เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ภาคตัดกรวยและรูปวงกลม

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ภาคตัดกรวยและรูปวงกลม

ภาคตัดกรวย vs. รูปวงกลม

นิดของภาคตัดกรวย ภาคตัดกรวย (conic section หรือ conic) ในทางคณิตศาสตร์ หมายถึง เส้นโค้งที่ได้จากการตัดพื้นผิวกรวยกลม ด้วยระนาบแบน ภาคตัดกรวยนี้ถูกตั้งเป็นหัวข้อศึกษาตั้งแต่สมัย 200 ปีก่อนคริสต์ศักราชโดย อพอลโลเนียส แห่ง เพอร์กา ผู้ซึ่งศึกษาภาคตัดกรวยและค้นพบสมบัติหลายประการของภาคตัดกรวย ต่อมากรณีการศึกษาภาคตัดกรวยถูกนำไปใช้ประโยชน์หลายแบบ ได้แก่ ในปี.. รูปวงกลมที่แสดงถึงรัศมี เส้นผ่านศูนย์กลาง จุดศูนย์กลาง และเส้นรอบวง รูปวงกลม (อังกฤษ: circle) เป็นรูปร่างพื้นฐานอันหนึ่งในเรขาคณิตแบบยุคลิด รูปวงกลมเป็นโลกัส (locus) ของจุดทุกจุดบนระนาบที่มีระยะห่างคงตัวกับจุดที่กำหนดอีกจุดหนึ่ง ระยะห่างนั้นเรียกว่ารัศมี และจุดที่กำหนดเรียกว่าจุดศูนย์กลาง สามจุดใดๆ ที่ไม่อยู่บนเส้นตรงเดียวกัน จะสามารถวาดรูปวงกลมผ่านทั้งสามจุดได้เพียงวงเดียว เส้นรอบวง คือเส้นรอบรูปของรูปวงกลม ส่วนโค้ง (arc) คือส่วนหนึ่งที่เชื่อมต่อกันของเส้นรอบวง คอร์ด (chord) คือส่วนของเส้นตรงที่มีจุดปลายทั้งสองบรรจบอยู่บนเส้นรอบวง เส้นผ่านศูนย์กลาง คือคอร์ดที่ลากผ่านจุดศูนย์กลาง มีความยาวเป็นสองเท่าของรัศมี และเป็นคอร์ดที่ยาวที่สุดในรูปวงกลม รูปวงกลมเป็นเส้นโค้ง (curve) แบบปิดที่แบ่งระนาบออกเป็นพื้นที่ภายในกับพื้นที่ภายนอก พื้นที่ภายในรูปวงกลมเรียกว่า จาน (disk) รูปวงกลมเป็นกรณีพิเศษของรูปวงรีที่มีโฟกัส (focus) อยู่ที่จุดเดียวกันนั่นคือจุดศูนย์กลาง นอกจากนี้รูปวงกลมยังเป็นภาคตัดกรวยที่เกิดจากการตัดด้วยระนาบที่ตั้งฉากกับแกนของทรงกรวย เป็นต้น.

ความคล้ายคลึงกันระหว่าง ภาคตัดกรวยและรูปวงกลม

ภาคตัดกรวยและรูปวงกลม มี 5 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ระบบพิกัดคาร์ทีเซียนระบบพิกัดเชิงขั้วระนาบเส้นตรงเส้นโค้ง

ระบบพิกัดคาร์ทีเซียน

ตัวอย่างระบบพิกัดคาร์ทีเซียนที่มีจุด (2,3) สีเขียว, จุด (-3,1) สีแดง, จุด (-1.5,-2.5) สีน้ำเงิน, และจุด (0,0) สีม่วงซึ่งเป็นจุดกำเนิด ในทางคณิตศาสตร์ ระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) เป็นระบบที่ใช้กำหนดตำแหน่งของจุดแต่ละจุดบนระนาบโดยอ้างถึงตัวเลข 2 จำนวน ซึ่งแต่ละจำนวนเรียกว่า พิกัดเอกซ์ และ พิกัดวาย ของจุดนั้น และเพื่อที่จะกำหนดพิกัดของจุด จะต้องมีเส้นแกนสองเส้นตัดกันเป็นมุมฉากที่จุดกำเนิด ได้แก่ แกนเอกซ์ และ แกนวาย ซึ่งเส้นแกนดังกล่าวจะมีหน่วยบ่งบอกความยาวเป็นระยะ ระบบพิกัดคาร์ทีเซียนยังสามารถใช้ได้ในปริภูมิสามมิติ (ซึ่งจะมี แกนแซด และ พิกัดแซด เพิ่มเข้ามา) หรือในมิติที่สูงกว่าอีกด้ว.

ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน · ระบบพิกัดคาร์ทีเซียนและรูปวงกลม · ดูเพิ่มเติม »

ระบบพิกัดเชิงขั้ว

ในระบบพิกัดเชิงขั้วกับขั้ว ''O'' และแกนเชิงขั้ว ''L'' ในเส้นสีเขียว จุดกับพิกัดรัศมี 3 และพิกัดมุม 60 องศาหรือ (3,60°) ในเส้นสีฟ้า จุด (4,210°) ในทางคณิตศาสตร์ ระบบพิกัดเชิงขั้ว (polar coordinate system) คือระบบค่าพิกัดสองมิติในแต่ละจุดบนระนาบถูกกำหนดโดยระยะทางจากจุดตรึงและมุมจากทิศทางตรึง จุดตรึง (เหมือนจุดกำเนิดของระบบพิกัดคาร์ทีเซียน) เรียกว่าขั้ว, และลากรังสีจากขั้วเข้ากับทิศทางตรึงคือแกนเชิงขั้ว ระยะทางจากขั้วเรียกว่าพิกัดรัศมีหรือรัศมี และมุมคือพิกัดมุม, มุมเชิงขั้ว, หรือมุมท.

ภาคตัดกรวยและระบบพิกัดเชิงขั้ว · ระบบพิกัดเชิงขั้วและรูปวงกลม · ดูเพิ่มเติม »

ระนาบ

องระนาบตัดกันในปริภูมิสามมิติ ในทางคณิตศาสตร์ ระนาบ (plane) คือแผ่นราบใดๆ ในพื้นผิวสองมิติ ระนาบคืออุปมัยสองมิติของจุด (ศูนย์มิติ), เส้นตรง (หนึ่งมิติ) และปริภูมิ (สามมิติ) ระนาบสามารถเกิดขึ้นจากปริภูมิย่อยของปริภูมิที่มีมิติมากกว่า อย่างกำแพงในห้อง หรืออาจอยู่อย่างอิสระด้วยตัวเอง ตามในนิยามของเรขาคณิตแบบยุคลิด ในอีกความหมายหนึ่งก็คือ ระนาบเป็นพื้นผิวสองมิติมีความกว้างและความยาว เกิดจากแนวเส้นที่ต่อเนื่องกัน ปิดล้อมพื้นที่ใดพื้นที่หนึ่งทำ ให้เกิดรูปร่าง หรือกลุ่มของจุดและเส้นซึ่งเรามองผ่านไปแล้วเกิดลักษณะของระนาบ ในทางคณิตศาสตร์โดยเฉพาะเรื่องเรขาคณิต, ตรีโกณมิติ, ทฤษฎีกราฟ และกราฟของฟังก์ชันการกระทำจำนวนมากกระทำอยู่ในระน.

ภาคตัดกรวยและระนาบ · ระนาบและรูปวงกลม · ดูเพิ่มเติม »

เส้นตรง

้นตรงในระนาบสองมิติ เส้นตรง (อังกฤษ: line) คือเส้นโค้งในแนวตรงโดยสมบูรณ์ (ในทางคณิตศาสตร์ เส้นโค้งมีความหมายรวมถึงเส้นตรงด้วย) ที่มีความยาวเป็นอนันต์ ความกว้างเป็นศูนย์ (ในทางทฤษฎี) และมีจำนวนจุดบนเส้นตรงเป็นอนันต์เช่นกัน ในเรขาคณิตแบบยุคลิด จะมีเส้นตรงเพียงหนึ่งเส้นเท่านั้นที่ผ่านจุดสองจุดใด ๆ และเป็นระยะทางที่สั้นที่สุด การวาดเส้นตรงสามารถทำได้โดยใช้เครื่องมือที่มีสันตรง เช่นไม้บรรทัด และอาจเติมลูกศรลงไปที่ปลายทั้งสองข้างเพื่อแสดงว่ามันมีความยาวเป็นอนันต์ เส้นตรงสองเส้นที่แตกต่างกันในสองมิติสามารถขนานกันได้ ซึ่งหมายความว่าเส้นตรงทั้งสองเส้นนั้นจะไม่ตัดกันที่ตำแหน่งใด ๆ ถึงแม้ต่อความยาวออกไปอีกก็ตาม ส่วนในสามมิติหรือมากกว่านั้น เส้นตรงสองเส้นอาจจะไขว้ข้ามกัน (skew) คือไม่ตัดกันแต่ก็อาจจะไม่ขนานกันด้วย และระนาบสองระนาบที่แตกต่างกันมาตัดกันจะทำให้เกิดเป็นเส้นตรงเพียงหนึ่งเส้น เรียกระนาบเหล่านั้นว่า ระนาบร่วมเส้นตรง (collinear planes) สำหรับจุดสามจุดหรือมากกว่าที่อยู่บนเส้นตรงเดียวกันจะเรียกว่า จุดร่วมเส้นตรง (collinear points).

ภาคตัดกรวยและเส้นตรง · รูปวงกลมและเส้นตรง · ดูเพิ่มเติม »

เส้นโค้ง

เส้นโค้งเปิด เส้นโค้งปิด เส้นโค้ง (curve) หมายถึงจุดทุกจุดที่ต่อเนื่องกันเป็นเส้นโดยไม่มีการขาดตอน เป็นวัตถุหนึ่งมิติ มีรูปร่างอย่างไรก็ได้ บางชนิดอาจนำเสนอได้ในรูปแบบของฟังก์ชันทางคณิตศาสตร์หรือกราฟของฟังก์ชัน ซึ่งอยู่บนระนาบสองมิติหรือไม่ก็ได้ เส้นโค้งแบ่งได้เป็นสองประเภทได้แก่ เส้นโค้งเปิด คือเส้นโค้งที่ไม่มีจุดจบหรือไม่บรรจบกัน เช่น คลื่นรูปไซน์ พาราโบลา และ เส้นโค้งปิด คือเส้นโค้งที่บรรจบกันเป็นรูปปิดหรือลากทับรอยเดิมเป็นวงวน เช่น รูปวงกลม ไฮโพโทรคอยด์ ชนิดของเส้นโค้งจำนวนมากมีการศึกษาในเรขาคณิต ทุกวันนี้เราให้ความหมายว่า "เส้นตรง" ไม่ได้เป็นเส้นโค้ง แต่ในทางคณิตศาสตร์ ทั้งเส้นตรงและส่วนของเส้นตรงก็คือเส้นโค้งที่ไม่มีความโค้งนั่นเอง สำหรับส่วนโค้งอาจเรียกได้ว่าเป็น "ส่วนของเส้นโค้ง" หมายถึงส่วนหนึ่งของเส้นโค้งที่สามารถหาอนุพันธ์ได้ หมวดหมู่:เรขาคณิต หมวดหมู่:ทอพอโลยี.

ภาคตัดกรวยและเส้นโค้ง · รูปวงกลมและเส้นโค้ง · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ภาคตัดกรวยและรูปวงกลม

ภาคตัดกรวย มี 19 ความสัมพันธ์ขณะที่ รูปวงกลม มี 19 ขณะที่พวกเขามีเหมือนกัน 5, ดัชนี Jaccard คือ 13.16% = 5 / (19 + 19)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ภาคตัดกรวยและรูปวงกลม หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: