ความคล้ายคลึงกันระหว่าง คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์
คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์ มี 33 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟิสิกส์พีชคณิตกลศาสตร์การวิเคราะห์เชิงตัวเลขยุคลิดสมการเชิงอนุพันธ์สมมติฐานความต่อเนื่องอนันต์จำนวนเชิงซ้อนทฤษฎีบทพีทาโกรัสทฤษฎีบทมูลฐานของพีชคณิตทฤษฎีบทมูลฐานของแคลคูลัสทฤษฎีบทมูลฐานของเลขคณิตทฤษฎีบทสุดท้ายของแฟร์มาทฤษฎีบทสี่สีทฤษฎีบทความไม่สมบูรณ์ของเกอเดลทฤษฎีกราฟทฤษฎีจำนวนทฤษฎีความอลวนทฤษฎีเกมทฤษฎีเมเชอร์ทฤษฎีเซตทอพอโลยีข้อความคาดการณ์ของปวงกาเรคณิตศาสตร์บริสุทธิ์คณิตศาสตร์ประยุกต์ตรรกศาสตร์ตรีโกณมิติปัญหาของฮิลแบร์ทนักคณิตศาสตร์...แฟร็กทัลแคลคูลัสเรขาคณิต ขยายดัชนี (3 มากกว่า) »
ฟิสิกส์
แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.
คณิตศาสตร์และฟิสิกส์ · ฟิสิกส์และเส้นเวลาของคณิตศาสตร์ ·
พีชคณิต
ีชคณิต (คิดค้นโดย มุฮัมมัด อิบน์ มูซา อัลคอวาริซมีย์) เป็นสาขาหนึ่งในสามสาขาหลักในทางคณิตศาสตร์ ร่วมกับเรขาคณิต และ การวิเคราะห์ (analysis) พีชคณิตเป็นการศึกษาเกี่ยวกับโครงสร้าง ความสัมพันธ์ และจำนวน พีชคณิตพื้นฐานจะเริ่มมีสอนในระดับประถมศึกษาและมัธยมศึกษา โดยศึกษาเกี่ยวกับการบวกลบคูณและหาร ยกกำลัง และการถอดราก พีชคณิตยังคงรวมไปถึงการศึกษาสัญลักษณ์ ตัวแปร และเซ็ต คำว่า "พีชคณิต" เป็นคำศัพท์ภาษาสันสกฤต พบครั้งแรกในตำราคณิตศาสตร์ชื่อสิทธานตะ ศิโรมณิ ของนักคณิตศาสตร์อินเดียชื่อ ภาสกร หรือ ภาสกราจารย์ ส่วนในภาษาอังกฤษ อัลจีบรา (algebra) มาจากภาษาอาหรับคำว่า الجبر (al-jabr) แปลว่า การรวมกันใหม.
คณิตศาสตร์และพีชคณิต · พีชคณิตและเส้นเวลาของคณิตศาสตร์ ·
กลศาสตร์
Branches of mechanics กลศาสตร์ (กรีก: μηχανική) เป็นสาขาหนึ่งของวิทยาศาสตร์ที่ว่าด้วยพฤติกรรมของวัตถุทางกายภาพเมื่อถูกแรงกระทำหรือเมื่อมีการกระจัด กลศาสตร์มีรากฐานมาจากอารยธรรมกรีซโบราณ งานเขียนของอาริสโตเติล และอาร์คิมิดีส นักวิทยาศาสตร์ในสมัยใหม่ตอนต้น เช่น โอมาร์ คัยยาม, กาลิเลโอ กาลิเลอี, โยฮันเนส เคปเลอร์, และโดยเฉพาะ ไอแซก นิวตัน เป็นผู้วางรากฐานกลศาสตร์ดั้งเดิม กลศาสตร์เป็นสาขาหนึ่งของฟิสิกส์ดั้งเดิมที่เกี่ยวข้องอนุภาคทั้งที่หยุดนิ่งและที่กำลังเคลื่อนที่ ด้วยความเร็วที่น้อยกว่าความเร็วแสง และเป็นสาขาหนึ่งของวิทยาศาสตร์ที่เกี่ยวข้องกับการเคลื่อนที่ของวัตถุและแรงที่กระทำต่อวัต.
กลศาสตร์และคณิตศาสตร์ · กลศาสตร์และเส้นเวลาของคณิตศาสตร์ ·
การวิเคราะห์เชิงตัวเลข
Babylonian clay tablet YBC 7289 (c. 1800–1600 BC) with annotations. The approximation of the square root of 2 is four sexagesimal figures, which is about six decimal figures. 1 + 24/60 + 51/602 + 10/603.
การวิเคราะห์เชิงตัวเลขและคณิตศาสตร์ · การวิเคราะห์เชิงตัวเลขและเส้นเวลาของคณิตศาสตร์ ·
ยุคลิด
ลิดแห่งอะเล็กซานเดรีย (Euclid of Alexandria, ประมาณ 325 – 270 ปีก่อนคริสต์ศักราช) นักคณิตศาสตร์ที่มีชื่อเสียงชาวกรีก.
คณิตศาสตร์และยุคลิด · ยุคลิดและเส้นเวลาของคณิตศาสตร์ ·
สมการเชิงอนุพันธ์
มการเชิงอนุพันธ์ (Differential equation) หมายถึง สมการที่มีอนุพันธ์ต่างๆของฟังก์ชันที่ไม่ทราบค่า (unknown function) หนึ่งฟังก์ชันหรือมากกว่าหนึ่งฟังก์ชันปรากฏอยู่ คำว่า Differential equation (aequatio differentialis) เริ่มใช้โดย ไลน์นิตซ์ ในปี..
คณิตศาสตร์และสมการเชิงอนุพันธ์ · สมการเชิงอนุพันธ์และเส้นเวลาของคณิตศาสตร์ ·
สมมติฐานความต่อเนื่อง
มมติฐานความต่อเนื่อง (continuum hypothesis) คือ สมมติฐานเกี่ยวกับขนาดของเซตอนันต.
คณิตศาสตร์และสมมติฐานความต่อเนื่อง · สมมติฐานความต่อเนื่องและเส้นเวลาของคณิตศาสตร์ ·
อนันต์
ัญลักษณ์อนันต์ในรูปแบบต่าง ๆ อนันต์ (infinity; ใช้สัญลักษณ์ ∞) เป็นแนวคิดในทางคณิตศาสตร์และปรัชญาที่อ้างถึงจำนวนที่ไม่มีขอบเขตหรือไม่มีที่สิ้นสุด ในประวัติศาสตร์ ผู้คนต่างพัฒนาแนวคิดต่าง ๆ เกี่ยวกับธรรมชาติของอนันต์ ในทางคณิตศาสตร์ มีการจำกัดความของคำว่าอนันต์ในทฤษฎีเซต ภาษาอังกฤษของอนันต์ที่ว่า Infinity มาจากคำในภาษาละติน infinitas ซึ่งแปลว่า "ไม่มีที่สิ้นสุด" ในทางคณิตศาสตร์ เนื้อหาที่เกี่ยวกับอนันต์จะถือว่าอนันต์เป็นตัวเลข เช่น ใช้ในการนับปริมาณ เป็นต้นว่า "จำนวนพจน์เป็นอนันต์" แต่อนันต์ไม่ใช่ตัวเลขชนิดเดียวกับจำนวนจริง เกออร์ก คันทอร์ นักคณิตศาสตร์ชาวเยอรมันได้จัดระเบียบแนวคิดที่เกี่ยวกับอนันต์และเซตอนันต์ในช่วงปลายศตวรรษที่ 19 ถึงต้นศตวรรษที่ 20 เขายังได้ค้นพบว่าอนันต์มีการนับปริมาณแตกต่างกัน แนวคิดดังกล่าวถูกเรียกว่าภาวะเชิงการนับ เช่น เซตของจำนวนเต็มเป็นเซตอนันต์ที่นับได้ แต่เซตของจำนวนจริงเป็นเซตอนันต์ที่นับไม่ได้.
คณิตศาสตร์และอนันต์ · อนันต์และเส้นเวลาของคณิตศาสตร์ ·
จำนวนเชิงซ้อน
ำนวนเชิงซ้อน (อังกฤษ: complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i^2+1.
คณิตศาสตร์และจำนวนเชิงซ้อน · จำนวนเชิงซ้อนและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทพีทาโกรัส
ทฤษฎีบทพีทาโกรัส: ผลรวมของพื้นที่ของสี่เหลี่ยมสองรูปบนด้านประชิดมุมฉาก (''a'' และ ''b'') เท่ากับพื้นที่ของสี่เหลี่ยมบนด้านตรงข้ามมุมฉาก (''c'') ในวิชาคณิตศาสตร์ ทฤษฎีบทพีทาโกรัส แสดงความสัมพันธ์ในเรขาคณิตแบบยุคลิด ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวมของกำลังสองของอีกสองด้านที่เหลือ ในแง่ของพื้นที่ กล่าวไว้ดังนี้ ทฤษฎีบทดังกล่าวสามารถเขียนเป็นสมการสัมพันธ์กับความยาวของด้าน a, b และ c ได้ ซึ่งมักเรียกว่า สมการพีทาโกรัส ดังด้านล่าง โดยที่ c เป็นความยาวด้านตรงข้ามมุมฉาก และ a และ b เป็นความยาวของอีกสองด้านที่เหลือ ทฤษฎีบทพีทาโกรัสตั้งตามชื่อนักคณิตศาสตร์ชาวกรีก พีทาโกรัส ซึ่งถือว่าเป็นผู้ค้นพบทฤษฎีบทและการพิสูจน์ แม้จะมีการแย้งบ่อยครั้งว่า ทฤษฎีบทดังกล่าวมีมาก่อนหน้าเขาแล้ว มีหลักฐานว่านักคณิตศาสตร์ชาวบาบิโลนเข้าใจสมการดังกล่าว แม้ว่าจะมีหลักฐานหลงเหลืออยู่น้อยมากว่าพวกเขาปรับให้มันพอดีกับกรอบคณิตศาสตร.
คณิตศาสตร์และทฤษฎีบทพีทาโกรัส · ทฤษฎีบทพีทาโกรัสและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทมูลฐานของพีชคณิต
ทฤษฎีบทมูลฐานของพีชคณิต (fundamental theorem of algebra) ในคณิตศาสตร์กล่าวว่า พหุนามเชิงซ้อนที่ไม่ใช่ค่าคงที่มีรากเป็นจำนวนเชิงซ้อน หรือกล่าวอย่างเป็นทางการว่า ถ้า เป็นพหุนามที่มีสัมประสิทธิ์ a_0, a_1, \ldots, a_ เป็นจำนวนเชิงซ้อนแล้ว จะมีจำนวนเชิงซ้อน z_0 ที่ทำให้ p(z_0).
คณิตศาสตร์และทฤษฎีบทมูลฐานของพีชคณิต · ทฤษฎีบทมูลฐานของพีชคณิตและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทมูลฐานของแคลคูลัส
ทฤษฎีบทมูลฐานของแคลคูลัส กล่าวว่าอนุพันธ์ และปริพันธ์ ซึ่งเป็นการดำเนินการหลักในแคลคูลัสนั้นผกผันกัน ซึ่งหมายความว่าถ้านำฟังก์ชันต่อเนื่องใดๆมาหาปริพันธ์ แล้วนำมาหาอนุพันธ์ เราจะได้ฟังก์ชันเดิม ทฤษฎีบทนี้เหมือนว่าเป็นหัวใจสำคัญของแคลคูลัสที่นับได้ว่าเป็นทฤษฎีบทมูลฐานของทั้งสาขานี้ ผลต่อเนื่องที่สำคัญของทฤษฎีบทนี้ ซึ่งบางทีเรียกว่าทฤษฎีบทมูลฐานของแคลคูลัสบทที่สองนั้นทำให้เราสามารถคำนวณหาปริพันธ์โดยใช้ปฏิยานุพันธ์ ของฟังก์ชัน.
คณิตศาสตร์และทฤษฎีบทมูลฐานของแคลคูลัส · ทฤษฎีบทมูลฐานของแคลคูลัสและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทมูลฐานของเลขคณิต
ทฤษฎีบทมูลฐานของเลขคณิต หรือ ทฤษฎีบทการแยกตัวประกอบได้อย่างเดียว (fundamental theorem of arithmetic หรือ unique factorization theorem) ในคณิตศาสตร์และทฤษฎีจำนวน คือประโยคซึ่งกล่าวว่า จำนวนเต็มบวกทุกจำนวนที่มากกว่า 1 สามารถเขียนอยู่ในรูปผลคูณของจำนวนเฉพาะได้วิธีเดียวเท่านั้น ตัวอย่างเช่น เราสามารถเขียน และไม่มีทางที่จะแยกตัวประกอบของ 6936 หรือ 1200 ได้เป็นอย่างอื่น ถ้าเราไม่สนใจลำดับของตัวประกอบ เพื่อที่จะให้ทฤษฏีบทนี้ใช้ได้กับจำนวน 1 เราจะถือว่า 1 เป็นผลคูณของของจำนวนเฉพาะศูนย์จำนวน (ดูใน ผลคูณว่าง).
คณิตศาสตร์และทฤษฎีบทมูลฐานของเลขคณิต · ทฤษฎีบทมูลฐานของเลขคณิตและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทสุดท้ายของแฟร์มา
ทฤษฎีบทสุดท้ายของแฟร์มา (Fermat's last theorem) เป็นหนึ่งในทฤษฎีบทที่โด่งดังในประวัติศาสตร์ของคณิตศาสตร์ ซึ่งกล่าวว่า: ปีแยร์ เดอ แฟร์มา นักคณิตศาสตร์ในคริสต์ศตวรรษที่ 17 ได้เขียนทฤษฎีบทนี้ลงในหน้ากระดาษหนังสือ Arithmetica ของไดโอแฟนตัส ฉบับแปลเป็นภาษาละตินโดย Claude-Gaspar Bachet เขาเขียนว่า "ฉันมีบทพิสูจน์ที่น่าอัศจรรย์สำหรับบทสรุปนี้ แต่พื้นที่กระดาษเหลือน้อยเกินไปที่จะอธิบายได้" (เขียนเป็นภาษาละตินว่า "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") อย่างไรก็ตาม ตลอดระยะเวลา 357 ปี ไม่มีใครสามารถพิสูจน์ได้ถูกต้องเลย ปีแยร์ เดอ แฟร์มา ข้อความนี้มีความสำคัญมาก เพราะว่าข้อความอื่นๆ ที่แฟร์มาเขียนนั้น ได้รับการพิสูจน์หมดแล้ว ไม่ว่าจะพิสูจน์ด้วยตัวเขาเอง หรือว่ามีคนให้บทพิสูจน์ในภายหลัง ทฤษฎีบทนี้ไม่ได้เป็นข้อความคาดการณ์สุดท้ายที่แฟร์มาเขียน แต่เป็น ข้อสุดท้ายที่จะต้องพิสูจน์ นักคณิตศาสตร์ได้พยายามพิสูจน์หรือไม่ก็หักล้างทฤษฎีบทนี้มาโดยตลอด และต้องพบกับความล้มเหลวทุกครั้งไป ทำให้ทฤษฎีนี้เป็นทฤษฎีที่สร้างบทพิสูจน์ที่ผิดๆ มากที่สุดในวงการคณิตศาสตร์ก็ว่าได้ อาจเป็นเพราะทฤษฎีบทนี้ดูแล้วไม่มีอะไรซับซ้อนนั่นเอง.
คณิตศาสตร์และทฤษฎีบทสุดท้ายของแฟร์มา · ทฤษฎีบทสุดท้ายของแฟร์มาและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทสี่สี
แผนที่ที่ระบายด้วยสี 4 สี ทฤษฎีบทสี่สี (Four color theorem) กล่าวว่า แผนที่ทางภูมิศาสตร์สามารถระบายด้วยสี 4 สี ซึ่งไม่มีพื้นที่ที่อยู่ติดกันมีสีเดียวกันได้เสมอ เราเรียกพื้นที่ว่าติดกันก็ต่อเมื่อมันมีส่วนของขอบร่วมกัน ไม่ใช่แค่จุดร่วมกัน และพื้นที่แต่ละชิ้นจะต้องติดเป็นอันหนึ่งอันเดียวกัน ไม่ใช่แยกเป็นหลายๆ ส่วน อย่างมิชิแกน หรืออาเซอร์ไบจาน เป็นที่ประจักษ์ว่าสี 3 สีนั้นไม่เพียงพอ ซึ่งพิสูจน์ได้ไม่ยาก นอกจากนั้น เราสามารถพิสูจน์ได้ว่าสี 5 สีนั้นเพียงพอในการระบายแผนที่ ทฤษฎีบทสี่สี เป็นทฤษฎีบทแรกที่ถูกพิสูจน์ด้วยคอมพิวเตอร์ แต่การพิสูจน์นี้ไม่เป็นที่ยอมรับจากนักคณิตศาสตร์ส่วนใหญ่ เพราะว่ามันไม่สามารถตรวจสอบด้วยคนได้ และบางคนถึงกับกังวลในความถูกต้องของตัวแปลภาษา (คอมไพเลอร์) และฮาร์ดแวร์ที่ใช้ทำงานโปรแกรมสำหรับการพิสูจน์ การขาดความสง่างามทางคณิตศาสตร์ก็เป็นอีกสาเหตุหนึ่ง ดังคำกล่าวอันหนึ่งว่า "บทพิสูจน์ทางคณิตศาสตร์ที่ดีเป็นดั่งบทกวี — แต่นี่มันคือสมุดจดเบอร์โทรศัพท์ชัดๆ!".
คณิตศาสตร์และทฤษฎีบทสี่สี · ทฤษฎีบทสี่สีและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล
ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล (Gödel's incompleteness theorems) เป็นทฤษฎีตรรกะทางคณิตศาสตร์ ที่เกิดขึ้นในปี ค.ศ. 1931 โดย เคิร์ท เกอเดล (Kurt Gödel) เคิร์ท เกอเดล ซึ่งในขณะนั้นเป็นนักคณิตศาสตร์อยู่ที่มหาวิทยาลัยเวียนนา ได้ตีพิมพ์เปเปอร์ชื่อ Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (ต้นฉบับเป็นภาษาเยอรมัน หรือมีชื่อในภาษาอังกฤษว่า On Formally Undecidable Propositions in Principia Mathematica and Related Systems หรือ ว่าด้วยประพจน์ที่ตัดสินไม่ได้อย่างเป็นรูปนัยใน พรินซิเพีย แมเทเมทิกา และระบบอื่นที่เกี่ยวข้อง) ในเปเปอร์นี้ เกอเดลทำการพิสูจน์จนที่สุดแล้วได้ผลลัพธ์เป็นสองทฤษฎีบทที่น่าตื่นตะลึง ซึ่งในภายหลังทฤษฎีบททั้งสองถูกเรียกรวมกันว่าทฤษฎีบทความไม่สมบูรณ์ของเกอเดล ทฤษฎีบทนี้นับว่าเป็นเป็นทฤษฎีบทสำคัญที่เข้าขั้นปฏิวัติวงการ ทั้งในด้านตรรกศาสตร์ ด้านคณิตศาสตร์ ด้านปรัชญา และด้านการแสวงหาความรู้ของมนุษยชาติ รวมทั้งทำให้เกิดบทวิเคราะห์ การตีความ และคำถามต่างๆ ตามมาขึ้นอีกมากม.
คณิตศาสตร์และทฤษฎีบทความไม่สมบูรณ์ของเกอเดล · ทฤษฎีบทความไม่สมบูรณ์ของเกอเดลและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีกราฟ
กราฟที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น ทฤษฎีกราฟ (graph theory) เป็นหนึ่งในสาขาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ที่ศึกษาถึงคุณสมบัติต่าง ๆ ของกราฟ.
คณิตศาสตร์และทฤษฎีกราฟ · ทฤษฎีกราฟและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีจำนวน
ทฤษฎีจำนวน (number theory) โดยธรรมเนียมเดิมเป็นสาขาหนึ่งของคณิตศาสตร์บริสุทธิ์ ซึ่งศึกษาเกี่ยวกับคุณสมบัติของจำนวนเต็ม สาขานี้มีผลงานและปัญหาเปิดมากมายที่สามารถเข้าใจได้ง่าย แม้กระทั่งผู้ที่ไม่ใช่นักคณิตศาสตร์ แต่ในปัจจุบัน สาขานี้ยังได้สนใจกลุ่มของปัญหาที่กว้างขึ้น ซึ่งมักเป็นปัญหาที่ต่อยอดมาจากการศึกษาจำนวนเต็ม นักคณิตศาสตร์ที่ศึกษาสาขานี้เรียกว่า นักทฤษฎีจำนวน คำว่า "เลขคณิต" (arithmetic) มักถูกใช้เพื่ออ้างถึงทฤษฎีจำนวน นี่เป็นการเรียกในอดีต ซึ่งในปัจจุบันไม่ได้รับความนิยมเช่นเคย ทฤษฎีจำนวนเคยถูกเรียกว่า เลขคณิตชั้นสูง ซึ่งเลิกใช้ไปแล้ว อย่างไรก็ตามคำว่า "เลขคณิต" ยังปรากฏในสาขาทางคณิตศาสตร์อยู่ (เช่น ฟังก์ชันเลขคณิต เลขคณิตของเส้นโค้งวงรี หรือ ทฤษฎีบทมูลฐานของเลขคณิต) ไม่ควรจะสับสนระหว่างคำว่า เลขคณิต นี้ กับเลขคณิตมูลฐาน (elementary arithmetic) หรือสาขาของตรรกศาสตร์ที่ศึกษาเลขคณิตเปียโนในรูปของระบบรูปนั.
คณิตศาสตร์และทฤษฎีจำนวน · ทฤษฎีจำนวนและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีความอลวน
ทฤษฎีความอลวน (Chaos theory) เป็นทฤษฎีที่อธิบายถึงลักษณะพฤติกรรมของระบบพลวัต (คือ ระบบที่มีการเปลี่ยนแปลง เช่น เปลี่ยนแปลงตามเวลาที่เปลี่ยนไป) โดยลักษณะการเปลี่ยนแปลงของระบบที่เรียกว่าเคออสนี้ จะมีลักษณะที่ปั่นป่วนจนดูคล้ายว่า การเปลี่ยนแปลงนั้นเป็นแบบสุ่มหรือไร้ระเบียบ (random/stochastic) แต่จริง ๆ แล้ว ระบบเคออสนี้เป็นระบบแบบไม่สุ่ม หรือระบบที่มีระเบียบ (deterministic) ในทางคณิตศาสตร์และฟิสิกส์ คำจำกัดความของระบบเคออส คือ ระบบไม่เชิงเส้น (nonlinear system) ประเภทหนึ่ง ที่มีความไวต่อสภาวะเริ่มต้น กล่าวอีกนัยหนึ่งคือ ถ้าระบบ 2 ระบบนั้นเริ่มต้นจากสภาวะที่แตกต่างกันเพียงเล็กน้อย คือเกือบจะเหมือนกันทุกประการ เมื่อระบบได้มีการเปลี่ยนไปสักระยะหนึ่ง สภาวะของระบบทั้งสองที่เราสังเกตได้เมื่อเวลาผ่านไปจะแตกต่างกันอย่างสังเกตเห็นได้ชัด เรามักจะได้ยินคำพูดที่นิยมพูดกันอย่างกว้างขวางที่ว่า "เด็ดดอกไม้สะเทือนถึงดวงดาว" หรือ "ผีเสื้อขยับปีกทำให้เกิดพายุ" (จาก "butterfly effect") ซึ่งมีคนจำนวนไม่น้อยที่ตีความคำพูดนี้ในลักษณะของขนาดความรุนแรงของผลลัพธ์เท่านั้น ระบบเคออสนั้นไม่จำเป็นจะต้องแตกต่างกันในแง่ของ ขนาด ของผลลัพธ์เสมอไป แต่อาจแตกต่างกันในแง่ของ พฤติกรรม การเปลี่ยนแปลงก็ได้ จากตัวอย่างข้างต้น การเปลี่ยนแปลงของระบบทั้งสองนั้นจะมีลักษณะที่คล้ายคลึงกันมากในขณะเริ่มต้น เมื่อเวลาผ่านไป การเปลี่ยนแปลงนั้นแทบจะเรียกได้ว่าไม่มีอะไรที่เหมือนกันเล.
คณิตศาสตร์และทฤษฎีความอลวน · ทฤษฎีความอลวนและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีเกม
ในทางคณิตศาสตร์ ทฤษฎีเกม (อังกฤษ: game theory) เป็นการจำลองสถานการณ์ทางกลยุทธ์ หรือเกมคณิตศาสตร์ ซึ่งความสำเร็จในการตัดสินใจของแต่ละบุคคลขึ้นอยู่กับทางเลือกของบุคคลอื่น แต่ละฝ่ายต่างก็พยายามแสวงหาผลตอบแทนให้ได้มากที่สุด ทฤษฎีเกมมีการใช้ในทางสังคมศาสตร์ (ที่โดดเด่นเช่น เศรษฐศาสตร์ การจัดการ การวิจัยปฏิบัติการ รัฐศาสตร์และจิตวิทยาสังคม) เช่นเดียวกับวิทยาศาสตร์รูปนัยอื่น ๆ (ตรรกะ วิทยาศาสตร์คอมพิวเตอร์และสถิติ) และชีววิทยา (โดยเฉพาะอย่างยิ่งชีววิทยาวิวัฒนาการและนิเวศวิทยา) แม้ว่าเดิมทฤษฎีเกมจะถูกพัฒนาขึ้นเพื่อวิเคราะห์การแข่งขันซึ่งบุคคลหนึ่งได้มากกว่าที่อีกฝ่ายหนึ่งเสีย แต่ก็ได้มีการขยายเพื่อให้ครอบคลุมถึงปฏิสัมพันธ์หลายรูปแบบ ซึ่งถูกจัดแบ่งประเภทตามเกณฑ์หลายแบบ การประยุกต์ใช้ทฤษฎีเกมแต่เดิมนั้นจะจำกัดความและศึกษาถึงสมดุลในเกมเหล่านี้ ในสภาพสมดุลทางเศรษฐศาสตร์ ผู้เล่นเกมแต่ละคนจะปรับใช้กลยุทธ์ที่ไม่สามารถเพิ่มผลตอบแทนของผู้เล่นนั้นได้ โดยให้กลยุทธ์ของผู้เล่นอื่นด้วย แนวคิดสมดุลจำนวนมากถูกพัฒนาขึ้น (ที่มีชื่อเสียงที่สุด คือ จุดสมดุลของแนช) เพื่ออธิบายถึงลักษณะของสมดุลทางกลยุทธ์ แนวคิดสมดุลเหล่านี้มีแรงผลักดันแตกต่างกันขึ้นอยู่กับสาขาที่นำไปประยุกต์ ถึงแม้จะพบว่ามีความสอดคล้องกันบ่อยครั้งก็ตาม วิธีปฏิบัตินี้ได้รับการวิพากษ์วิจารณ์ และได้มีการโต้แย้งดำเนินต่อไปถึงความเหมาะสมของแนวคิดสมดุลหนึ่ง ๆ ความเหมาะสมของสมดุลทั้งหมดร่วมกัน และประโยชน์ของแบบจำลองคณิตศาสตร์ในทางสังคมศาสตร์ ผู้เริ่มศึกษาทฤษฎีเกมในระยะแรกคือ จอห์น ฟอน นอยมันน์ และออสการ์ มอร์เกินสเติร์น โดยได้ตีพิมพ์ตำรา Theory of Games and Economic Behavior ใน พ.ศ. 2487 ต่อมา จอห์น แนชได้พัฒนาการศึกษาในด้านนี้และได้รับรางวัลโนเบลสาขาเศรษฐศาสตร์จากการนำทฤษฎีเกมไปประยุกต์ใช้ในด้านเศรษฐศาสตร์ นอกจากแนชแล้ว มีนักทฤษฎีเกมคนอื่นอีกเจ็ดคนที่ได้รับรางวัลโนเบลสาขาเศรษฐศาสตร.
คณิตศาสตร์และทฤษฎีเกม · ทฤษฎีเกมและเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีเมเชอร์
ทฤษฎีเมเชอร์ (measure theory) เป็นสาขาทางคณิตศาสตร์ของคณิตวิเคราะห์เชิงจริง เพื่อใช้อธิบายนิยามทางคณิตศาสตร์ของ "ความยาว" "พื้นที่" "ปริมาตร" หรืออะไรก็ตามที่วัดได้ ตัวอย่างการนำทฤษฎีเมเชอร์ไปใช้ในสาขาอื่น คือ การที่นักคณิตศาสตร์หลายท่านมองว่าความน่าจะเป็นเหมาะสมเป็นปริมาณเมเชอร์ประเภทหนึ่ง จึงได้ใช้ทฤษฎีเมเชอร์ในการพัฒนาทฤษฎีความน่าจะเป็นเชิงคณิตศาสตร์ (mathematical probability) (หรือทฤษฎีความน่าจะเป็นยุคใหม่) ขึ้น ก่อให้เกิดความก้าวหน้ากับทฤษฎีความน่าจะเป็นเป็นอย่างมาก อย่างไรก็ตาม จุดประสงค์เริ่มต้นของการสร้างสาขาทฤษฎีเมเชอร์คือ การนำไปใช้กับทฤษฎีของปริพันธ์ เพื่อขยายทฤษฎีปริพันธ์ของรีมันน์ไปยังขอบเขตที่กว้างขึ้น โดยนักคณิตศาสตร์ที่มีส่วนสำคัญในการคิดค้นทฤษฎีเมเชอร์ในยุคแรก ๆ คือ จูเซ็ปเป้ เพียโน มารี คามิลเลอร์ จอร์แดน เอมีล โบเรล และอองรี เลอเบ็ก.
คณิตศาสตร์และทฤษฎีเมเชอร์ · ทฤษฎีเมเชอร์และเส้นเวลาของคณิตศาสตร์ ·
ทฤษฎีเซต
ทฤษฎีเซต คือทฤษฎีทางคณิตศาสตร์ที่เกี่ยวกับเรื่องเซต ซึ่งใช้นำเสนอการรวบรวมวัตถุนามธรรม ทฤษฎีเซตเป็นแนวความคิดของการรวบรวมวัตถุในชีวิตประจำวัน และใช้สอนในโรงเรียนประถมศึกษาซึ่งบ่อยครั้งใช้แผนภาพเวนน์เป็นสื่อช่วยสอน ทฤษฎีเซตใช้ภาษาในการอธิบายวัตถุทางคณิตศาสตร์เป็นธรรมเนียมการสอนคณิตศาสตร์สมัยใหม่ ทฤษฎีเซตเป็นหนึ่งในรากฐานทางคณิตศาสตร์ที่ยอมรับกันโดยทั่วไป เหมือนเช่นตรรกศาสตร์และแคลคูลัสภาคแสดง ซึ่งทำให้สามารถสร้างวัตถุทางคณิตศาสตร์ขึ้นมาใหม่โดยใช้ "เซต" และ "ความเป็นสมาชิกของเซต" เป็นตัวนิยาม ทฤษฎีเซตเองนั้นก็เป็นสาขาหนึ่งของคณิตศาสตร์ และยังคงเป็นสาขาที่สำคัญอยู่สำหรับการวิจั.
คณิตศาสตร์และทฤษฎีเซต · ทฤษฎีเซตและเส้นเวลาของคณิตศาสตร์ ·
ทอพอโลยี
การเปลี่ยนรูปถ้วยกาแฟเป็นโดนัท ทอพอโลยี (Topology, มาจากภาษากรีก: topos, สถานที่ และ logos, การเรียน) เป็นสาขาหลักทางคณิตศาสตร์ ที่สนใจเกี่ยวกับ คุณสมบัติทางรูปร่างที่ไม่แปรเปลี่ยนภายใต้การดึง ยืด หด บีบ (โดยไม่มีการฉีก การเจาะ หรือ การเชื่อมติดใหม่) โดยเรียกคุณสมบัติเหล่านี้ว่าความไม่แปรผันทางทอพอโลยี ทอพอโลยีได้รับการศึกษาอย่างจริงจังในช่วงปี ค.ศ. 1925 - ค.ศ. 1975 นอกจากนี้ ทอพอโลยี ยังหมายความถึง วัตถุทางคณิตศาสตร์ประเภทหนึ่ง ซึ่งในความหมายนี้ ทอพอโลยี คือ ปริภูมิคณิตศาสตร์ หรือที่เรียกกันว่า ปริภูมิทอพอโลยี (topological space) โดยปริภูมิทอพอโลยี มีนิยามเป็น คอลเล็กชันของเซตเปิด ที่มี \varnothing, \varnothing^c เป็นสมาชิก และ มีคุณสมบัติปิดภายใต้การยูเนียนใด ๆ (ยูเนียนจำกัด, ยูเนียนอนันต์นับได้ และ ยูเนียนอนันต์นับไม่ได้) และการอินเตอร์เซกชันแบบจำกั นักทอพอโลยี มักโดนล้อเลียนว่า ไม่สามารถแยกความแตกต่างระหว่าง โดนัท หรือ วัตถุรูปห่วงยาง กับ แก้วกาแฟมีหูได้ (เพราะทั้งสองสิ่งเป็นวัตถุที่มีผิวเรียบ ต่อเนื่อง และมีรู 1 รูเหมือนกัน ซึ่งสมมูลกันในเชิงทอพอโลยี) ทอพอโลยีบางครั้งถูกเรียกว่า "เรขาคณิตแผ่นยาง" เนื่องจากในการศึกษานั้นจะไม่นับความแตกต่างระหว่างรูปร่างไม่ว่าจะเป็นวงกลมและสี่เหลี่ยม (เนื่องจากวงกลมที่ทำจากแผ่นยางสามารถดึงให้กลายเป็นรูปสี่เหลี่ยมได้) แต่จะแยกแยะความแตกต่างระหว่างวงกลมและรูปเลขแปด (เราไม่สามารถดึงรูปเลขแปดให้กลายเป็นวงกลมได้โดยไม่ฉีกมันออก).
คณิตศาสตร์และทอพอโลยี · ทอพอโลยีและเส้นเวลาของคณิตศาสตร์ ·
ข้อความคาดการณ์ของปวงกาเร
แสดงลูปบนทรงกลมหดเข้าหากันอย่างต่อเนื่องจนกลายเป็นจุด ในทางคณิตศาสตร์ ข้อความคาดการณ์ของปวงกาเร (Poincaré conjecture) คือทฤษฎีเกี่ยวกับคุณลักษณะของทรงกลม 3 มิติภายในขอบเขต 3 มิติ ผู้ริเริ่มข้อความคาดการณ์นี้คือ อองรี ปวงกาเร โดยอ้างถึงพื้นที่ว่างที่ดูเหมือนจะเป็นรูปทรง 3 มิติธรรมดา แต่กลับเชื่อมต่อกันโดยมีขนาดจำกัดและไม่มีขอบเขต (3 มิติแบบปิด) ข้อความคาดการณ์ของปวงกาเรระบุว่าถ้ารูปทรงเช่นนั้นมีคุณสมบัติโดยแต่ละรูปที่อยู่บนรูปทรงสามารถบีบรัดเข้าหากันอย่างต่อเนื่องจนกระทั่งกลายเป็นจุดได้ เมื่อนั้นรูปทรงนั้นจะต้องเป็นทรงกลม 3 มิติแน่นอน คุณลักษณะเช่นนี้ปรากฏอยู่ในรูปทรงที่มีมากกว่า 3 มิติบางส่วนด้วย นักคณิตศาสตร์พากันคิดค้นหนทางพิสูจน์ทฤษฎีนี้เป็นเวลานับศตวรรษ จนในที่สุด กริกอรี เพเรลมาน ได้ร่างข้อพิสูจน์ข้อความคาดการณ์นี้เป็นรายงานจำนวนมากตั้งแต่ปี..
ข้อความคาดการณ์ของปวงกาเรและคณิตศาสตร์ · ข้อความคาดการณ์ของปวงกาเรและเส้นเวลาของคณิตศาสตร์ ·
คณิตศาสตร์บริสุทธิ์
ทั่วไปแล้ว คณิตศาสตร์บริสุทธิ์ คือวิชาคณิตศาสตร์ที่ศึกษาความคิดเชิงนามธรรมทั้งหมด ตั้งแต่คริสต์ศตวรรษที่ 18 เป็นต้นมา วิชานี้ได้เป็นส่วนหนึ่งของกิจกรรมทางคณิตศาสตร์ บางครั้งจัดเป็น คณิตศาสตร์เชิงความคิด และในบางครั้งการศึกษานี้เป็นความต้องการของศาสตร์อื่นๆ เช่น การเดินเรือ ฟิสิกส์ ดาราศาสตร์ วิศวกรรมศาสตร์ เป็นต้น มุมมองหนึ่งของคณิตศาสตร์บริสุทธิ์ บอกว่า คณิตศาสตร์บริสุทธิ์ไม่จำเป็นที่จะไม่เป็นคณิตศาสตร์ประยุกต์ กล่าวคือ สามารถศึกษาสิ่งใดๆ เชิงนามธรรมตามธรรมชาติของมันโดยแท้ และไม่จำเป็นต้องคิดถึงความเป็นจริงในโลก แม้ว่ามุมมองของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ตั้งอยู่บนปรัชญาที่ต่างกัน สองศาสตร์นี้มีส่วนที่ทับซ้อนกันอยู่มาก ดังเช่น นักคณิตศาสตร์ประยุกต์ใช้สิ่งที่มักเรียกว่าคณิตศาสตร์บริสุทธิ์ ในการสร้างแบบจำลองสิ่งที่เกิดในโลกแห่งความเป็นจริง ในขณะที่นักคณิตศาสตร์บริสุทธิ์มักมีแรงบันดาลใจในการทำวิจัยจากปรากฏการณ์ทางธรรมชาติหรือเหตุการณ์ทางสังคม.
คณิตศาสตร์และคณิตศาสตร์บริสุทธิ์ · คณิตศาสตร์บริสุทธิ์และเส้นเวลาของคณิตศาสตร์ ·
คณิตศาสตร์ประยุกต์
คณิตศาสตร์ประยุกต์ (applied mathematics) แตกต่างจากคณิตศาสตร์บริสุทธิ์ (pure mathematics) ตรงที่ จะเริ่มต้นพิจารณาปัญหาในชีวิตจริงก่อน ไม่ว่าปัญหานั้นจะอยู่ในเรื่องของวิชา หรือ สาขาใดๆ เช่น ฟิสิกส์ เคมี ชีววิทยา ธรณีวิทยา แพทยศาสตร์ ทันตแพทย์ศาสตร์ เภสัชศาสตร์ เศรษฐศาสตร์ สังคมศาสตร์ คอมพิวเตอร์ฯลฯ หรือแม้แต่ปัญหาที่เกิดขึ้นในสาขาวิชาคณิตศาสตร์เอง แล้วจากนั้น จะนำความรู้ในวิชาคณิตศาสตร์ที่มีอยู่แล้ว หรืออาจจำเป็นจะต้องสร้างใหม่ขึ้นมา เพื่อจะใช้แก้ปัญหาเหล่านั้น คณิตศาสตร์ประยุกต์.
คณิตศาสตร์และคณิตศาสตร์ประยุกต์ · คณิตศาสตร์ประยุกต์และเส้นเวลาของคณิตศาสตร์ ·
ตรรกศาสตร์
ตรรกศาสตร์ (logic - มีรากศัพท์จากภาษากรีกคือ λόγος, logos) โดยทั่วไปประกอบด้วยการศึกษารูปแบบของข้อโต้แย้งอย่างเป็นระบบ ข้อโต้แย้งที่สมเหตุสมผลคือข้อโต้แย้งที่มีความสัมพันธ์ของการสนับสนุนเชิงตรรกะที่เฉพาะเจาะจงระหว่างข้อสมมุติพื้นฐานของข้อโต้แย้งและข้อสรุป ตรรกศาสตร์เป็นการศึกษาเชิงปรัชญาว่าด้วยการให้เหตุผล โดยมักจะเป็นส่วนสำคัญของวิชาปรัชญา คณิตศาสตร์ คอมพิวเตอร์ รวมถึงภาษาศาสตร์ ตรรกศาสตร์เป็นการตรวจสอบข้อโต้แย้งที่สมเหตุสมผล (valid argument) หรือการให้เหตุผลแบบผิดๆ (fallacies) ตรรกศาสตร์ เป็นการศึกษาที่มีมานานโดยมนุษยชาติที่เจริญแล้ว เช่น กรีก จีน หรืออินเดีย และถูกยกขึ้นเป็นสาขาวิชาหนึ่งโดย อริสโตเติล.
คณิตศาสตร์และตรรกศาสตร์ · ตรรกศาสตร์และเส้นเวลาของคณิตศาสตร์ ·
ตรีโกณมิติ
ฟังก์ชันตรีโกณมิติทั้งหมดของมุม ''θ'' สามารถนำมาสร้างทางเรขาคณิตในวงกลมหนึ่งหน่วยที่มีศูนย์กลางที่จุด ''O'' ตรีโกณมิติ (จากภาษากรีก trigonon มุม 3 มุม และ metro การวัด) เป็นสาขาหนึ่งของคณิตศาสตร์ที่ศึกษาความสัมพันธ์ระหว่างความยาวและมุมของรูปสามเหลี่ยม ตรีโกณมิติเกิดขึ้นในสมัยเฮลเลนิสต์ ในศตวรรษที่ 3 ก่อนคริสต์ศักราช ปัจจุบันได้มีการนำไปใช้ตั้งแต่ในวิชาเรขาคณิตไปจนถึงวิชาดาราศาสตร์ นักดาราศาสตร์ในศตวรรษที่ 3 ได้สังเกตว่าความยาวด้านของรูปสามเหลี่ยมมุมฉากและมุมระหว่างด้านมีความสัมพันธ์ที่คงที่ ถ้าทราบความยาวอย่างน้อยหนึ่งด้านและค่าของมุมหนึ่งมุม แล้วมุมและความยาวอื่น ๆ ที่เหลือก็สามารถคำนวณหาค่าได้ การคำนวณเหล่านี้ได้ถูกนิยามเป็นฟังก์ชันตรีโกณมิติ และในปัจจุบันได้แพร่หลายไปทั้งคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ เช่น การแปลงฟูรีเย หรือสมการคลื่น หรือการใช้ฟังก์ชันตรีโกณมิติเพื่ออธิบายปรากฏการณ์ที่เป็นคาบในสาขาวิชาฟิสิกส์ วิศวกรรมเครื่องกล วิศวกรรมไฟฟ้า ดนตรีและสวนศาสตร์ ดาราศาสตร์ นิเวศวิทยา และชีววิทยา นอกจากนี้ ตรีโกณมิติยังเป็นพื้นฐานของการสำรวจ ตรีโกณมิติมีความเกี่ยวข้องมากที่สุดกับรูปสามเหลี่ยมมุมฉากบนระนาบ (กล่าวคือ รูปสามเหลี่ยมสองมิติที่มีมุมหนึ่งมีขนาด 90 องศา) มีการประยุกต์ใช้กับรูปสามเหลี่ยมที่ไม่มีมุมฉากด้วย โดยการแบ่งรูปสามเหลี่ยมดังกล่าวเป็นรูปสามเหลี่ยมมุมฉากสองรูป ปัญหาส่วนมากสามารถแก้ได้โดยใช้การคำนวณบนรูปสามเหลี่ยมมุมฉาก ดังนั้น การประยุกต์ส่วนใหญ่ก็จะเกี่ยวข้องกับรูปสามเหลี่ยมมุมฉาก ยกเว้นในตรีโกณมิติเชิงทรงกลม วิชาที่ศึกษารูปสามเหลี่ยมบนพื้นผิวทรงกลม ซึ่งมีความโค้งเป็นค่าคงที่บวก ในเรขาคณิตอิลลิปติก (elliptic geometry) อันเป็นพื้นฐานของวิชาดาราศาสตร์และการเดินเรือ) ส่วนตรีโกณมิติบนพื้นผิวที่มีความโค้งเป็นค่าลบเป็นส่วนหนึ่งของเรขาคณิตไฮเพอร์โบลิก วิชาตรีโกณมิติเบื้องต้นมักมีการสอนในโรงเรียน อาจเป็นหลักสูตรแยกหรือเป็นส่วนหนึ่งของหลักสูตรความรู้พื้นฐานสำหรับแคลคูลั.
คณิตศาสตร์และตรีโกณมิติ · ตรีโกณมิติและเส้นเวลาของคณิตศาสตร์ ·
ปัญหาของฮิลแบร์ท
ปัญหาของฮิลแบร์ท (Hilbert's problems) คือ ปัญหาคณิตศาสตร์ทั้ง 23 ข้อ ที่ตั้งโดย ดาฟิด ฮิลแบร์ท (David Hilbert) นักคณิตศาสตร์ชาวเยอรมัน ได้นำเสนอต่อที่ประชุมสภานักคณิตศาสตร์นานาชาติ (International Congress of Mathematicians) ณ กรุงปารีส เมื่อ ค.ศ. 1900 ซึ่งปัญหาเหล่านี้เป็นปัญหาที่ยังไม่มีใครแก้ได้ในเวลานั้น และมีอิทธิพลต่อวงการคณิตศาสตร์เป็นอย่างมากในคริสต์ศตวรรษที่ 20 ฮิลแบร์ทได้เสนอปัญหา 10 ข้อต่อที่ประชุม (ปัญหาข้อ 1, 2, 6, 7, 8, 13, 16, 19, 21 และ 22) เมื่อวันที่ 8 สิงหาคม และได้เสนอปัญหาข้ออื่น ๆ ในภายหลัง.
คณิตศาสตร์และปัญหาของฮิลแบร์ท · ปัญหาของฮิลแบร์ทและเส้นเวลาของคณิตศาสตร์ ·
นักคณิตศาสตร์
นักคณิตศาสตร์ (mathematician) คือบุคคลที่ศึกษาและ ทำงานวิจัยเกี่ยวกับคณิตศาสตร.
คณิตศาสตร์และนักคณิตศาสตร์ · นักคณิตศาสตร์และเส้นเวลาของคณิตศาสตร์ ·
แฟร็กทัล
แฟร็กทัล จาก เซตมานดัลบรอ, วาดโดยการพล็อตสมการวนซ้ำไปเรื่อย ๆ แฟร็กทัล (Fractal) ในปัจจุบันเป็นคำที่ใช้ในเชิงวิทยาศาสตร์และคณิตศาสตร์ หมายถึง วัตถุทางเรขาคณิต ที่มีคุณสมบัติคล้ายตนเอง คือ ดูเหมือนกันไปหมด (เมื่อพิจารณาจากแง่ใดแง่หนึ่ง) ไม่ว่าจะดูที่ระดับความละเอียด (โดยการส่องขยาย) หรือ สเกลใดก็ตาม คำว่า แฟร็กทัล นี้ เบอนัว มานดัลบรอ เป็นคนบัญญัติขึ้นในปี ค.ศ. 1975 จากคำว่า fractus ในภาษาละติน ซึ่งแปลว่า แตก หรือ ร้าว.
คณิตศาสตร์และแฟร็กทัล · เส้นเวลาของคณิตศาสตร์และแฟร็กทัล ·
แคลคูลัส
แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ และสังคมศาสตร์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้ แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้.
คณิตศาสตร์และแคลคูลัส · เส้นเวลาของคณิตศาสตร์และแคลคูลัส ·
เรขาคณิต
รขาคณิต (Geometry; กรีก: γεωμετρία; geo.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์
การเปรียบเทียบระหว่าง คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์
คณิตศาสตร์ มี 99 ความสัมพันธ์ขณะที่ เส้นเวลาของคณิตศาสตร์ มี 254 ขณะที่พวกเขามีเหมือนกัน 33, ดัชนี Jaccard คือ 9.35% = 33 / (99 + 254)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง คณิตศาสตร์และเส้นเวลาของคณิตศาสตร์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: