โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

อนุภาคบีตา

ดัชนี อนุภาคบีตา

อานุภาพการทะลุทะลวงของรังสีสามชนิดเปรียบเทียบกัน รังสีแอลฟาประกอบด้วยกลุ่มนิวเคลียสของฮีเลียมและไม่สามารถทะลุทะลวงแผ่นกระดาษได้ รังสีบีตาประกอบด้วยกลุ่มของอิเล็กตรอนหรือโพซิตรอนจะไม่สามารถทะลุทะลวงแผ่นอะลูมิเนียมได้ รังสีแกมมาจะถูกดูดซับด้วยตะกั่ว อนุภาคบีตา (Beta particle) เป็นกลุ่มของอิเล็กตรอนหรือโพซิตรอนความเร็วสูงและพลังงานสูงที่ปล่อยออกมาจากบางชนิดของนิวเคลียสที่มีกัมมันตรังสี เช่นโปแตสเซียม-40 อนุภาคบีตาที่ปล่อยออกมาในรูปของการแผ่รังสีแบบไอโอไนซิ่ง (ionizing radiation) จะเป็นรังสี เรียกว่ารังสีบีตา อนุภาคบีตาเกิดจากการสลายให้กัมมันตรังสีที่เรียกว่าการสลายให้อนุภาคบีตา อนุภาคบีตาถูกกำหนดโดยอีกษรกรีกว่า β มีสองรูปแบบของการสลายบีตา ได่แก่ β− and β+ ซึ่งก่อให้เกิดอิเล็กตรอนและโพซิตรอนตามลำดั.

10 ความสัมพันธ์: พลาสติกการสลายให้กัมมันตรังสีการสลายให้อนุภาคบีตาการแผ่รังสีอะลูมิเนียมอิเล็กตรอนปฏิยานุภาคนิวทริโนแสงโปรตอน

พลาสติก

ลาสติก เป็นสารประกอบอินทรีย์ที่สังเคราะห์ขึ้นใช้แทนวัสดุธรรมชาติ บางชนิดเมื่อเย็นก็แข็งตัว เมื่อถูกความร้อนก็อ่อนตัว บางชนิดแข็งตัวถาวร มีหลายชนิด เช่น ไนลอน ยางเทียม ใช้ทำสิ่งต่าง ๆ เช่น เสื้อผ้า ฟิล์ม ภาชนะ ส่วนประกอบของยานพาหน.

ใหม่!!: อนุภาคบีตาและพลาสติก · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: อนุภาคบีตาและการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การสลายให้อนุภาคบีตา

ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.

ใหม่!!: อนุภาคบีตาและการสลายให้อนุภาคบีตา · ดูเพิ่มเติม »

การแผ่รังสี

ในทางฟิสิกส์ การแผ่รังสี (อังกฤษ: radiation) หมายถึงกระบวนการที่อนุภาคพลังงานหรือคลื่นเคลื่อนที่ผ่านตัวกลางหรืออวกาศ รังสีสามารถแบ่งออกได้เป็นสองประเภท คือ รังสีที่แตกตัวได้และรังสีที่ไม่ก่อให้เกิดการแตกตัวของประจุ อย่างไรก็ตาม คำว่า "รังสี" มักหมายถึงกัมมันตภาพรังสีเพียงอย่างเดียว (คือ รังสีที่มีพลังงานเพียงพอที่จะทำให้อะตอมเปลี่ยนเป็นไอออน) แต่ความเป็นจริงแล้วก็สามารถหมายถึงรังสีที่ไม่ก่อให้เกิดการแตกตัวของประจุด้วยเช่นกัน (เช่น คลื่นวิทยุหรือแสงที่มองเห็นได้ด้วยตาเปล่า รูปแบบเรขาคณิตของการแผ่รังสีออกจากตัวกลาร่รร่คียยเมวังนำไปสู่ระบบของหน่วยวัดและหน่วยทางฟิสิกส์ที่สามารถใช้ได้กับรังสีทุกประเภท รังสีทั้งสองประเภทล้วนสามารถเป็นอันตรายต่อสิ่งมีชีวิตและสิ่งแวดล้อมทางธรรมชาติ) การแผ่รังสี สามารถนำไปใช้งานในงานทางด้านความร้อนต่าง ๆ เช่น แผ่นรองหัวเตาแก๊สอินฟาเรด การถ่ายเทความร้อนในอุปกรณ์ แลกเปลี่ยนความร้อน การแผ่รังสี หมวดหมู่:ฟิสิกส์ หมวดหมู่:หลักการสำคัญของฟิสิกส์.

ใหม่!!: อนุภาคบีตาและการแผ่รังสี · ดูเพิ่มเติม »

อะลูมิเนียม

มื่อวัดในทั้งปริมาณและมูลค่า การใช้อะลูมิเนียมมีมากกว่าโลหะอื่น ๆ ยกเว้นเหล็ก และมีความสำคัญในเศรษฐกิจโลกทุกด้าน อะลูมิเนียมบริสุทธิ์มีแรงต้านการดึงต่ำ แต่สามารถนำไปผสมกับธาตุต่าง ๆ ได้ง่าย เช่น ทองแดง สังกะสี แมกนีเซียม แมงกานีส และซิลิกอน (เช่น duralumin) ในปัจจุบันวัสดุเกือบทั้งหมดที่เรียกว่าอะลูมิเนียมเป็นโลหะผสมของอะลูมิเนียม อะลูมิเนียมบริสุทธิ์พบเฉพาะเมื่อต้องการความทนต่อการกัดกร่อนมากกว่าความแข็งแรงและความแข็ง เมื่อรวมกับกระบวนการทางความร้อนและกลการ (thermo-mechanical processing) โลหะผสมของอะลูมิเนียมมีคุณสมบัติทางกลศาสตร์ที่ดีขึ้น โลหะผสมอะลูมิเนียมเป็นส่วนสำคัญของเครื่องบินและจรวดเนื่องจากมีอัตราความแข็งแรงต่อน้ำหนักสูง อะลูมิเนียมสามารถสะท้อนแสงที่มองเห็นได้ดีเยี่ยม (~99%) และสามารถสะท้อนแสงอินฟราเรดได้ดี (~95%) อะลูมิเนียมชั้นบาง ๆ สามารถสร้างบนพื้นผิวเรียบด้วยวิธีการควบแน่นของไอสารเคมี (chemical vapor deposition) หรือวิธีการทางเคมี เพื่อสร้างผิวเคลือบออปติคัล (optical coating) และกระจกเงา ผิวเคลือบเหล่านี้จะเกิดชั้นอะลูมิเนียมออกไซด์ที่บางยิ่งกว่า ที่ไม่สึกกร่อนเหมือนผิวเคลือบเงิน กระจกเงาเกือบทั้งหมดสร้างโดยใช้อะลูมิเนียมชั้นบางบนผิวหลังของแผ่นกระจกลอย (float glass).

ใหม่!!: อนุภาคบีตาและอะลูมิเนียม · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: อนุภาคบีตาและอิเล็กตรอน · ดูเพิ่มเติม »

ปฏิยานุภาค

ประกอบของประจุไฟฟ้าเช่นเดียวกับขนาดของอนุภาคทั่วไป (ซ้าย) และปฏิยานุภาค (ขวา) จากบนลงล่าง; อิเล็กตรอน/โพซิตรอน, โปรตอน/แอนติโปรตอน, นิวตรอน/แอนตินิวตรอน ปฏิยานุภาค (antiparticle) เป็นอนุภาคที่มีความสอดคล้องมากที่สุดกับอนุภาคปกติธรรมดา มีความสัมพันธ์กันคือมีมวลเท่ากันและมีประจุไฟฟ้าที่ตรงกันข้าม ยกตัวอย่างเช่น ปฏิยานุภาคของอิเล็กตรอนเป็นอิเล็กตรอนที่มีประจุบวก, หรือเรียกว่าโพซิตรอนที่ถูกสร้างขึ้นในการสลายตัวของสารกัมมันตรังสีบางชนิดตามธรรมชาติ กฎของธรรมชาติระหว่างอนุภาคและปฏิยานุภาคแทบจะสอดคล้องได้ส่วนกัน ตัวอย่างเช่นแอนติโปรตอนและโพสิตรอนสามารถสร้างอะตอมแอนติไฮโดรเจน (antihydrogen atom) ได้ ซึ่งมีคุณสมบัติเดียวกันที่เกือบจะเหมือนกับอะตอมไฮโดรเจน สิ่งนี้นำไปสู่​​คำถามที่ว่าทำไมการก่อตัวของสสารหลังบิ๊กแบงส่งผลให้ในจักรวาลประกอบด้วยสสารเกือบทั้งหมด แทนที่จะเป็นส่วนผสมอย่างละครึ่งหนึ่งของสสารและปฏิสสาร การค้นพบการละเมิดซีพี (CP violation) ช่วยทำให้ปัญหานี้กระจ่างขึ้นโดยการแสดงให้เห็นว่าสัดส่วนนี้ ความคิดสร้างสรรค์ที่สมบูรณ์แบบเป็นเพียงการประมาณเท่านั้น คู่อนุภาค-ปฏิยานุภาคสามารถประลัยซึ่งกันและกันเกิดเป็นโฟตอนขึ้นและเนื่องจากประจุของอนุภาคและปฏิยานุภาคมีค่าตรงกันข้าม, ประจุรวมทั้งหมดจะอนุรักษ์ ตัวอย่างเช่น โพสิตรอนที่ถูกผลิตขึ้นในการสลายตัวกัมมันตรังสีตามธรรมชาติจะถูกประลัยอย่างรวดเร็วด้วยอิเล็กตรอน, การผลิตคู่ของรังสีแกมมา, กระบวนการใช้ประโยชน์ในโพซิตรอนอีมิสชันโทโมกราฟี ปฏิยานุภาคถูกผลิตขึ้นตามธรรมชาติในการสลายให้อนุภาคบีตา และในอันตรกิริยาของรังสีคอสมิกในชั้นบรรยากาศของโลก เพราะว่าประจุจะต้องถูกอนุรักษ์ มันเป็นไปไม่ได้ที่จะสร้างปฏิยานุภาคโดยไม่ต้องทำลายทั้งอนุภาคที่มีประจุที่เหมือนกันไปด้วย (เช่น ในการสลายให้อนุภาคบีต้า) หรือในการสร้างอนุภาคที่มีประจุที่ตรงกันข้ามก็ตาม ในระยะหลัง ๆ จะเห็นในหลาย ๆ กระบวนการในการที่ทั้งอนุภาคและปฏิยานุภาคจะถูกสร้างขึ้นมาพร้อม ๆ กัน เช่น ในเครื่องเร่งอน.

ใหม่!!: อนุภาคบีตาและปฏิยานุภาค · ดูเพิ่มเติม »

นิวทริโน

นิวทริโน (Neutrino) เป็นอนุภาคมูลฐาน ที่เป็นกลางทางไฟฟ้า และมีค่าสปิน (ฟิสิกส์)เท่ากับครึ่งจำนวนเต็ม นิวทริโน (ภาษาอิตาลีหมายถึง "สิ่งเป็นกลางตัวน้อย") ใช้สัญลักษณ์แทนด้วยอักษรกรีกว่า \nu_^ (นิว) มวลของนิวทริโนมีขนาดเล็กมากเมื่อเปรียบเทียบกับอนุภาคย่อยอื่นๆ และเป็นอนุภาคเพียงชนิดเดียวที่รู้จักในขณะนี้ที่มีความเป็นไปได้ว่าจะเป็นสสารมืด โดยเฉพาะอย่างยิ่งสสารมืดร้อน นิวทริโนเป็นเลปตอน กลุ่มเดียวกับอิเล็กตรอน มิวออน และเทา (อนุภาค) แต่ไม่มีประจุไฟฟ้า แบ่งเป็น 3 ชนิด (หรือ flavour) ได้แก่ อิเล็กตรอนนิวทริโน (Ve) มิวออนนิวทริโน (Vμ) และเทานิวทริโน (VT) แต่ละเฟลเวอร์มีคู่ปฏิปักษ์ (ปฏิยานุภาค) ของมันเรียกว่า "ปฏินิวทริโน" ซึ่งไม่มีประจุไฟฟ้าและมีสปินเป็นครึ่งเช่นกัน นิวทริโนถูกสร้างขึ้นในวิธีที่อนุรักษ์ เลขเลปตอน นั่นคือ เมื่อมี อิเล็กตรอนนิวทริโน ถูกสร้างขึ้น หนึ่งตัว จะมี โพซิตรอน (ปฏิอิเล็กตรอน) หนึ่งตัวถูกสร้างขึ้นด้วย และเมื่อมี อิเล็กตรอนปฏินิวทริโนหนึ่งตัวถูกสร้างขึ้น ก็จะมีอิเล็กตรอนหนึ่งตัวถูกสร้างขึ้นเช่นกัน นิวทริโนไม่มีประจุไฟฟ้า จึงไม่ถูกกระทบโดยแรงแม่เหล็กไฟฟ้าที่จะกระทำต่อทุกอนุภาคที่มีประจุไฟฟ้า และเนื่องจากมันเป็นเลปตอน จึงไม่ถูกกระทบโดยอันตรกิริยาอย่างเข้มที่จะกระทำต่อทุกอนุภาคที่ประกอบเป็นนิวเคลียสของอะตอม นิวทริโนจึงถูกกระทบโดย อันตรกิริยาอย่างอ่อน และ แรงโน้มถ่วง เท่านั้น แรงอย่างอ่อนเป็นปฏิสัมพันธ์ที่มีระยะทำการสั้นมาก และแรงโน้มถ่วงก็อ่อนแออย่างสุดขั้วในระยะทางระดับอนุภาค ดังนั้นนิวทริโนโดยทั่วไปจึงสามารถเคลื่อนผ่านสสารทั่วไปได้โดยไม่ถูกขวางกั้นและไม่สามารถตรวจจับได้ นิวทริโนสามารถสร้างขึ้นได้ในหลายวิธี รวมทั้งในหลายชนิดที่แน่นอนของการสลายให้กัมมันตรังสี, ในปฏิกิริยานิวเคลียร์ เช่นพวกที่เกิดขึ้นในดวงอาทิตย์, ในเครื่องปฏิกรณ์นิวเคลียร์, เมื่อรังสีคอสมิกชนกับอะตอมและในซูเปอร์โนวา ส่วนใหญ่ของนิวทริโนในบริเวณใกล้โลกเกิดจากปฏิกิริยานิวเคลียร์ในดวงอาทิตย์ ในความเป็นจริง นิวทรืโนจากดวงอาทิตย์ประมาณ 65 พันล้านตัว ต่อวินาทีเคลื่อนที่ผ่านทุก ๆ ตารางเซนติเมตรที่ตั้งฉากกับทิศทางของดวงอาทิตย์ในภูมิภาคของโลก นิวทริโนมีการ แกว่ง (oscillate) ไปมาระหว่างฟเลเวอร์ที่แตกต่างกันเมื่อมีการเคลื่อนที่ นั่นคิอ อิเล็กตรอนนิวทริโนตัวหนึ่งที่ถูกสร้างขึ้นในปฏิกิริยาการสลายให้อนุภาคบีตา อาจกลายเป็นมิวออนนิวทริโนหรือเทานิวทริโนหนึ่งตัวเมื่อมาถึงเครื่องตรวจจับ ซึ่งนิวทริโนแต่ละชนิดจะมีมวลไม่เท่ากัน ถึงแม้ว่ามวลเหล่านี้มีขนาดที่เล็กมาก จากการวัดทางจักรวาลวิทยา ได้มีการคำนวณว่าผลรวมของมวลนิวทริโนสามตัวน้อยกว่าหนึ่งในล้านส่วนของมวลอิเล็กตรอน.

ใหม่!!: อนุภาคบีตาและนิวทริโน · ดูเพิ่มเติม »

แสง

ปริซึมสามเหลี่ยมกระจายลำแสงขาว ลำที่ความยาวคลื่นมากกว่า (สีแดง) กับลำที่ความยาวคลื่นน้อยกว่า (สีม่วง) แยกจากกัน แสง (light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่าและมีคลื่นแคบกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นกว้างกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์ ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่) ^~^.

ใหม่!!: อนุภาคบีตาและแสง · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ใหม่!!: อนุภาคบีตาและโปรตอน · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

รังสีบีตารังสีเบต้าอนุภาคเบตา

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »