สารบัญ
6 ความสัมพันธ์: บทตั้งการจับมือกราฟ (คณิตศาสตร์)กราฟระบุทิศทางจุดยอด (ทฤษฎีกราฟ)ทฤษฎีกราฟคณิตศาสตร์
- ทฤษฎีกราฟ
บทตั้งการจับมือ
ในทฤษฎีกราฟ บทตั้งการจับมือกล่าวไว้ว่า สำหรับกราฟไม่ระบุทิศทางจำกัดใด ๆ จะมีจุดยอดที่มีระดับขั้น (ดีกรี) คี่เป็นจำนวนคู่เสมอ อาจกล่าวให้เห็นเป็นรูปธรรมได้ว่าในงานเลี้ยงที่มีการจับมือกันนั้น จะมีคนเป็นจำนวนคู่คนที่จับมือคนอื่นคี่ครั้งเสมอ สูตรผลรวมระดับขั้น เป็นสูตรที่เป็นพื้นฐานของบทตั้งการจับมือ กล่าวไว้ว่า สำหรับกราฟที่มีเซตจุดยอด V และเซตเส้นเชื่อม E หรือก็คือ ผลรวมของระดับขั้นของจุดยอดทั้งหมด จะเท่ากับจำนวนสองเท่าของจำนวนเส้นเชื่อม เลออนฮาร์ด ออยเลอร์ได้พิสูจน์ว่าทั้งบทตั้งการจับมือและสูตรผลรวมระดับขั้นเป็นจริงใน..
ดู ระดับขั้นและบทตั้งการจับมือ
กราฟ (คณิตศาสตร์)
วาดของกราฟระบุชื่อที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น ในคณิตศาสตร์และวิทยาการคอมพิวเตอร์ กราฟ (Graph) ประกอบไปด้วยเซตของวัตถุที่เรียกว่าจุดยอด (vertex) ซึ่งเชื่อมต่อกันด้วยเส้นเชื่อม (edge) โดยทั่วไปแล้วเรามักวาดรูปแสดงกราฟโดยใช้จุด (แทนจุดยอด) เชื่อมกันด้วยเส้น (แทนเส้นเชื่อม) กราฟเป็นวัตถุพื้นฐานของการศึกษาในวิยุตคณิต หัวข้อทฤษฎีกราฟ เส้นเชื่อมอาจมีทิศทางหรือไม่ก็ได้ ตัวอย่างเช่น สมมุติให้จุดยอดแทนคนและเส้นเชื่อมแทนการจับมือกัน เส้นเชื่อมก็จะเป็นเส้นเชื่อมไม่มีทิศ เพราะการที่ A จับมือ B ก็แปลว่า B จับมือ A อย่างไรก็ตาม สมมุติถ้าจุดยอดแทนคนและเส้นเชื่อมแทนการรู้จัก เส้นเชื่อมก็ต้องเป็นเส้นเชื่อมมีทิศทาง เพราะ A รู้จัก B ไม่จำเป็นว่า B ต้องรู้จัก A หรือนั่นก็คือความสัมพันธ์การรู้จักไม่เป็นความสัมพันธ์สมมาตร จุดยอดอาจจะถูกเรียกว่าโหนด ปม หรือจุด ในขณะที่เส้นเชื่อมอาจถูกเรียกว่าเส้น คำว่า "กราฟ" ถูกใช้ครั้งแรกโดย J.J.
ดู ระดับขั้นและกราฟ (คณิตศาสตร์)
กราฟระบุทิศทาง
กราฟระบุทิศทาง ในทฤษฎีกราฟ กราฟระบุทิศทาง หรือ ไดกราฟ คือกราฟซึ่งเส้นเชื่อมมีทิศ กล่าวคือกราฟ G.
จุดยอด (ทฤษฎีกราฟ)
กราฟซึ่งมี 6 จุดยอดและ 7 เส้นเชื่อม และจุดยอดหมายเลข 6 เป็นจุดยอดปลาย ในทฤษฎีกราฟ จุดยอด หรือ โหนด เป็นส่วนประกอบอย่างหนึ่งที่ทำให้เกิดกราฟ กราฟไม่ระบุทิศทางประกอบด้วยเซตของจุดยอดและเซตของเส้นเชื่อม (คู่ไม่อันดับของจุดยอด) ในขณะที่กราฟระบุทิศทางประกอบด้วยเซตของจุดยอดและเซตของเส้นเชื่อมที่มีทิศทาง (คู่อันดับของจุดยอด) จุดยอด w เรียกว่าอยู่ ประชิด (adjacent) กับจุดยอด v โดยที่ v ไม่ใช่ w ก็ต่อเมื่อกราฟนั้นมีเส้นเชื่อม (v,w) และเพื่อนบ้านของจุดยอด v คือจุดยอดทั้งหมดที่ประชิดกับ v.
ดู ระดับขั้นและจุดยอด (ทฤษฎีกราฟ)
ทฤษฎีกราฟ
กราฟที่มีจุดยอด 6 จุด และเส้นเชื่อม 7 เส้น ทฤษฎีกราฟ (graph theory) เป็นหนึ่งในสาขาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ที่ศึกษาถึงคุณสมบัติต่าง ๆ ของกราฟ.
คณิตศาสตร์
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity.
ดูเพิ่มเติม
ทฤษฎีกราฟ
- กราฟ (คณิตศาสตร์)
- กราฟ (แบบชนิดข้อมูลนามธรรม)
- กราฟระบุทิศทาง
- การระบายสีกราฟ
- จุดยอด (ทฤษฎีกราฟ)
- ทฤษฎีกราฟ
- ระดับขั้น
- อภิธานศัพท์ทฤษฎีกราฟ
หรือที่รู้จักกันในชื่อ ระดับขั้น (ทฤษฎีกราฟ)ดีกรี (ทฤษฎีกราฟ)