เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน

ภาคตัดกรวย vs. ระบบพิกัดคาร์ทีเซียน

นิดของภาคตัดกรวย ภาคตัดกรวย (conic section หรือ conic) ในทางคณิตศาสตร์ หมายถึง เส้นโค้งที่ได้จากการตัดพื้นผิวกรวยกลม ด้วยระนาบแบน ภาคตัดกรวยนี้ถูกตั้งเป็นหัวข้อศึกษาตั้งแต่สมัย 200 ปีก่อนคริสต์ศักราชโดย อพอลโลเนียส แห่ง เพอร์กา ผู้ซึ่งศึกษาภาคตัดกรวยและค้นพบสมบัติหลายประการของภาคตัดกรวย ต่อมากรณีการศึกษาภาคตัดกรวยถูกนำไปใช้ประโยชน์หลายแบบ ได้แก่ ในปี.. ตัวอย่างระบบพิกัดคาร์ทีเซียนที่มีจุด (2,3) สีเขียว, จุด (-3,1) สีแดง, จุด (-1.5,-2.5) สีน้ำเงิน, และจุด (0,0) สีม่วงซึ่งเป็นจุดกำเนิด ในทางคณิตศาสตร์ ระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) เป็นระบบที่ใช้กำหนดตำแหน่งของจุดแต่ละจุดบนระนาบโดยอ้างถึงตัวเลข 2 จำนวน ซึ่งแต่ละจำนวนเรียกว่า พิกัดเอกซ์ และ พิกัดวาย ของจุดนั้น และเพื่อที่จะกำหนดพิกัดของจุด จะต้องมีเส้นแกนสองเส้นตัดกันเป็นมุมฉากที่จุดกำเนิด ได้แก่ แกนเอกซ์ และ แกนวาย ซึ่งเส้นแกนดังกล่าวจะมีหน่วยบ่งบอกความยาวเป็นระยะ ระบบพิกัดคาร์ทีเซียนยังสามารถใช้ได้ในปริภูมิสามมิติ (ซึ่งจะมี แกนแซด และ พิกัดแซด เพิ่มเข้ามา) หรือในมิติที่สูงกว่าอีกด้ว.

ความคล้ายคลึงกันระหว่าง ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน

ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ระนาบ

ระนาบ

องระนาบตัดกันในปริภูมิสามมิติ ในทางคณิตศาสตร์ ระนาบ (plane) คือแผ่นราบใดๆ ในพื้นผิวสองมิติ ระนาบคืออุปมัยสองมิติของจุด (ศูนย์มิติ), เส้นตรง (หนึ่งมิติ) และปริภูมิ (สามมิติ) ระนาบสามารถเกิดขึ้นจากปริภูมิย่อยของปริภูมิที่มีมิติมากกว่า อย่างกำแพงในห้อง หรืออาจอยู่อย่างอิสระด้วยตัวเอง ตามในนิยามของเรขาคณิตแบบยุคลิด ในอีกความหมายหนึ่งก็คือ ระนาบเป็นพื้นผิวสองมิติมีความกว้างและความยาว เกิดจากแนวเส้นที่ต่อเนื่องกัน ปิดล้อมพื้นที่ใดพื้นที่หนึ่งทำ ให้เกิดรูปร่าง หรือกลุ่มของจุดและเส้นซึ่งเรามองผ่านไปแล้วเกิดลักษณะของระนาบ ในทางคณิตศาสตร์โดยเฉพาะเรื่องเรขาคณิต, ตรีโกณมิติ, ทฤษฎีกราฟ และกราฟของฟังก์ชันการกระทำจำนวนมากกระทำอยู่ในระน.

ภาคตัดกรวยและระนาบ · ระนาบและระบบพิกัดคาร์ทีเซียน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน

ภาคตัดกรวย มี 19 ความสัมพันธ์ขณะที่ ระบบพิกัดคาร์ทีเซียน มี 16 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 2.86% = 1 / (19 + 16)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ภาคตัดกรวยและระบบพิกัดคาร์ทีเซียน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: