิริยานิวเคลียร์ฟิวชันในดาวฤกษ์จะทำลายดิวเทอเรียม ยังไม่พบกระบวนการในธรรมชาติใดๆที่ทำให้เกิดดิวเทอเรียมนอกจากปรากฏการณ์บิ๊กแบง ดิวเทอเรียมไม่มีอะไรต่างจากไฮโดรเจนมากนักในเชิงเคมีฟิสิกส์ นอกเสียจากว่ามีมวลที่หนักกว่า ซึ่งมวลที่หนักกว่านี้เองที่ทำให้ดิวเทอเรียมเปรียบเสมือนกับไฮโดรเจนที่เชื่องช้า เนื่องจากการที่มีมวลมากกว่า จะทำให้มีอัตราการเกิดปฏิกิริยาน้อยกว.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และดิวเทอเรียม · ดูเพิ่มเติม »

ความร้อน

ในทางฟิสิกส์ ความร้อน (ใช้สัญลักษณ์ว่า Q) หมายถึง พลังงานที่ถ่ายเทจากสสารหรือระบบหนึ่งไปยังสสารหรือระบบอื่นโดยอาศัยความแตกต่างของอุณหภูมิ ในทางอุณหพลศาสตร์จะใช้ปริมาณ TdS ในการวัดปริมาณความร้อน ซึ่งมีความหมายถึง อุณหภูมิสัมบูรณ์ของวัตถุ (T) คูณกับอัตราการเพิ่มของเอนโทรปีในระบบเมื่อวัดที่พื้นผิวของวัตถุ ความร้อนสามารถไหลผ่านจากวัตถุที่มีอุณหภูมิสูงไปสู่วัตถุที่มีอุณหภูมิต่ำกว่า หากต้องการให้ความร้อนถ่ายเทไปยังวัตถุที่มีอุณหภูมิเท่ากันหรือสูงกว่าจะทำได้ก็ต่อเมื่อใช้ปั๊มความร้อนเท่านั้น การสร้างแหล่งความร้อนที่มีอุณหภูมิสูงสามารถทำได้จากปฏิกิริยาเคมี (เช่นการเผาไหม้) ปฏิกิริยานิวเคลียร์ (เช่นฟิวชันในดวงอาทิตย์) การเคลื่อนที่ของอนุภาคแม่เหล็กไฟฟ้า (เช่นเตาไฟฟ้า) หรือการเคลื่อนที่ทางกล (เช่นการเสียดสี) โดยที่อุณหภูมิเป็นหน่วยวัดปริมาณของพลังงานภายในหรือเอนทาลปี ซึ่งเป็นพื้นฐานที่ส่งผลต่ออัตราการถ่ายเทความร้อนของวัตถุนั้นๆ ความร้อนสามารถถ่ายเทระหว่างวัตถุได้สามวิธีคือ การแผ่รังสี การนำความร้อน และการพาความร้อน นอกจากนี้มีกระบวนการถ่ายเทความร้อนอีกแบบหนึ่งคือ ความร้อนแฝง ซึ่งเกิดขึ้นในกระบวนการเปลี่ยนแปลงสถานะ เช่น จากของแข็งเป็นของเหลว หรือจากของเหลวเป็นก๊าซ เป็นต้น.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และความร้อน · ดูเพิ่มเติม »

ความดัน

วามดัน คือ แรงที่กระทำตั้งฉากต่อหนึ่งหน่วยพื้นที่ ภาพจำลอง–ความดันที่เกิดขึ้นจากการชนของอนุภาคในภาชนะปิด ความดันที่ระดับต่าง ๆ (หน่วยเป็น บาร์) ความดัน (pressure; สัญลักษณ์ p หรือ P) เป็นปริมาณชนิดหนึ่งในทางฟิสิกส์ หมายถึง อัตราส่วนระหว่างแรงที่กระทำตั้งฉากซึ่งทำโดยของแข็ง ของเหลว หรือแก๊ส ต่อพื้นที่ของสารใด ๆ (ของแข็ง ของเหลว หรือแก๊ส) ความดันเป็นปริมาณสเกลาร์ ซึ่งเป็นปริมาณที่มีแต่ขนาดไม่มีทิศทาง จากความหมายของความดันข้างต้นสามารถเขียนเป็นสูตรคณิตศาสตร์ (โดยทั่วไป) ได้ดังนี้ กำหนดให้ เนื่องจาก F มีหน่วยเป็น "นิวตัน" (N) และ A มีหน่วยเป็น "ตารางเมตร" (m2) ความดันจึงมีหน่วยเป็น "นิวตันต่อตารางเมตร" (N/m2; เขียนในรูปหน่วยฐานว่า kg·m−1·s−2) ในปี ค.ศ. 1971 (พ.ศ. 2514) มีการคิดค้นหน่วยของความดันขึ้นใหม่ เรียกว่า ปาสกาล (pascal, Pa) และกำหนดให้หน่วยชนิดนี้เป็นหน่วยเอสไอสำหรับความดัน โดยให้ 1 ปาสกาลมีค่าเท่ากับ 1 นิวตันต่อตารางเมตร (หรือ แรง 1 นิวตัน กระทำตั้งฉากกับพื้นที่ขนาด 1 ตารางเมตร) เพื่อให้เห็นภาพ ความดัน 1 ปาสกาลจะมีค่าประมาณ แรงกดของธนบัตรหนึ่งดอลลาร์ที่วางอยู่เฉย ๆ บนโต๊ะราบ ซึ่งนับว่าเป็นขนาดที่เล็กมาก ดังนั้นในชีวิตประจำวัน ความดันทั้งหลายมักมีค่าตั้งแต่ "กิโลปาสกาล" (kPa) ขึ้นไป โดยที่ 1 kPa.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และความดัน · ดูเพิ่มเติม »

ความโน้มถ่วง

หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และความโน้มถ่วง · ดูเพิ่มเติม »

ปีแสง

ปีแสง (อังกฤษ: light-year) คือ หน่วยของระยะทางในทางดาราศาสตร์ 1 ปีแสง เท่ากับระยะทางที่แสงเดินทางในเวลา 1 ปี จากอัตราเร็วแสงที่มีค่า 299,792,458 เมตร/วินาที ระยะทาง 1 ปีแสงจึงมีค่าประมาณ 9.4607 กิโลเมตร.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และปีแสง · ดูเพิ่มเติม »

แถบลำดับหลัก

ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ ที่พล็อตความสว่างแท้จริง (หรือความส่องสว่างสัมบูรณ์) ของดาวฤกษ์เทียบกับดัชนีสี แถบลำดับหลักจะมองเห็นเป็นแถบขวางโดดเด่นวิ่งจากด้านบนซ้ายลงไปยังด้านล่างขวา แถบลำดับหลัก (Main sequence) คือชื่อเรียกแถบต่อเนื่องและมีลักษณะพิเศษที่ปรากฏอยู่บนแผนภาพคู่ลำดับระหว่างสีของดาวฤกษ์กับความสว่าง แผนภาพคู่ลำดับสี-ความสว่างนี้รู้จักกันทั่วไปในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ หรือ HR Diagram ซึ่งเป็นผลการศึกษาร่วมกันระหว่างเอจนาร์ แฮร์ทสชปรุง กับเฮนรี นอร์ริส รัสเซลล์ ดาวที่อยู่บนแถบนี้จะรู้จักกันว่า ดาวบนแถบลำดับหลัก หรือดาวฤกษ์แคระ หลังจากที่ดาวฤกษ์ก่อตัวขึ้นแล้ว มันจะสร้างพลังงานออกมาจากย่านใจกลางอันหนาแน่นและร้อนจัดโดยปฏิกิริยานิวเคลียร์ฟิวชันของอะตอมไฮโดรเจนไปเป็นฮีเลียม ระหว่างที่กระบวนการนี้ดำเนินไปในช่วงอายุของดาว จะสามารถระบุตำแหน่งบนแถบลำดับหลักได้โดยใช้มวลของดาวเป็นข้อมูลเบื้องต้น ประกอบกับข้อมูลองค์ประกอบทางเคมีและปัจจัยอื่น ๆ อีก โดยทั่วไปยิ่งดาวฤกษ์มีมวลมากก็จะยิ่งมีช่วงอายุบนแถบลำดับหลักสั้นยิ่งขึ้น หลังจากเชื้อเพลิงไฮโดรเจนที่แกนกลางถูกใช้จนหมดไป ดาวฤกษ์ก็จะเคลื่อนออกไปจากแถบลำดับหลัก บางคราวอาจพิจารณาแถบลำดับหลักออกเป็นแถบบนและแถบล่าง ขึ้นกับกระบวนการที่ดาวฤกษ์ใช้ในการสร้างพลังงาน ดาวฤกษ์ที่มีมวลน้อยกว่า 1.5 เท่าของมวลดวงอาทิตย์จะหลอมอะตอมไฮโดรเจนเข้าด้วยกันพร้อมกับกระบวนการสร้างฮีเลียม กระบวนการนี้เรียกว่า ปฏิกิริยาลูกโซ่โปรตอน-โปรตอน ถ้าดาวฤกษ์มีมวลมากกว่านี้ ก็จะอยู่ในแถบลำดับหลักบน นิวเคลียร์ฟิวชันจะใช้อะตอมของคาร์บอน ไนโตรเจน และออกซิเจนเป็นสื่อกลางในการผลิตฮีเลียมจากอะตอมไฮโดรเจน เนื่องจากอุณหภูมิของดาวฤกษ์ที่แกนกลางกับที่พื้นผิวดาวนั้นมีความเหลื่อมล้ำกันอยู่ จึงมีการส่งผ่านพลังงานขึ้นมาอย่างต่อเนื่องผ่านชั้นดาวจนกระทั่งมันแผ่รังสีออกไปจากบรรยากาศของดาว กลไกสองประการที่ใช้ในการส่งผ่านพลังงานเหล่านี้คือ การแผ่รังสี และการพาความร้อน ในประเภทที่ขึ้นกับเงื่อนไขเฉพาะของดาวแต่ละดวง การพาความร้อนจะเกิดขึ้นในบริเวณที่อุณหภูมิมีความแตกต่างกันอย่างมาก หรือเป็นพื้นที่อับแสง หรือทั้งสองอย่าง เมื่อมีการพาความร้อนเกิดขึ้นในแกนกลาง มันจะกระตุ้นเศษเถ้าฮีเลียมขึ้น เป็นการรักษาระดับสัดส่วนของเชื้อเพลิงที่จะนำไปใช้ในปฏิกิริยาฟิวชัน หมวดหมู่:ดาวฤกษ์แถบลำดับหลัก หมวดหมู่:ประเภทของดาวฤกษ์ หมวดหมู่:วิวัฒนาการของดาวฤกษ์.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และแถบลำดับหลัก · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ใหม่!!: วิวัฒนาการของดาวฤกษ์และไฮโดรเจน · ดูเพิ่มเติม »

ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์

อะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (Hertzsprung-Russell diagram; บางครั้งเรียกย่อว่า H-R Diagram หรือ HRD) เป็นแผนภาพคู่ลำดับระหว่างสีของดาวฤกษ์กับความสว่างของดาว (colour-magnitude diagram; เรียกย่อว่า CMD) ซึ่งแสดงให้เห็นความสัมพันธ์ระหว่างค่าความส่องสว่างสัมบูรณ์ ความส่องสว่าง ประเภทของดาวฤกษ์ และอุณหภูมิของดาวฤกษ์ แผนภาพสร้างขึ้นในช่วงคริสต์ทศวรรษ 1910 โดย เอจนาร์ แฮร์ทสชปรุง และ เฮนรี นอร์ริส รัสเซลล์ ได้ส่งผลกระทบอย่างใหญ่หลวงต่อการศึกษาทำความเข้าใจวิวัฒนาการของดาวฤกษ์ หรือ "ช่วงชีวิตของดาวฤกษ์" ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ · ดูเพิ่มเติม »

เมฆโมเลกุล

กลุ่มเมฆในเนบิวลากระดูกงูเรือซึ่งถูกแสงดาวเป็นเวลาหลายล้านปีจนมีอุณหภูมิสูงมากและแตกตัวออกจากเนบิวลา ใกล้ ๆ กันจะเห็นดาวฤกษ์สว่างอยู่ ภาพของเมฆกลายเป็นสีแดงเพราะกระบวนการขจัดแสงน้ำเงินเพื่อลดความฟุ้งของฝุ่นในภาพ ภาพนี้ถ่ายโดยกล้องโทรทรรศน์อวกาศฮับเบิลในปี พ.ศ. 2542 เมฆโมเลกุล (Molecular Cloud) คือเมฆระหว่างดวงดาวชนิดหนึ่งที่มีความหนาแน่นมากและมีขนาดใหญ่พอจะทำให้เกิดการก่อตัวของโมเลกุลได้ โดยมากจะเป็นโมเลกุลของไฮโดรเจน (H2) บางครั้งก็เรียกว่า "อนุบาลดาวฤกษ์" (Stellar nursery) ในกรณีที่มีการก่อตัวของดาวฤกษ์อยู่ภายใน การตรวจจับโมเลกุลไฮโดรเจนโดยการสังเกตการณ์อินฟราเรดหรือการสังเกตการณ์คลื่นวิทยุจะทำได้ยากมาก ดังนั้นการตรวจจับมักใช้การสำรวจความมีอยู่ของ H2 โดยอาศัย CO (คาร์บอนมอนอกไซด์) โดยถือว่าสัดส่วนระหว่างการสะท้อนแสงของ CO กับมวล H2 เป็นค่าคงที่ แม้ว่าหลักการของสมมุติฐานนี้จะยังเป็นที่สงสัยอยู่ในการสังเกตการณ์ดาราจักรแห่งอื่น.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และเมฆโมเลกุล · ดูเพิ่มเติม »

เอกภพ

อวกาศห้วงลึกมากของฮับเบิล ที่ประกอบด้วยกาแล็กซีที่มีอายุ ขนาด รูปร่าง และสีแตกต่างกัน เอกภพ หรือ จักรวาล โดยทั่วไปนิยามว่าเป็นผลรวมของการดำรงอยู่ รวมทั้งดาวเคราะห์ ดาวฤกษ์ ดาราจักร สิ่งที่บรรจุอยู่ในอวกาศระหว่างดาราจักร และสสารและพลังงานทั้งหมด การสังเกตเอกภพทางวิทยาศาสตร์ ซึ่งเชื่อกันว่ามีเส้นผ่านศูนย์กลาง 9,999 ล้านปีแสง นำไปสู่อนุมานขั้นแรกเริ่มของเอกภพ การสังเกตเหล่านี้แนะว่า เอกภพถูกควบคุมด้วยกฎทางฟิสิกส์และค่าคงที่เดียวกันตลอดขนาดและประวัติศาสตร์ส่วนใหญ่ ทฤษฎีบิกแบงเป็นแบบจำลองจักรวาลวิทยาทั่วไปซึ่งอธิบายพัฒนาการแรกเริ่มของเอกภพ ซึ่งในจักรวาลวิทยากายภาพเชื่อว่าเกิดขึ้นเมื่อราว 13,700 ล้านปีก่อน มีนักฟิสิกส์มากมายเชื่อสมมุติฐานเกี่ยวกับพหุภพ ซึ่งกล่าวไว้ว่าเอกภพอาจเป็นหนึ่งในภพจำนวนมากที่มีอยู่เช่นกัน ระยะทางไกลสุดที่เป็นไปได้ทางทฤษฎีแก่มนุษย์ที่จะมองเห็นอธิบายว่าเป็น เอกภพที่สังเกตได้ การสังเกตได้แสดงว่า เอกภพดูจะขยายตัวในอัตราเร่ง และมีหลายแบบจำลองเกิดขึ้นเพื่อพยากรณ์ชะตาสุดท้ายของเอกภพ แผนภาพตำแหน่งของโลกในสถามที่ต่างๆของเอก.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และเอกภพ · ดูเพิ่มเติม »

เคลวิน

ลวิน (kelvin, สัญลักษณ์: K) เป็นหน่วยวัดอุณหภูมิหนึ่ง และเป็นหน่วยพื้นฐานหนึ่งในเจ็ดของระบบเอสไอ นิยามให้เท่ากับ 1/273.16 เท่าของอุณหภูมิเทอร์โมไดนามิกของจุดสามสถานะของน้ำ เคลวินตั้งชื่อเพื่อเป็นเกียรติแต่นักฟิสิกส์และวิศวกรชาวอังกฤษ วิลเลียม ทอมสัน บารอนที่หนึ่งแห่ง เคลวิน (William Thomson, 1st Baron Kelvin) ซึ่งชื่อบรรดาศักดิ์นี้ตั้งตามชื่อ แม่น้ำเคลวิน อีกทีหนึ่ง แม่น้ำสายนี้ตัดผ่านมหาวิทยาลัยกลาสโกว์ สกอตแลนด์ เคลวิน เป็นหน่วยของหน่วยวัดอุณหภูมิหนึ่ง ที่ลอร์เควิน ได้พัฒนาคิดสเกลขึ้นใหม่ โดยหาความสัมพันธ์ระหว่างอุณหภูมิและความเร็วของอิเล็กตรอนที่เคลื่อนที่รอบนิวเคลียส โดยสังเกตว่าถ้าให้ความร้อนกับสสารมากขึ้น อิเล็กตรอนจะมีพลังงานมากขึ้น ทำให้เคลื่อนที่มีความเร็วมากขึ้น ในทางกลับกันถ้าลดความร้อนให้กับสสาร อิเล็กตรอนก็จะมีพลังงานน้อยลง ทำให้การเคลื่อนที่ลดลง และถ้าสามารถลดอุณหภูมิลงจนถึงจุดที่อิเล็กตรอนหยุดการเคลื่อนที่ ณ จุดนั้น จะไม่มีอุณหภูมิหรือพลังงานในสสารเลย และจะไม่มีการแผ่รังสีความร้อนจากวัตถุ จึงเรียกอุณหภูมิ ณ จุดนี้ว่า ศูนย์สัมบูรณ์ (0 K) หมวดหมู่:หน่วยฐานเอสไอ หมวดหมู่:หน่วยวัดอุณหภูมิ.

ใหม่!!: วิวัฒนาการของดาวฤกษ์และเคลวิน · ดูเพิ่มเติม »

เนบิวลา

อ็นจีซี 604 (NGC 604) เป็นเนบิวลาที่อยู่ภายในแขนของดาราจักรเอ็ม 33 (M33) ในกลุ่มดาวสามเหลี่ยม อยู่ห่างจากโลก 2.7 ล้านปีแสง เนบิวลานี้เป็นบริเวณก่อตัวของดาวฤกษ์ดวงใหม่ เนบิวลานาฬิกาทราย (MyCn18) เป็นเนบิวลาดาวเคราะห์อายุน้อย อยู่ห่างจากโลกประมาณ 8,000 ปีแสง ภาพนี้ถ่ายด้วยกล้องถ่ายภาพที่ติดตั้งบนกล้องโทรทรรศน์อวกาศฮับเบิลขององค์การนาซา เนบิวลา (Nebula - มาจากภาษาละติน nebula (พหูพจน์ nebulae) หมายถึง "หมอก") เป็นกลุ่มเมฆหมอกของฝุ่น แก๊ส และพลาสมาในอวกาศ เดิมคำว่า "เนบิวลา" เป็นชื่อสามัญ ใช้เรียกวัตถุทางดาราศาสตร์ที่เป็นปื้นบนท้องฟ้าซึ่งรวมถึงดาราจักรที่อยู่ห่างไกลออกไปจากทางช้างเผือก (ตัวอย่างเช่น ในอดีตเคยเรียกดาราจักรแอนดรอเมดาว่าเนบิวลาแอนดรอเมดา).

ใหม่!!: วิวัฒนาการของดาวฤกษ์และเนบิวลา · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

การวิวัฒนาการของดาวฤกษ์วิวัฒนาการของดวงดาววิวัฒนาการดาวฤกษ์

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »