เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ตัวแปรสุ่ม

ดัชนี ตัวแปรสุ่ม

สำหรับทฤษฎีความน่าจะเป็นและสถิติศาสตร์ ตัวแปรสุ่ม (random variable) หมายถึง ตัวแปรที่ค่าของมันวัดได้จากกระบวนการสุ่มหรือกระบวนการที่มีความไม่แน่นอนอยู่ ตัวแปรสุ่มจะเป็นฟังก์ชันที่แปลงเหตุการณ์หรือผล (เช่น ผลลัพธ์ของการทอยลูกเต๋า)ไปเป็นจำนวนจริง (เช่น 1, 2, 3,..., 6) ค่าที่เป็นไปได้ของตัวแปรสุ่มจะแทนผลที่เป็นไปได้ของการทดลองที่ยังไม่ได้ทำหรือค่าของปริมาณที่ค่าจริงนั้นไม่แน่นอน (เช่น ผลของข้อมูลที่ไม่สมบูรณ์ หรือการวัดที่ไม่เที่ยงตรง) หรืออาจมองได้ว่า ตัวแปรสุ่มก็คือปริมาณที่ค่าของมันไม่ถูกเจาะจงไว้ หรือไม่ได้รู้แน่ๆ แต่อาจเป็นได้หลายๆค่า โดยที่การแจกแจงความน่าจะเป็นจะใช้ในการอธิบายถึงโอกาสที่ค่าต่างๆของตัวแปรสุ่มจะเป็นไปได้ หมวดหมู่:ทฤษฎีความน่าจะเป็น หมวดหมู่:การสุ่ม หมวดหมู่:ทฤษฎีทางสถิติ.

สารบัญ

  1. 5 ความสัมพันธ์: ฟังก์ชัน (คณิตศาสตร์)การแจกแจงความน่าจะเป็นสถิติศาสตร์ทฤษฎีความน่าจะเป็นตัวแปร

ฟังก์ชัน (คณิตศาสตร์)

ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จากเซตหนึ่งที่เรียกว่าโดเมน ไปยังอีกเซตหนึ่งที่เรียกว่าโคโดเมน (บางครั้งคำว่าเรนจ์อาจถูกใช้แทน แต่เรนจ์นั้นมีความหมายอื่นด้วย "โคโดเมน" จึงเป็นที่นิยมมากกว่า เพราะไม่กำกวม) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ.

ดู ตัวแปรสุ่มและฟังก์ชัน (คณิตศาสตร์)

การแจกแจงความน่าจะเป็น

ในความน่าจะเป็นและสถิติศาสตร์ การแจกแจงความน่าจะเป็นกำหนดความน่าจะเป็นให้เซตย่อยของผลลัพธ์การทดลองสุ่ม การสำรวจหรือวิธีอนุมานทางสถิติที่วัดได้ทั้งหมด ตัวอย่างการแจกแจงความน่าจะเป็นพบได้ในการทดลองที่ปริภูมิตัวอย่างไม่เป็นตัวเลข ซึ่งการแจกแจงจะเป็นการแจกแจงประเภท, การทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มวิยุต ซึ่งการแจกแจงสามารถระบุได้ด้วยฟังก์ชันมวลของความน่าจะเป็น, และการทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มต่อเนื่อง ซึ่งการแจกแจงสามารถเจาะจงได้ด้วยฟังก์ชันความหนาแน่นของความน่าจะเป็น การทดลองที่ซับซ้อนกว่า เช่น การทดลองที่เกี่ยวข้องกับกระบวนการสโทแคสติกที่นิยามในเวลาต่อเนื่อง อาจต้องใช้เมเชอร์ความน่าจะเป็นที่เจาะจงน้อยกว.

ดู ตัวแปรสุ่มและการแจกแจงความน่าจะเป็น

สถิติศาสตร์

ติศาสตร์ (Statistic Science) เป็นการศึกษาการเก็บ การวิเคราะห์ การตีความ การนำเสนอและการจัดระเบียบข้อมูล ในการประยุกต์สถิติศาสตร์กับปัญหาทางวิทยาศาสตร์ อุตสาหกรรมหรือสังคม ฯลฯ จำเป็นต้องเริ่มด้วยประชากรหรือกระบวนการที่จะศึกษา ประชากรเป็นได้หลากหลาย เช่น "ทุกคนที่อาศัยอยู่ในประเทศหนึ่ง" หรือ "ทุกอะตอมซึ่งประกอบเป็นผลึก" สถิติศาสตร์ว่าด้วยทุกแง่มุมของข้อมูลซึ่งรวมการวางแผนการเก็บข้อมูลในแง่การออกแบบการสำรวจและการทดลอง ในกรณีไม่สามารถเก็บข้อมูลสำมะโนได้ นักสถิติศาสตร์เก็บข้อมูลโดยการพัฒนาการออกแบบการทดลองจำเพาะและตัวอย่างสำรวจ การชักตัวอย่างเพื่อเป็นตัวแทนประกันว่าการอนุมานและการสรุปสามารถขยายจากตัวอย่างไปยังประชากรโดยรวมได้โดยปลอดภัย การศึกษาทดลองเกี่ยวข้องกับการวัดระบบที่กำลังศึกษา จัดดำเนินการระบบ แล้ววัดเพิ่มโดยใช้วิธีดำเนินการเดียวกันเพื่อตัดสินว่าการจัดดำเนินการดัดแปรค่าของการวัดหรือไม่ ในทางกลับกัน การศึกษาสังเกตไม่เกี่ยวข้องกับการจัดดำเนินการทดลอง มีการใช้ระเบียบวิธีสถิติศาสตร์สองอย่างหลักในการวิเคราะห์ข้อมูล ได้แก่ สถิติศาสตร์พรรณนา ซึ่งสรุปข้อมูลจากตัวอย่างโดยใช้ดัชนีอย่างค่าเฉลี่ยหรือค่าเบี่ยงเบนมาตรฐาน และสถิติศาสตร์อนุมาน ซึ่งดึงข้อสรุปจากข้อมูลซึ่งมีการกระจายสุ่ม (เช่น ข้อผิดพลาดสังเกต การกระจายการชักตัวอย่าง) สถิติศาสตร์พรรณนาส่วนใหญ่ว่าด้วยชุดคุณสมบัติของการกระจายสองชุด ได้แก่ แนวโน้มสู่ส่วนกลางซึ่งมุ่งให้ลักษระค่ากลางหรือตรงแบบของการกระจาย ขณะที่การกระจายให้ลักษณะขอบเขตซึ่งสมาชิกของการกระจายอยู่ห่างจากส่วนกลางและสมาชิกอื่น การอนุมานสถิติศาสตร์คณิตศาสตร์กระทำภายใต้กรอบทฤษฎีความน่าจะเป็น ซึ่งว่าด้วยการวิเคราะห์ปรากฏการณ์สุ่ม ในการอนุมานปริมาณไม่ทราบค่า มีการประเมินค่าตัวประมาณค่าตั้งแต่หนึ่งตัวโดยใช้ตัวอย่าง 1.สถิติ (Statistics) 2.เซตและการให้เหตุผล (Set and reasoning) 3.

ดู ตัวแปรสุ่มและสถิติศาสตร์

ทฤษฎีความน่าจะเป็น

ทฤษฎีความน่าจะเป็น คือการศึกษาความน่าจะเป็นแบบคณิตศาสตร์ นักคณิตศาสตร์จะมองความน่าจะเป็นว่าเป็นตัวเลขระหว่างศูนย์กับหนึ่ง ที่กำหนดให้กับ "เหตุการณ์" (ความน่าจะเป็นที่เท่ากับ 0 ก็คือไม่มีโอกาสที่เหตุการณ์นั้นจะเกิดขึ้น แต่ถ้าความน่าจะเป็นเท่ากับ 1 แสดงว่าเหตุการณ์เหล่านั้นเกิดขึ้นได้อย่างแน่นอน) ที่เกิดขึ้นแบบสุ่ม ความน่าจะเป็น P(E) ถูกกำหนดให้กับเหตุการณ์ E ตามสัจพจน์ของความน่าจะเป็น ความน่าจะเป็นที่เหตุการณ์ E จะเกิดขึ้น เมื่อ กำหนด ให้อีกเหตุการณ์ F เกิดขึ้น เรียกว่าความน่าจะเป็นมีเงื่อนไข ของ E เมื่อให้ F โดยค่าความน่าจะเป็นคือ P(E \cap F)/P(F) (เมื่อ P(F) ไม่เป็นศูนย์) ถ้าความน่าจะเป็นมีเงื่อนไขของ E เมื่อให้ F มีค่าเช่นเดียวกับความน่าจะเป็น (แบบไม่มีเงื่อนไข) ของ E เราจะกล่าวว่าเหตุการณ์ E และ F เป็นเหตุการณ์ที่เป็นอิสระต่อกันเชิงสถิติ เราจะสังเกตได้ว่าความสัมพันธ์นี้เป็นความสัมพันธ์สมมาตร ทั้งนี้เนื่องจากการเป็นอิสระต่อกันนี้เขียนแทนได้เป็น P(E \cap F).

ดู ตัวแปรสุ่มและทฤษฎีความน่าจะเป็น

ตัวแปร

ตัวแปร (variable) อาจหมายถึง.

ดู ตัวแปรสุ่มและตัวแปร