เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

กราวิตอนและเกจโบซอน

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง กราวิตอนและเกจโบซอน

กราวิตอน vs. เกจโบซอน

กราวิตอน (graviton) ในฟิสิกส์ทฤษฎีคือ อนุภาคมูลฐานในสมมติฐานที่เป็นสื่อให้แรงโน้มถ่วงตามกรอบทฤษฎีสนามควอนตัม หากอนุภาคกราวิตอนมีจริง คาดว่าจะไม่มีมวล เนื่องจากแรงโน้มถ่วงที่ปรากฏอยู่ไม่มีขอบเขตจำกัด และเป็นอนุภาคโบซอนที่มีสปินเท่ากับ 2 ค่าสปินนี้ได้จากความจริงที่ว่าแหล่งกำเนิดของแรงโน้มถ่วงเป็นเทนเซอร์ความเค้น–พลังงาน ซึ่งเป็นเทนเซอร์อันดับ 2 (เปรียบเทียบกับโฟตอนของแรงแม่เหล็กไฟฟ้าที่มีสปินเป็น 1 มีแหล่งกำเนิดเป็นความหนาแน่นกระแสสี่มิติ ซึ่งเป็นเทนเซอร์อันดับ 1) นอกจากนี้ยังสามารถแสดงให้เห็นว่าสนามแรงจากอนุภาคไร้มวลที่มีสปิน 2 ยังให้แรงที่ไม่แตกต่างจากแรงโน้มถ่วงอีกด้วย ทำให้อนุมานได้ว่าหากพบอนุภาคไร้มวลที่มีสปิน 2 แล้ว อนุภาคนั้นควรจะเป็นกราวิตอน การค้นพบกราวิตอนจะนำไปสู่การรวมแรงโน้มถ่วงเข้ากับทฤษฎีควอนตัม ในปัจจุบันทฤษฎีที่ใช้อธิบายกราวิตอนยังไม่สมบูรณ์เนื่องจากปัญหาเชิงคณิตศาสตร์เรื่องรีนอร์มอไลเซชัน (renormalization) ปัญหานี้จะเป็นแกนหลักที่นำไปสู่แบบจำลองหลังทฤษฎีสนามควอนตัมอย่าง ทฤษฎีสตริง. กจโบซอน (Gauge boson) คืออนุภาคโบซอนที่ทำหน้าที่เป็นอนุภาคนำพาแรงพื้นฐานในธรรมชาติ กล่าวให้เจาะจงคือ เป็นอนุภาคมูลฐานที่อธิบายอันตรกิริยาได้ด้วยทฤษฎีเกจ กล่าวคือ แรงที่กระทำต่อกันและกันเกิดขึ้นโดยการแลกเปลี่ยนเกจโบซอนกัน โดยปกติเป็นอนุภาคเสมือน.

ความคล้ายคลึงกันระหว่าง กราวิตอนและเกจโบซอน

กราวิตอนและเกจโบซอน มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): อนุภาคมูลฐานโบซอน

อนุภาคมูลฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ในฟิสิกส์ของอนุภาค อนุภาคมูลฐาน (elementary particle หรือ fundamental particle) หมายถึงอนุภาคหนึ่งที่โครงสร้างย่อยไม่เป็นที่รู้จัก ดังนั้นเราจึงไม่รู้ว่ามันประกอบขึ้นด้วยอนุภาคอื่นหรือไม่ มันเป็นหน่วยย่อยที่สุดในทางทฤษฎีฟิสิกส์ทั่วไป เราไม่ถือว่ามันประกอบขึ้นมาจากสิ่งใดอีก อนุภาคมูลฐานที่เรารู้จักกันดีที่สุดคือ อิเล็กตรอน ซึ่งไม่สามารถแยกย่อยเป็นอนุภาคใดๆได้อีก อนุภาคมูลฐานที่รู้จักแล้ว ได้แก่ เฟอร์มิออนพื้นฐาน (ควาร์ก, เลปตอน, ปฏิควาร์ก และปฏิเลปตอน) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคสสาร" และ "อนุภาคปฏิสสาร" อีกชนิดหนึ่งได้แก่ โบซอนพื้นฐาน (เกจโบซอน และอนุภาคฮิกส์) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคแรง" ที่เป็นตัวเชื่อมปฏิสัมพันธ์พื้นฐานในหมู่เฟอร์มิออนด้วยกัน อนุภาคที่ประกอบด้วยอนุภาคมูลฐานตั้งแต่สองอนุภาคขึ้นไปจะเป็น "อนุภาคผสม" (composite particle) สสารในชีวิตประจำวันจะประกอบด้วยอะตอม ที่ครั้งหนึ่งเคยถูกสันนิษฐานว่ามันเป็นอนุภาคมูลฐานของสสาร คำว่า "อะตอม" แปลว่า "แบ่งไม่ได้" ในภาษากรีก แม้ว่าการมีอยู่ของอะตอมยังคงเป็นที่ถกเถียงกันจนถึงประมาณปี 1910 อย่างที่นักฟิสิกส์ชั้นนำบางคนถือว่าโมเลกุลเป็นภาพลวงตาทางคณิตศาสตร์ และถือว่าสสารอย่างสุดขั้วที่สุดจะประกอบด้วยพลังงาน ในไม่ช้า มีการค้นพบว่าอะตอมประกอบด้วยองค์ประกอบย่อย เมื่อเริ่มทศวรรษที่ 1930 อิเล็กตรอนและโปรตอนได้ถูกค้นพบ พร้อมกับโฟตอนซึ่งเป็นอนุภาคของรังสีแม่เหล็กไฟฟ้า ในช่วงเวลานั้น การค้นพบล่าสุดของกลศาสตร์ควอนตัมได้มีก​​ารเปลี่ยนแปลงอย่างรุนแรงของแนวคิดของอนุภาค อย่างเช่นอนุภาคเดี่ยวดูเหมือนจะสามารถขยายสนามได้อย่างที่คลื่นสามารถทำได้ (ทวิภาคของอนุภาคกับคลื่น (particle-wave duality)) ข้อความที่ขัดแย้งยังคงหลีกเลี่ยงคำอธิบายที่น่าพอใจ โดยผ่านทางทฤษฎีควอนตัม โปรตอนและนิวตรอนถูกพบว่าประกอบด้วยควาร์กหลายตัว ได้แก่อัพควาร์กและดาวน์ควาร์ก ซึ่งในปัจจุบันถือว่าพวกนี้เป็นอนุภาคมูลฐาน และภายในโมเลกุลหนึ่ง สามองศาอิสระของอิเล็กตรอน (ประจุ, สปินและวงโคจร) สามารถแยกผ่านทาง wavefunction ออกเป็นสาม'อนุภาคคล้าย' (quasiparticle) (Holon, spinon และ Orbiton) แต่อิเล็กตรอนอิสระ ซึ่งไม่ได้กำลังโคจรรอบนิวเคลียส จะขาดการเคลื่อนไหวในการโคจร และจะปรากฏในรูปที่แบ่งแยกไม่ได้ จึงยังคงถือว่าเป็นอนุภาคมูลฐาน ราวปี 1980 สถานะของอนุภาคมูลฐานที่เป็นมูลฐานอย่างแท้จริง-"องค์ประกอบสุดชั้ว" ของสสาร- ได้ถูกละทิ้งเป็นส่วนใหญ่สำหรับแนวโน้มที่จะเป็นการปฏิบัติมากขึ้น ได้ถูกประมวลอยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค ซึ่งเป็นทฤษฎีที่ประสบความสำเร็จจากทดลองทางวิทยาศาสตร์มากที่สุด การขยายความและทฤษฎีทั้งหลายที่อธิบายเกินกว่าแบบจำลองมาตรฐาน รวมทั้งทฤษฎี supersymmetry ที่นิยมกันอย่างสุดขั้ว ได้เพิ่มจำนวนอนุภาคมูลฐานเป็นสองเท่าโดยการตั้งสมมติฐานที่แต่ละอนุภาคที่รู้จักกันแล้วควบรวมเข้ากับพันธมิตร"เงา" ทำให้มีจำนวนอนุภาคมากกว่าเดิม แม้ว่าสุดยอดพันธมิตรดังกล่าวทั้งหมดยังคงไม่ได้ถูกค้นพบแต่อย่างใด ในขณะเดียวกัน โบซอนมูลฐานที่เป็นตัวเชื่อมแรงโน้มถ่วงที่เรียกว่า แกรวิตอน (Graviton) ก็ยังคงเป็นสมมุติฐานอยู.

กราวิตอนและอนุภาคมูลฐาน · อนุภาคมูลฐานและเกจโบซอน · ดูเพิ่มเติม »

โบซอน

ในฟิสิกส์เชิงอนุภาค, โบซอน (boson) หมายถึง อนุภาคที่เป็นไปตาม สถิติแบบโพส-ไอน์สไตน์ มีสปินเป็นจำนวนเต็ม สามารถมีโบซอนหลายๆ ตัวอยู่ในสถานะควอนตัมเดียวกันได้ คำว่า "โบซอน" มาจากชื่อของนักวิทยาศาสตร์ชาวอินเดีย คือ สัตเยนทระ นาถ โพส โบซอนมีลักษณะตรงกันข้ามกับเฟอร์มิออน ที่เป็นไปตาม สถิติแบบแฟร์มี-ดิแรก เฟอร์มิออนตั้งแต่สองตัวหรือมากกว่านั้นจะไม่สามารถอยู่ในสถานะควอนตัมเดียวกันได้ โบซอนเป็นได้ทั้งอนุภาคมูลฐาน เช่น โฟตอน หรือเป็นอนุภาคประกอบ เช่น มีซอน โดยโบซอนส่วนมากจะเป็นอนุภาคแบบประกอบ โดยตาม "แบบจำลองมาตรฐานของฟิสิกส์เชิงอนุภาค" มีโบซอน 6 ชนิดที่เป็นอนุภาคมูลฐาน คือ.

กราวิตอนและโบซอน · เกจโบซอนและโบซอน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง กราวิตอนและเกจโบซอน

กราวิตอน มี 16 ความสัมพันธ์ขณะที่ เกจโบซอน มี 3 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 10.53% = 2 / (16 + 3)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง กราวิตอนและเกจโบซอน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: