โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ดิวเทอเรียม

ดัชนี ดิวเทอเรียม

วเทอเรียม (Deuterium) สัญญลักษณ์ 2H ถูกเรียกอีกชื่อหนึ่งว่าไฮโดรเจนหนัก เป็นหนึ่งในสองของไอโซโทปของไฮโดรเจนที่เสถียร โดยที่นิวเคลียสของอะตอมมีโปรตอน 1 ตัวและนิวตรอน 1 ตัว ในขณะที่ไอโซโทปของไฮโดรเจนที่รู้จักกันทั่วไปมากกว่าที่เรียกอีกอย่างหนึ่งว่า โปรเทียม (protium) มีเพียงโปรตอนเดียวเท่านั้น ไม่มีนิวตรอน ดิวเทอเรียมมี'ความอุดมในธรรมชาติ' โดยพบในมหาสมุทรทั่วไปประมาณหนึ่งอะตอมใน 6420 อะตอมของไฮโดรเจน ทำให้ดิวเทอเรียมมีสัดส่วนที่ประมาณ 0.0156% (หรือ 0.0312% ถ้าคิดตามมวล) ของไฮโดรเจนที่เกิดในธรรมชาติทั้งหมดในมหาสมุทร ในขณะที่โปรเทียมมีสัดส่วนมากกว่า 99.98% ความอุดมของดิวเทอเรียมเปลี่ยนแปงเล็กน้อยตามชนิดของน้ำตามธรรมชาติ (ดู ค่าเฉลี่ยของน้ำในมหาสมุทรตามมาตรฐานเวียนนา) นิวเคลียสของดิวเทอเรียมเรียกว่าดิวเทอรอน เราใช้สัญลักษณ์ 2H แทนดิวเทอเรียม อย่างไรก็ตาม บ่อยครั้งที่เราใช้ D แทนดิวเทอเรียม เช่นเมื่อเราต้องการจะเขียนสัญลักษณ์แทนโมเลกุลก๊าซดิวเทอเรียม จะสามารถเขียนแทนได้ว่า 2H2 หรือ D2 ก็ได้ หากแทนที่ดิวเทอเรียมในโมเลกุลของน้ำ จะทำให้เกิดสารดิวเทอเรียมออกไซด์หรือที่เรียกว่าน้ำมวลหนักขึ้น ถึงแม้น้ำชนิดหนักจะไม่เป็นสารพิษที่ร้ายแรงมากนัก แต่ก็ไม่เคยถูกนำมาใช้ในการอุปโภคบริโภค การมีอยู่ของดิวเทอเรียมในดาวฤกษ์เป็นข้อมูลสำคัญในวิชาจักรวาลวิทยา โดยปฏิกิริยานิวเคลียร์ฟิวชันในดาวฤกษ์จะทำลายดิวเทอเรียม ยังไม่พบกระบวนการในธรรมชาติใดๆที่ทำให้เกิดดิวเทอเรียมนอกจากปรากฏการณ์บิ๊กแบง ดิวเทอเรียมไม่มีอะไรต่างจากไฮโดรเจนมากนักในเชิงเคมีฟิสิกส์ นอกเสียจากว่ามีมวลที่หนักกว่า ซึ่งมวลที่หนักกว่านี้เองที่ทำให้ดิวเทอเรียมเปรียบเสมือนกับไฮโดรเจนที่เชื่องช้า เนื่องจากการที่มีมวลมากกว่า จะทำให้มีอัตราการเกิดปฏิกิริยาน้อยกว.

18 ความสัมพันธ์: บิกแบงพ.ศ. 2474พ.ศ. 2475พ.ศ. 2476พ.ศ. 2477การหลอมนิวเคลียสรางวัลโนเบลจักรวาลวิทยาทริเทียมดาวฤกษ์นิวตรอนนิวเคลียสของอะตอมน้ำโปรตอนไอโซโทปไฮโดรเจนเคมีเคมีเชิงฟิสิกส์

บิกแบง

ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา บิกแบง (Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี..

ใหม่!!: ดิวเทอเรียมและบิกแบง · ดูเพิ่มเติม »

พ.ศ. 2474

ทธศักราช 2474 ตรงกับปีคริสต์ศักราช 1931 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: ดิวเทอเรียมและพ.ศ. 2474 · ดูเพิ่มเติม »

พ.ศ. 2475

ทธศักราช 2475 ตรงกั.

ใหม่!!: ดิวเทอเรียมและพ.ศ. 2475 · ดูเพิ่มเติม »

พ.ศ. 2476

ทธศักราช 2476 ตรงกับปีคริสต์ศักราช 1933.

ใหม่!!: ดิวเทอเรียมและพ.ศ. 2476 · ดูเพิ่มเติม »

พ.ศ. 2477

ทธศักราช 2477 ตรงกับปีคริสต์ศักราช 1934ยวห.

ใหม่!!: ดิวเทอเรียมและพ.ศ. 2477 · ดูเพิ่มเติม »

การหลอมนิวเคลียส

้นโค้งพลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที การหลอมนิวเคลียส (nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่​​ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike) การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้.

ใหม่!!: ดิวเทอเรียมและการหลอมนิวเคลียส · ดูเพิ่มเติม »

รางวัลโนเบล

หรียญรางวัลโนเบล รางวัลโนเบล (Nobelpriset; Nobel Prize) เป็นรางวัลประจำปีระดับนานาชาติ ซึ่งจัดโดยคณะกรรมการสแกนดิเนเวีย พิจารณาผลงานวิจัยหรือความอัจฉริยะและความเชี่ยวชาญที่โดดเด่น หรือสร้างคุณประโยชน์ให้กับมนุษยชาติ ทั้งในด้านวิทยาศาสตร์และวัฒนธรรม ตามเจตจำนงของอัลเฟรด โนเบล นักเคมีชาวสวีเดน ผู้ประดิษฐ์ไดนาไมท์ โดยก่อตั้งขึ้นครั้งแรกในปี..

ใหม่!!: ดิวเทอเรียมและรางวัลโนเบล · ดูเพิ่มเติม »

จักรวาลวิทยา

ักรวาลวิทยา (cosmology) เป็นการศึกษาเอกภพโดยรวม ซึ่งนับว่าเป็นการศึกษาถึงสิ่งที่ยิ่งใหญ่ที่สุดและเป็นพื้นฐานที่สุดในเวลาเดียวกัน จักรวาลวิทยามุ่งเน้นที่จะศึกษาถึงองค์ประกอบและความสัมพันธ์ของสรรพสิ่งทั้งหลายในเอกภพ พร้อมกับพยายามที่จะอธิบายความเป็นมาของเอกภพในอดีต และทำนายความเป็นไปของเอกภพในอนาคต เอกภพเป็นอย่างไร เอกภพมีขอบเขตจำกัดหรือไม่ เอกภพเกิดขึ้นได้อย่างไร เพราะเหตุใดเอกภพจึงมีรูปร่างลักษณะอย่างที่เป็นอยู่ในปัจจุบัน และอนาคตข้างหน้าเอกภพจะเป็นอย่างไร ปัญหาเหล่านี้คือสิ่งที่นักจักรวาลวิทยาทั้งหลายสนใจ จักรวาลวิทยาในความหมายที่กว้างที่สุด จะหมายถึงการทำความเข้าใจเอกภพโดยอาศัยความรู้จากหลายสาขาวิชา ไม่ว่าจะเป็น วิทยาศาสตร์ ปรัชญา ศาสนา หรือศิลปะ แต่โดยทั่วไปในปัจจุบัน จักรวาลวิทยาจะหมายถึงการศึกษาเอกภพโดยใช้กระบวนการทางวิทยาศาสตร์ โดยเฉพาะอย่างยิ่งในด้านฟิสิกส์และดาราศาสตร์ ซึ่งถือว่าเป็นสองเครื่องมือสำคัญในการใช้ศึกษาเอกภพ เป็นที่ยอมรับกันอย่างหลีกเลี่ยงไม่ได้ว่า ยิ่งเรามีความรู้ทางด้านฟิสิกส์และดาราศาสตร์มากขึ้นเท่าใด เราก็จะยิ่งมีความเข้าใจในเอกภพมากขึ้นเท่านั้น มโนทัศน์เกี่ยวกับเอกภพของมนุษย์เปลี่ยนแปลงไปตามยุคสมัย ชาวอียิปต์โบราณเชื่อว่าเอกภพประกอบด้วยโลก คือ เทพเจ้าชื่อเก็บ ซึ่งถูกโอบล้อมด้วยท้องฟ้าคือ นัท ต่อมาเมื่อชาวกรีกโบราณศึกษาท้องฟ้าและการโคจรของดวงดาวมากขึ้น เขาก็สามารถสร้างแบบจำลองเอกภพที่สอดคล้องกับข้อมูลที่ได้จากการศึกษานั้น โดยให้โลกเป็นจุดศูนย์กลางของเอกภพ และมีดวงจันทร์ ดวงอาทิตย์ รวมทั้งดาวฤกษ์และดาวเคราะห์ทั้งหลาย โคจรอยู่รายล้อม แบบจำลองโลกเป็นศูนย์กลางนี้เป็นที่ยอมรับกันมานับพันปี ก่อนที่โคเปอร์นิคัสจะเสนอแบบจำลองใหม่ที่ให้ดวงอาทิตย์เป็นศูนย์กลาง ด้วยเหตุผลว่าแบบจำลองนี้ใช้การคำนวณที่ซับซ้อนน้อยกว่า (หลักการของออคแคม) จะเห็นว่าความรู้ความเข้าใจที่เพิ่มขึ้นนั้นทำให้มนุษย์มองโลกและเอกภพต่างออกไป การศึกษาเอกภพก้าวหน้าขึ้นอย่างรวดเร็วในช่วงคริสต์ศตวรรษที่ 20 เพราะในศตวรรษนี้มีทฤษฎีใหม่ที่ให้ความรู้เกี่ยวกับธรรมชาติของเอกภพมากขึ้น เช่น ทฤษฎีสัมพัทธภาพทั่วไป และควอนตัมฟิสิกส์ รวมทั้งมีการค้นพบหลายสิ่งที่เป็นประโยชน์อย่างมากต่อวงการจักรวาลวิทยา เช่น การค้นพบว่าเอกภพกำลังขยายตัว หรือการค้นพบการแผ่รังสีคอสมิกไมโครเวฟเบื้องหลัง เป็นต้น ทั้งทฤษฎีและการค้นพบใหม่ ๆ เหล่านี้ทำให้ภาพของเอกภพในใจมนุษย์นั้นกระจ่างแจ่มชัดและใกล้เคียงความจริงยิ่งขึ้น อย่างไรก็ตามก็ต้องยอมรับว่าสิ่งที่มนุษย์รู้เกี่ยวกับเอกภพนั้นยังน้อยมาก และยังคงมีอีกหลายปัญหาในทางจักรวาลวิทยาที่ยังคงเป็นปริศนาอยู่ในปัจจุบัน.

ใหม่!!: ดิวเทอเรียมและจักรวาลวิทยา · ดูเพิ่มเติม »

ทริเทียม

ทริเทียม (tritium) เป็นไอโซโทปหนึ่งในสามชนิดของอะตอมไฮโดรเจนซึ่งได้แก่ ไฮโดรเจนธรรมดาหรือโปรเทียม ดิวเทอเรียม และทริเทียม (มีสัญลักษณ์ T หรือ 3H) องค์ประกอบของทริเทียมมีนิวเคลียสเกาะกันอยู่ด้วยอนุภาคมูลฐาน 2 ชนิดคือ โปรตอน 1 อนุภาคกับนิวตรอน 2 อนุภาค และมีอนุภาคมูลฐานอีกชนิดหนึ่งคืออิเล็กตรอนอีก 1 อนุภาคโคจรอยู่รอบนิวเคลียส ทริเทียมเป็นไอโซโทปกัมมันตรังสีโดยเกิดการสลายกัมมันตรังสีแบบการสลายให้รังสีบีตา (b-) หรือก็คืออนุภาคอิเล็กตรอน ด้วยครึ่งชีวิต 12.32 ปี โดยแปรเป็นธาตุฮีเลียม-3 หมวดหมู่:วัสดุนิวเคลียร์ หมวดหมู่:ไอโซโทป.

ใหม่!!: ดิวเทอเรียมและทริเทียม · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: ดิวเทอเรียมและดาวฤกษ์ · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: ดิวเทอเรียมและนิวตรอน · ดูเพิ่มเติม »

นิวเคลียสของอะตอม

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'.

ใหม่!!: ดิวเทอเรียมและนิวเคลียสของอะตอม · ดูเพิ่มเติม »

น้ำ

น้ำในสองสถานะ: ของเหลว (รวมทั้งก้อนเมฆซึ่งเป็นตัวอย่างของละอองลอย) และของแข็ง (น้ำแข็ง) น้ำเป็นสิ่งที่โปร่งใส ไม่มีรส ไม่มีกลิ่น และเกือบจะไม่มีสี ซึ่งเป็นสารเคมีที่เป็นองค์ประกอบหลักของลำธาร, แม่น้ำ, และมหาสมุทรในโลก เป็นต้น และยังเป็นของเหลวในสิ่งมีชีวิต มีสูตรเคมีคือ H2O โมเลกุลของน้ำประกอบด้วยออกซิเจน 1 อะตอมและไฮโดรเจน 2 อะตอมเชื่อมติดกันด้วยพันธะโควาเลนต์ น้ำเป็นของเหลวที่อุณหภูมิและความดันมาตรฐาน แต่พบบนโลกที่สถานะของแข็ง (น้ำแข็ง) และสถานะแก๊ส (ไอน้ำ) น้ำยังมีในสถานะของผลึกของเหลวที่บริเวณพื้นผิวที่ขอบน้ำ นอกจากนี้ยังสามารถเกิดขึ้นตามธรรมชาติ เช่น หิมะ, ธารน้ำแข็ง, และภูเขาน้ำแข็ง, ก้อนเมฆ, หมอก, น้ำค้าง, ชั้นหินอุ้มน้ำ และ ความชื้นในบรรยากาศ น้ำปกคลุม 71% บนพื้นผิวโลก และเป็นปัจจัยสำคัญต่อชีวิต น้ำบนโลก 96.5% พบในมหาสมุทร 1.7% ในน้ำใต้ดิน 1.7% ในธารน้ำแข็งและชั้นน้ำแข็งของทวีปแอนตาร์กติกาและเกาะกรีนแลนด์ ซึ่งเป็นเศษส่วนเล็กน้อยบนผิวน้ำขนาดใหญ่ และ 0.001% พบในอากาศเป็นไอน้ำ ก้อนเมฆ (ก่อตัวขึ้นจากอนุภาคน้ำในสถานะของแข็งและของเหลวแขวนลอยอยู่บนอากาศ) และหยาดน้ำฟ้า น้ำบนโลกเพียง 2.5% เป็นน้ำจืด และ 98.8% ของน้ำจำนวนนั้นพบในน้ำแข็งและน้ำใต้ดิน น้ำจืดน้อยกว่า 0.3% พบในแม่น้ำ ทะเลสาบ และชั้นบรรยากาศ และน้ำจืดบนโลกในปริมาณที่เล็กลงไปอีก (0.003%) พบในร่างกายของสิ่งมีชีวิตและผลิตภัณฑ์ น้ำบนโลกเคลื่อนที่ต่อเนื่องตามวัฏจักรของการระเหยเป็นไอและการคายน้ำ (การคายระเหย) การควบแน่น การตกตะกอน และการไหลผ่าน โดยปกติจะไปถึงทะเล การระเหยและการคายน้ำนำมาซึ่งการตกตะกอนลงสู่พื้นดิน น้ำดื่มสะอาดเป็นสิ่งจำเป็นสำหรับมนุษย์และสิ่งมีชีวิตอื่นๆ แม้ว่าน้ำจะไม่มีแคลอรีหรือสารอาหารที่เป็นสารประกอบอินทรีย์ใดๆ การเข้าถึงน้ำดื่มสะอาดได้เปลี่ยนแปลงไปในช่วงหลายศตวรรษที่ผ่านมาในเกือบทุกส่วนของโลก แต่ประชากรประมาณ 1 พันล้านคนยังคงขาดแคลนน้ำดื่มสะอาดและกว่า 2.5 พันล้านคนขาดแคลนสุขอนามัยที่เพียงพอ มีความเกี่ยวพันกันเรื่องน้ำสะอาดและค่า GDP ต่อคน อย่างไรก็ดี นักสังเกตบางคนประมาณไว้ว่าภายในปี..

ใหม่!!: ดิวเทอเรียมและน้ำ · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: ดิวเทอเรียมและโปรตอน · ดูเพิ่มเติม »

ไอโซโทป

แสดงไอโซโทปของไฮโดรเจนที่เกิดในธรรมชาติทั้งสามตัว ความจริงที่ว่าแต่ละไอโซโทปมีโปรตอนเพียงหนึ่งตัว ทำให้พวกมันทั้งหมดเป็นไฮโดรเจนที่แตกต่างกัน นั่นคือ ตัวตนของไอโซโทปถูกกำหนดโดยจำนวนของนิวตรอน จากซ้ายไปขวา ไอโซโทปเป็นโปรเทียม (1H) ที่มีนิวตรอนเท่ากับศูนย์, ดิวเทอเรียม (2H) ที่มีนิวตรอนหนึ่งตัว, และ ทริเทียม (3H) ที่มีสองนิวตรอน ไอโซโทป (isotope) เป็นความแตกต่างขององค์ประกอบทางเคมีที่เฉพาะเจาะจงของธาตุนั้นซึ่งจะแตกต่างกันในจำนวนของนิวตรอน นั่นคืออะตอมทั้งหลายของธาตุชนิดเดียวกัน จะมีจำนวนโปรตอนหรือเลขอะตอมเท่ากัน แต่มีจำนวนนิวตรอนต่างกัน ส่งผลให้เลขมวล(โปรตอน+นิวตรอน)ต่างกันด้วย และเรียกเป็นไอโซโทปของธาตุนั้น.

ใหม่!!: ดิวเทอเรียมและไอโซโทป · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ใหม่!!: ดิวเทอเรียมและไฮโดรเจน · ดูเพิ่มเติม »

เคมี

มี (chemistry) เป็นวิทยาศาสตร์สาขาหนึ่งที่ศึกษาในเรื่องของสสาร โดยไม่เพียงแต่ศึกษาเฉพาะในเรื่องของปฏิกิริยาเคมี แต่ยังรวมถึงองค์ประกอบ โครงสร้างและคุณสมบัติของสสารอีกด้วย การศึกษาทางด้านเคมีเน้นไปที่อะตอมและปฏิสัมพันธ์ระหว่างอะตอมกับอะตอม และโดยเฉพาะอย่างยิ่งคุณสมบัติของพันธะเคมี บางครั้ง เคมีถูกเรียกว่าเป็นวิทยาศาสตร์ศูนย์กลาง เพราะเป็นวิชาช่วยที่เชื่อมโยงฟิสิกส์เข้ากับวิทยาศาสตร์ธรรมชาติสาขาอื่น เช่น ธรณีวิทยาหรือชีววิทยา ถึงแม้ว่าเคมีจะถือเป็นสาขาหนึ่งของวิทยาศาสตร์กายภาพแต่ก็มีความแตกต่างจากวิชาฟิสิกส์ค่อนข้างมาก มีการถกเถียงกันอย่างมากมายถึงต้นกำเนิดของเคมี สันนิษฐานว่าเคมีน่าจะมีต้นกำเนิดมาจากการเล่นแร่แปรธาตุซึ่งเป็นที่นิยมกันมาอย่างยาวนานหลายสหัสวรรษในหลายส่วนของโลก โดยเฉพาะอย่างยิ่งในตะวันออกกลาง.

ใหม่!!: ดิวเทอเรียมและเคมี · ดูเพิ่มเติม »

เคมีเชิงฟิสิกส์

มีเชิงฟิสิกส์ (physical chemistry แต่เดิมเรียกเคมีกายภาพ) คือศาสตร์สาขาหนึ่งของวิชาเคมีที่มีเนื้อหาเชื่อมโยงและคาบเกี่ยวกับวิชาการสาขาอื่นๆดังนี้.

ใหม่!!: ดิวเทอเรียมและเคมีเชิงฟิสิกส์ · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Deuteriumดิวทีเรียมไฮโดรเจน-2ไฮโดรเจนหนัก

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »