โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

กราวิตอนและอนุภาคย่อยของอะตอม

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง กราวิตอนและอนุภาคย่อยของอะตอม

กราวิตอน vs. อนุภาคย่อยของอะตอม

กราวิตอน (graviton) ในฟิสิกส์ทฤษฎีคือ อนุภาคมูลฐานในสมมติฐานที่เป็นสื่อให้แรงโน้มถ่วงตามกรอบทฤษฎีสนามควอนตัม หากอนุภาคกราวิตอนมีจริง คาดว่าจะไม่มีมวล เนื่องจากแรงโน้มถ่วงที่ปรากฏอยู่ไม่มีขอบเขตจำกัด และเป็นอนุภาคโบซอนที่มีสปินเท่ากับ 2 ค่าสปินนี้ได้จากความจริงที่ว่าแหล่งกำเนิดของแรงโน้มถ่วงเป็นเทนเซอร์ความเค้น–พลังงาน ซึ่งเป็นเทนเซอร์อันดับ 2 (เปรียบเทียบกับโฟตอนของแรงแม่เหล็กไฟฟ้าที่มีสปินเป็น 1 มีแหล่งกำเนิดเป็นความหนาแน่นกระแสสี่มิติ ซึ่งเป็นเทนเซอร์อันดับ 1) นอกจากนี้ยังสามารถแสดงให้เห็นว่าสนามแรงจากอนุภาคไร้มวลที่มีสปิน 2 ยังให้แรงที่ไม่แตกต่างจากแรงโน้มถ่วงอีกด้วย ทำให้อนุมานได้ว่าหากพบอนุภาคไร้มวลที่มีสปิน 2 แล้ว อนุภาคนั้นควรจะเป็นกราวิตอน การค้นพบกราวิตอนจะนำไปสู่การรวมแรงโน้มถ่วงเข้ากับทฤษฎีควอนตัม ในปัจจุบันทฤษฎีที่ใช้อธิบายกราวิตอนยังไม่สมบูรณ์เนื่องจากปัญหาเชิงคณิตศาสตร์เรื่องรีนอร์มอไลเซชัน (renormalization) ปัญหานี้จะเป็นแกนหลักที่นำไปสู่แบบจำลองหลังทฤษฎีสนามควอนตัมอย่าง ทฤษฎีสตริง. อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ความคล้ายคลึงกันระหว่าง กราวิตอนและอนุภาคย่อยของอะตอม

กราวิตอนและอนุภาคย่อยของอะตอม มี 9 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): กลูออนสปินอนุภาคมูลฐานฮิกส์โบซอนทฤษฎีสนามควอนตัมแรงแม่เหล็กไฟฟ้าโบซอนโฟตอนเกจโบซอน

กลูออน

กลูออน (Gluon) เป็นอนุภาคมูลฐานที่ทำหน้าที่เป็นอนุภาคแลกเปลี่ยน (หรือเกจโบซอน) ของอันตรกิริยาอย่างเข้มระหว่างควาร์ก คล้ายกับการแลกเปลี่ยนโฟตอนในแรงแม่เหล็กไฟฟ้าระหว่างอนุภาคที่มีประจุ 2 ตัว เนื่องจากควาร์กนั้นประกอบกับขึ้นเป็นแบริออน และมีอันตรกิริยาอย่างเข้มเกิดขึ้นระหว่างแบริออนเหล่านั้น จึงอาจกล่าวได้ว่า แรงสี (color force) เป็นแหล่งกำเนิดของอันตรกิริยาอย่างเข้ม หรืออาจกล่าวว่าอันตรกิริยาอย่างเข้มเป็นเหมือนกับแรงสี ที่ครอบคลุมอนุภาคอื่นๆ มากกว่าแบริออน ตัวอย่างเช่น เมื่อโปรตอนและนิวตรอนดึงดูดกันและกันในนิวเคลียส เป็นต้น กล่าวในเชิงเทคนิค กลูออนก็คือเกจโบซอนแบบเวกเตอร์ที่เป็นตัวกลางของอันตรกิริยาอย่างเข้มของควาร์กในควอนตัมโครโมไดนามิกส์ (QCD) ซึ่งแตกต่างกับโฟตอนที่เป็นกลางทางไฟฟ้าของควอนตัมอิเล็กโตรไดนามิกส์ (QED) ตัวกลูออนเองนั้นมีประจุสี (color charge) ดังนั้นจึงมีส่วนอยู่ในอันตรกิริยาอย่างเข้มเพื่อทำหน้าที่เป็นตัวกลาง ทำให้การวิเคราะห์ QCD ทำได้ยากกว่า QED เป็นอย่างมาก.

กราวิตอนและกลูออน · กลูออนและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

สปิน

ปิน (spin) อาจหมายถึง.

กราวิตอนและสปิน · สปินและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

อนุภาคมูลฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ในฟิสิกส์ของอนุภาค อนุภาคมูลฐาน (elementary particle หรือ fundamental particle) หมายถึงอนุภาคหนึ่งที่โครงสร้างย่อยไม่เป็นที่รู้จัก ดังนั้นเราจึงไม่รู้ว่ามันประกอบขึ้นด้วยอนุภาคอื่นหรือไม่ มันเป็นหน่วยย่อยที่สุดในทางทฤษฎีฟิสิกส์ทั่วไป เราไม่ถือว่ามันประกอบขึ้นมาจากสิ่งใดอีก อนุภาคมูลฐานที่เรารู้จักกันดีที่สุดคือ อิเล็กตรอน ซึ่งไม่สามารถแยกย่อยเป็นอนุภาคใดๆได้อีก อนุภาคมูลฐานที่รู้จักแล้ว ได้แก่ เฟอร์มิออนพื้นฐาน (ควาร์ก, เลปตอน, ปฏิควาร์ก และปฏิเลปตอน) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคสสาร" และ "อนุภาคปฏิสสาร" อีกชนิดหนึ่งได้แก่ โบซอนพื้นฐาน (เกจโบซอน และอนุภาคฮิกส์) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคแรง" ที่เป็นตัวเชื่อมปฏิสัมพันธ์พื้นฐานในหมู่เฟอร์มิออนด้วยกัน อนุภาคที่ประกอบด้วยอนุภาคมูลฐานตั้งแต่สองอนุภาคขึ้นไปจะเป็น "อนุภาคผสม" (composite particle) สสารในชีวิตประจำวันจะประกอบด้วยอะตอม ที่ครั้งหนึ่งเคยถูกสันนิษฐานว่ามันเป็นอนุภาคมูลฐานของสสาร คำว่า "อะตอม" แปลว่า "แบ่งไม่ได้" ในภาษากรีก แม้ว่าการมีอยู่ของอะตอมยังคงเป็นที่ถกเถียงกันจนถึงประมาณปี 1910 อย่างที่นักฟิสิกส์ชั้นนำบางคนถือว่าโมเลกุลเป็นภาพลวงตาทางคณิตศาสตร์ และถือว่าสสารอย่างสุดขั้วที่สุดจะประกอบด้วยพลังงาน ในไม่ช้า มีการค้นพบว่าอะตอมประกอบด้วยองค์ประกอบย่อย เมื่อเริ่มทศวรรษที่ 1930 อิเล็กตรอนและโปรตอนได้ถูกค้นพบ พร้อมกับโฟตอนซึ่งเป็นอนุภาคของรังสีแม่เหล็กไฟฟ้า ในช่วงเวลานั้น การค้นพบล่าสุดของกลศาสตร์ควอนตัมได้มีก​​ารเปลี่ยนแปลงอย่างรุนแรงของแนวคิดของอนุภาค อย่างเช่นอนุภาคเดี่ยวดูเหมือนจะสามารถขยายสนามได้อย่างที่คลื่นสามารถทำได้ (ทวิภาคของอนุภาคกับคลื่น (particle-wave duality)) ข้อความที่ขัดแย้งยังคงหลีกเลี่ยงคำอธิบายที่น่าพอใจ โดยผ่านทางทฤษฎีควอนตัม โปรตอนและนิวตรอนถูกพบว่าประกอบด้วยควาร์กหลายตัว ได้แก่อัพควาร์กและดาวน์ควาร์ก ซึ่งในปัจจุบันถือว่าพวกนี้เป็นอนุภาคมูลฐาน และภายในโมเลกุลหนึ่ง สามองศาอิสระของอิเล็กตรอน (ประจุ, สปินและวงโคจร) สามารถแยกผ่านทาง wavefunction ออกเป็นสาม'อนุภาคคล้าย' (quasiparticle) (Holon, spinon และ Orbiton) แต่อิเล็กตรอนอิสระ ซึ่งไม่ได้กำลังโคจรรอบนิวเคลียส จะขาดการเคลื่อนไหวในการโคจร และจะปรากฏในรูปที่แบ่งแยกไม่ได้ จึงยังคงถือว่าเป็นอนุภาคมูลฐาน ราวปี 1980 สถานะของอนุภาคมูลฐานที่เป็นมูลฐานอย่างแท้จริง-"องค์ประกอบสุดชั้ว" ของสสาร- ได้ถูกละทิ้งเป็นส่วนใหญ่สำหรับแนวโน้มที่จะเป็นการปฏิบัติมากขึ้น ได้ถูกประมวลอยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค ซึ่งเป็นทฤษฎีที่ประสบความสำเร็จจากทดลองทางวิทยาศาสตร์มากที่สุด การขยายความและทฤษฎีทั้งหลายที่อธิบายเกินกว่าแบบจำลองมาตรฐาน รวมทั้งทฤษฎี supersymmetry ที่นิยมกันอย่างสุดขั้ว ได้เพิ่มจำนวนอนุภาคมูลฐานเป็นสองเท่าโดยการตั้งสมมติฐานที่แต่ละอนุภาคที่รู้จักกันแล้วควบรวมเข้ากับพันธมิตร"เงา" ทำให้มีจำนวนอนุภาคมากกว่าเดิม แม้ว่าสุดยอดพันธมิตรดังกล่าวทั้งหมดยังคงไม่ได้ถูกค้นพบแต่อย่างใด ในขณะเดียวกัน โบซอนมูลฐานที่เป็นตัวเชื่อมแรงโน้มถ่วงที่เรียกว่า แกรวิตอน (Graviton) ก็ยังคงเป็นสมมุติฐานอยู.

กราวิตอนและอนุภาคมูลฐาน · อนุภาคมูลฐานและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

ฮิกส์โบซอน

การทดลองการชนระหว่างอนุภาคโปรตอนสองตัว อาจทำให้เกิดสัญญาณการมีตัวตนของอนุภาคฮิกส์ ฮิกส์โบซอน (Higgs boson) เป็นอนุภาคมูลฐานชนิดหนึ่งที่อยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค มันเป็นการกระตุ้นควอนตัมของ สนามฮิกส์ —ซึ่งเป็นสนามพื้นฐานที่สำคัญอย่างมากต่อทฤษฎีฟิสิกส์ของอนุภาค ที่คาดว่าจะมีอยู่จริงแต่แรกในทศวรรษที่ 1960s, ที่ไม่เหมือนสนามที่เคยรู้จักอื่น ๆ เช่นสนามแม่เหล็กไฟฟ้า, และใช้ค่าคงที่ที่ไม่เป็นศูนย์เกือบทุกแห่ง คำถามที่ว่าสนามฮิกส์มีอยู่จริงหรือไม่ อยู่ในส่วนที่ไม่ได้ตรวจสอบสุดท้ายของแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาคและ "ปัญหาส่วนกลางของฟิสิกส์ของอนุภาค" การปรากฏตัวของสนามนี้, ตอนนี้เชื่อว่าจะมีการยืนยัน, อธิบายคำถามที่ว่าทำไมอนุภาคมูลฐานบางตัวจึงมีมวลเมื่อ, ตามการสมมาตร (ฟิสิกส์)ที่ควบคุมปฏิสัมพันธ์ของพวกมัน, พวกมันควรจะไม่มีมวล การมีอยู่ของสนามฮิกส์จะแก้ปัญหาที่มีมานานหลายอย่างอีกด้วย เช่นเหตุผลสำหรับอันตรกิริยาอย่างอ่อนที่มีช่วงระยะทำการสั้นมาก ๆ ถึงแม้ว่าจะมีการตั้งสมมติฐานว่าสนามฮิกส์แทรกซึมอยู่ในจักรวาลทั้งมวล หลักฐานสำหรับการดำรงอยู่ของมันได้เป็นเรื่องยากมากที่จะหาได้ ในหลักการ สนามฮิกส์สามารถตรวจพบได้โยการกระตุ้นตัวมัน เพื่อให้แสดงตัวออกมาเป็นอนุภาคฮิกส์ แต่วิธีนี้เป็นเรื่องยากมากในการทำขึ้นและตรวจสอบ ความสำคัญของคำถามพื้นฐานนี้ได้นำไปสู่​​การค้นหาถึง 40 ปี และการก่อสร้างหนึ่งของสิ่งอำนวยความสะดวกเพื่อการทดลองที่มีราคาแพงที่สุดและมีความซับซ้อนที่สุดในโลกจนถึงวันนี้ คือเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ของเซิร์น ในความพยายามที่จะสร้างฮิกส์โบซอนและอนุภาคอื่น ๆ สำหรับการสังเกตและการศึกษา เมื่อวันที่ 4 กรกฎาคม 2012, ได้มีการประกาศการค้นพบอนุภาคใหม่ที่มีมวลระหว่าง 125 ถึง 127 GeV/c2; นักฟิสิกส์สงสัยว่ามันเป็นฮิกส์โบซอน ตั้งแต่นั้นมา อนุภาคดังกล่าวแสดงออกที่จะประพฤติ, โต้ตอบ, และสลายตัวในหลาย ๆ วิธีที่ได้คาดการณ์ไว้ตามแบบจำลองมาตรฐาน นอกจากนั้นมันยังได้รับการยืนยันอย่างไม่เป็นทางการที่จะมี parity เป็น even และมีสปินเป็นศูนย์ และมีลักษณะพื้นฐาน (fundamental attribute) ของฮิกส์โบซอน 2 อย่าง นี้ดูเหมือนจะเป็นอนุภาคแบบสเกลาตัวแรกที่มีการค้นพบในธรรมชาติ การศึกษาอื่น ๆ มีความจำเป็นเพื่อตรวจสอบว่าอนุภาคที่ค้นพบใหม่นี้มีคุณสมบัติต่าง ๆ ตรงกับที่ได้มีการคาดการณ์ไว้สำหรับฮิกส์โบซอนโดยแบบจำลองมาตรฐานหรือตามที่ได้คาดการณ์โดยบางทฤษฎีว่าฮิกส์โบซอนแบบกลุ่มมีอยู่จริงหรือไม่ ฮิกส์โบซอนถูกตั้งชื่อตามปีเตอร์ ฮิกส์ ซึ่งเป็นหนึ่งในหกนักฟิสิกส์ที่ในปี 1964 ได้นำเสนอกลไกที่บ่งบอกถึงการมีอยู่ของอนุภาคดังกล่าว เมื่อวันที่ 10 ธันวาคม 2013 สองคนในนั้น, ปีเตอร์ ฮิกส์และ François Englert ได้รับรางวัลโนเบลสาขาฟิสิกส์สำหรับการทำงานและการทำนายของพวกเขา (โรเบิร์ต Brout ผู้ร่วมวิจัยของ Englert ได้เสียชีวิตในปี 2011 และรางวัลโนเบลไม่ได้ส่งให้หลังการเสียชีวิตของผู้ประพันธ์ตามปกติ) ในแบบจำลองมาตรฐาน, อนุภาคฮิกส์เป็น โบซอน ที่ไม่มีสปิน, ไม่มีประจุไฟฟ้าหรือประจุสี นอกจากนี้มันยังไม่เสถียรอย่างมาก การสลายตัวไปเป็นอนุภาคอื่น ๆ เกือบจะเกิดขึ้นได้ในทันที มันเป็นการกระตุ้นของควอนตัมของหนึ่งในสี่ส่วนประกอบของสนามฮิกส์ ตัวหลังของสนามฮิกส์ประกอบขึ้นเป็นสนามสเกลาร์ ที่มีส่วนประกอบที่เป็นกลางสองตัวและส่วนประกอบที่มีประจุไฟฟ้าสองตัวที่ก่อให้เกิดคู่ซับซ้อน (complex doublet) ของการสมมาตรแบบ isospin อย่างอ่อน SU(2) ในวันที่ 15 ธันวาคมปี 2015 ทั้งสองทีมของนักฟิสิกส์ที่ทำงานอิสระที่เซิร์นได้รายงานคำแนะนำเบื้องต้นของการเป็นไปได้ของอนุภาคย่อยใหม่ ถ้าจริง อนุภาคสามารถเป็นได้ทั้งรุ่นที่หนักกว่าของฮิกส์โบซอน หรือเป็น Graviton อย่างใดอย่างหนึ่ง อนุภาคชนิดนี้มีบทบาทพิเศษในแบบจำลองมาตรฐาน กล่าวคือเป็นอนุภาคที่อธิบายว่าทำไมอนุภาคมูลฐานชนิดอื่น เช่น ควาร์ก อิเล็กตรอน ฯลฯ (ยกเว้นโฟตอนและกลูออน) ถึงมีมวลได้ และที่พิเศษกว่าคือ สามารถอธิบายว่าทำไมอนุภาคโฟตอนถึงไม่มีมวล ในขณะที่อนุภาค W และ Z โบซอนถึงมีมวลมหาศาล ซึ่งมวลของอนุภาคมูลฐาน รวมไปถึงความแตกต่างระหว่างแรงแม่เหล็กไฟฟ้าอันเกิดจากอนุภาคโฟตอน และอันตรกิริยาอย่างอ่อนอันเกิดจากอนุภาค W และ Z โบซอนนี่เอง เป็นผลสำคัญอย่างยิ่งที่ประกอบกันเกิดเป็นสสารในหลายรูปแบบ ทั้งที่เรามองเห็นและมองไม่เห็น ทฤษฎีอิเล็กโตรวีค (electroweak) กล่าวไว้ว่า อนุภาคฮิกส์เป็นตัวผลิตมวลให้กับอนุภาคเลปตอน (อิเล็กตรอน มิวออน เทา) และควาร์ก เนื่องจากอนุภาคฮิกส์มีมวลมากแต่สลายตัวแทบจะทันทีที่ก่อกำเนิดขึ้นมา จึงต้องใช้เครื่องเร่งอนุภาคที่มีพลังงานสูงมากในการตรวจจับและบันทึกข้อมูล ซึ่งการทดลองเพื่อพิสูจน์ความมีตัวตนของอนุภาคฮิกส์นี้จัดทำโดยองค์การวิจัยนิวเคลียร์ยุโรป (CERN) โดยทดลองภายในเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ (LHC) และเริ่มต้นการทดลองตั้งแต่ต้นปี 2010 จากการคำนวณตามแบบจำลองมาตรฐานแล้ว เครื่องเร่งอนุภาคจะต้องใช้พลังงานสูงถึง 1.4 เทระอิเล็กตรอนโวลต์ (TeV) ในการผลิตอนุภาคมูลฐานให้มากพอที่จะตรวจวัดได้ ดังนั้นจึงได้มีการสร้างเครื่องชนอนุภาคขนาดใหญ่ (LHC) ดังกล่าวขึ้นมาเพื่อทำการทดลองพิสูจน์ความมีตัวตนของอนุภาคชนิดนี้ วันที่ 12 ธันวาคม 2554 ทีม ATLAS และทีม CMS ของเซิร์น ประกาศว่าได้ค้นพบข้อมูลที่อาจแสดงถึงการค้นพบฮิกส์โบซอน และในวันที่ 4 กรกฎาคม 2555 ทั้งสองทีมได้ออกมาประกาศว่าได้ค้นพบอนุภาคชนิดใหม่ ซึ่งเรียกได้ว่าเป็น "อนุภาคที่สอดคล้องกับอนุภาคฮิกส์" มากที่สุด มีมวลประมาณ 125 GeV/c2 (ประมาณ 133 เท่าของโปรตอน หรืออยู่ในระดับ 10-25 กิโลกรัม) หลังจากนั้นได้มีการวิเคราะห์และตรวจสอบผลอย่างละเอียดเพื่อพิสูจน์ว่าอนุภาคดังกล่าวเป็นอนุภาคฮิกส์จริง และในวันที่ 14 มีนาคม 2556 เซิร์นได้ยืนยันอย่างไม่เป็นทางการว่าอนุภาคที่ตรวจพบจากการทดลองครั้งนี้เป็นอนุภาคฮิกส์ตามทฤษฎีที่ทำนายไว้ ซึ่งจะเป็นหลักฐานชิ้นสำคัญที่สุดที่สนับสนุนแบบจำลองมาตรฐาน นำไปสู่การศึกษาฟิสิกส์สาขาใหม่ แนวคิดเกี่ยวกับอนุภาคฮิกส์ และสนามฮิกส์ (Higgs field) เกิดขึ้นราวปี 2507 โดยนักวิทยาศาสตร์หลายคน ได้แก่ ฟร็องซัว อ็องแกลร์ (François Englert) และ โรเบิร์ต เบราท์ (Robert Brout) ในเดือนสิงหาคม ปีเตอร์ ฮิกส์ ในเดือนตุลาคม รวมถึงงานวิจัยอิสระอีกสามชุดโดย เจอรัลด์ กูรัลนิค (Gerald Guralnik) ซี.อาร.เฮเกน (C. R. Hagen) และ ทอม คิบเบิล (Tom Kibble) ในฤดูใบไม้ผลิปีก่อนหน้าคือ ปี 2506 เลออน เลเดอร์แมน นักฟิสิกส์รางวัลโนเบลชาวอเมริกัน ตั้งชื่ออนุภาคฮิกส์ว่า "อนุภาคพระเจ้า" (God particle) แต่นักวิทยาศาสตร์ที่มีชื่อเสียงหลายคนไม่เห็นด้วยและไม่ชอบชื่อนี้.

กราวิตอนและฮิกส์โบซอน · อนุภาคย่อยของอะตอมและฮิกส์โบซอน · ดูเพิ่มเติม »

ทฤษฎีสนามควอนตัม

ทฤษฎีสนามควอนตัม (Quantum Field Theory หรือ QFT) คือทฤษฎีควอนตัมของสนามพลังงาน หรือ การใช้ทฤษฎีควอนตัมมาใช้กับระบบที่มีอนุภาคจำนวนมาก เพื่อใช้อธิบายปรากฏการณ์ทาง อิเล็กโตรไดนามิกส์ (โดยการควอนตัมสนามแม่เหล็กไฟฟ้า) เรียกว่าพลศาสตร์ไฟฟ้าควอนตัม (Quantum Electrodynamics) ต่อมาได้ขยายกรอบทางทฤษฎีเพื่ออธิบายสนามของแรงนิวเคลียร์แบบอ่อนร่วมด้วย เรียกว่าทฤษฎี อิเล็กโตร-วีก (Electro-Weak Theory) และเป็นพื้นฐานสำหรับการอธิบายแรงนิวเคลียร์แบบเข้มที่เรียกว่า ควอนตัมโครโมไดนามิกส์ (Quantum Chromodynamics) ทฤษฎีสนามควอนตัม (QFT) เป็นกรอบทฤษฎีสำหรับการสร้างแบบจำลองทางกลศาสตร์ควอนตั้มของสนามและระบบหลาย ๆ อย่างของวัตถุ (อยู่ในบริบทของสสารควบแน่น) ระบบทั้งสองซึ่งเป็นตัวแทนของระบบแบบคลาสสิกโดยเป็นจำนวนอนันต์ขององศาอิสร.

กราวิตอนและทฤษฎีสนามควอนตัม · ทฤษฎีสนามควอนตัมและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

กราวิตอนและแรงแม่เหล็กไฟฟ้า · อนุภาคย่อยของอะตอมและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

โบซอน

ในฟิสิกส์เชิงอนุภาค, โบซอน (boson) หมายถึง อนุภาคที่เป็นไปตาม สถิติแบบโพส-ไอน์สไตน์ มีสปินเป็นจำนวนเต็ม สามารถมีโบซอนหลายๆ ตัวอยู่ในสถานะควอนตัมเดียวกันได้ คำว่า "โบซอน" มาจากชื่อของนักวิทยาศาสตร์ชาวอินเดีย คือ สัตเยนทระ นาถ โพส โบซอนมีลักษณะตรงกันข้ามกับเฟอร์มิออน ที่เป็นไปตาม สถิติแบบแฟร์มี-ดิแรก เฟอร์มิออนตั้งแต่สองตัวหรือมากกว่านั้นจะไม่สามารถอยู่ในสถานะควอนตัมเดียวกันได้ โบซอนเป็นได้ทั้งอนุภาคมูลฐาน เช่น โฟตอน หรือเป็นอนุภาคประกอบ เช่น มีซอน โดยโบซอนส่วนมากจะเป็นอนุภาคแบบประกอบ โดยตาม "แบบจำลองมาตรฐานของฟิสิกส์เชิงอนุภาค" มีโบซอน 6 ชนิดที่เป็นอนุภาคมูลฐาน คือ.

กราวิตอนและโบซอน · อนุภาคย่อยของอะตอมและโบซอน · ดูเพิ่มเติม »

โฟตอน

ฟตอน (Photon) หรือ อนุภาคของแสง เป็นการพิจารณาแสงในลักษณะของอนุภาค เนื่องจากในทางฟิสิกส์นั้น คลื่นสามารถประพฤติตัวเหมือนอนุภาคเมื่ออยู่ในสภาวะใดสภาวะหนึ่ง ซึ่งในทางตรงกันข้ามอนุภาคก็แสดงสมบัติของคลื่นได้เช่นกัน เรียกว่าเป็นคุณสมบัติทวิภาคของคลื่น-อนุภาค (wave–particle duality) ดังนั้นเมื่อพิจารณาแสงหรือคลื่นแม่เหล็กไฟฟ้าในลักษณะอนุภาค อนุภาคนั้นถูกเรียกว่า โฟตอน ทั้งนี้การพิจารณาดังกล่าวเกิดจากการศึกษาปรากฏการณ์โฟโตอิเล็กทริก ซึ่งเป็นปรากฏการณ์ที่โลหะปลดปล่อยอิเล็กตรอนออกมาเมื่อถูกฉายด้วยคลื่นแม่เหล็กไฟฟ้า อย่างเช่น รังสีเอกซ์ (X-ray) อิเล็กตรอนที่ถูกปล่อยออกมาถูกเรียกว่า โฟโตอิเล็กตรอน (photoelectron) ปรากฏการณ์ดังกล่าวถูกเรียกอีกอย่างหนึ่งว่า Hertz Effect ตามชื่อของผู้ค้นพบ คือ นาย ไฮน์ริช เฮิร์ตซ์ โฟตอนมีปฏิยานุภาค คือ ปฏิโฟตอน (Anti-Photon) ซึ่งมีสปินเหมือนอนุภาคต้นแบบทุกประการ โฟตอนจึงเป็นปฏิยานุภาคของตัวมันเอง.

กราวิตอนและโฟตอน · อนุภาคย่อยของอะตอมและโฟตอน · ดูเพิ่มเติม »

เกจโบซอน

กจโบซอน (Gauge boson) คืออนุภาคโบซอนที่ทำหน้าที่เป็นอนุภาคนำพาแรงพื้นฐานในธรรมชาติ กล่าวให้เจาะจงคือ เป็นอนุภาคมูลฐานที่อธิบายอันตรกิริยาได้ด้วยทฤษฎีเกจ กล่าวคือ แรงที่กระทำต่อกันและกันเกิดขึ้นโดยการแลกเปลี่ยนเกจโบซอนกัน โดยปกติเป็นอนุภาคเสมือน.

กราวิตอนและเกจโบซอน · อนุภาคย่อยของอะตอมและเกจโบซอน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง กราวิตอนและอนุภาคย่อยของอะตอม

กราวิตอน มี 16 ความสัมพันธ์ขณะที่ อนุภาคย่อยของอะตอม มี 50 ขณะที่พวกเขามีเหมือนกัน 9, ดัชนี Jaccard คือ 13.64% = 9 / (16 + 50)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง กราวิตอนและอนุภาคย่อยของอะตอม หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »