สารบัญ
11 ความสัมพันธ์: ฟังก์ชันเชิงการคูณการหารการแยกตัวประกอบระบบพิกัดคาร์ทีเซียนจำนวนธรรมชาติจำนวนเต็มจำนวนเฉพาะสัมพัทธ์คณิตศาสตร์ตัวคูณร่วมน้อยเศษส่วนเส้นตรง
- ฟังก์ชันเชิงการคูณ
ฟังก์ชันเชิงการคูณ
ในทฤษฎีจำนวน ฟังก์ชันเชิงการคูณ (multiplicative function) หมายถึงฟังก์ชันเลขคณิต f(n) สำหรับจำนวนเต็มบวก n ที่มีสมบัติดังนี้.
ดู ตัวหารร่วมมากและฟังก์ชันเชิงการคูณ
การหาร
การหาร (division) ในทางคณิตศาสตร์ คือ การดำเนินการเลขคณิตที่เป็นการดำเนินการผันกลับของการคูณ และบางครั้งอาจมองได้ว่าเป็นการทำซ้ำการลบ พูดง่าย ๆ คือการแบ่งออกหรือเอาเอาออกเท่า ๆ กัน จนกระทั่งตัวหารเหลือศูนย์ (หารลงตัว) ถ้า เมื่อ b ไม่เท่ากับ 0 แล้ว (อ่านว่า "c หารด้วย b") ตัวอย่างเช่น 6 ÷ 3.
การแยกตัวประกอบ
หุนาม ''x''2 + ''cx'' + ''d'' เมื่อ ''a + b.
ดู ตัวหารร่วมมากและการแยกตัวประกอบ
ระบบพิกัดคาร์ทีเซียน
ตัวอย่างระบบพิกัดคาร์ทีเซียนที่มีจุด (2,3) สีเขียว, จุด (-3,1) สีแดง, จุด (-1.5,-2.5) สีน้ำเงิน, และจุด (0,0) สีม่วงซึ่งเป็นจุดกำเนิด ในทางคณิตศาสตร์ ระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) เป็นระบบที่ใช้กำหนดตำแหน่งของจุดแต่ละจุดบนระนาบโดยอ้างถึงตัวเลข 2 จำนวน ซึ่งแต่ละจำนวนเรียกว่า พิกัดเอกซ์ และ พิกัดวาย ของจุดนั้น และเพื่อที่จะกำหนดพิกัดของจุด จะต้องมีเส้นแกนสองเส้นตัดกันเป็นมุมฉากที่จุดกำเนิด ได้แก่ แกนเอกซ์ และ แกนวาย ซึ่งเส้นแกนดังกล่าวจะมีหน่วยบ่งบอกความยาวเป็นระยะ ระบบพิกัดคาร์ทีเซียนยังสามารถใช้ได้ในปริภูมิสามมิติ (ซึ่งจะมี แกนแซด และ พิกัดแซด เพิ่มเข้ามา) หรือในมิติที่สูงกว่าอีกด้ว.
ดู ตัวหารร่วมมากและระบบพิกัดคาร์ทีเซียน
จำนวนธรรมชาติ
ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.
ดู ตัวหารร่วมมากและจำนวนธรรมชาติ
จำนวนเต็ม
ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.
จำนวนเฉพาะสัมพัทธ์
ำนวนเฉพาะสัมพัทธ์ (coprime หรือ relatively prime) ในคณิตศาสตร์ จำนวนเต็ม a และ b เป็นจำนวนเฉพาะสัมพัทธ์ก็ต่อเมื่อ มันไม่มีตัวประกอบร่วมนอกจาก 1 และ -1, หรือกล่าวได้ว่า ถ้าตัวหารร่วมมาก คือ 1 ตัวอย่างเช่น 6 และ 35 เป็นจำนวนเฉพาะสัมพัทธ์ แต่ 6 และ 27 ไม่เป็นจำนวนเฉพาะสัมพัทธ์ เพราะทั้งคู่หารด้วย 3 ลงตัว จำนวน 1 เป็นจำนวนเฉพาะสัมพัทธ์กับจำนวนเต็มทุกจำนวน จำนวน 0 เป็นจำนวนเฉพาะสัมพัทธ์กับ 1 และ -1 เท่านั้น วิธีที่ใช้หาว่าจำนวนสองจำนวนเป็นจำนวนเฉพาะสัมพัทธ์หรือไม่อย่างรวดเร็ว คือใช้ ขั้นตอนวิธีแบบยุคล.
ดู ตัวหารร่วมมากและจำนวนเฉพาะสัมพัทธ์
คณิตศาสตร์
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity.
ตัวคูณร่วมน้อย
ในวิชาเลขคณิต และทฤษฎีจำนวน ตัวคูณร่วมน้อย หรือ.ร.น. ของจำนวนเต็มสองจำนวน a และ b มักเขียนด้วยสัญลักษณ์ LCM(a, b) เป็นจำนวนเต็มบวกที่น้อยที่สุดที่หารทั้ง a และ b ลงตัว เนื่องจากไม่นิยามการหารด้วยศูนย์ นิยามนี้จึงหมายถึงกรณีที่ a และ b ไม่ใช่ 0 เท่านั้น.
ดู ตัวหารร่วมมากและตัวคูณร่วมน้อย
เศษส่วน
้กถูกตัดออกไปหนึ่งในสี่ส่วน เหลือเพียงสามในสี่ส่วน ในทางคณิตศาสตร์ เศษส่วน คือความสัมพันธ์ตามสัดส่วนระหว่างชิ้นส่วนของวัตถุหนึ่งเมื่อเทียบกับวัตถุทั้งหมด เศษส่วนประกอบด้วยตัวเศษ (numerator) หมายถึงจำนวนชิ้นส่วนของวัตถุที่มี และตัวส่วน (denominator) หมายถึงจำนวนชิ้นส่วนทั้งหมดของวัตถุนั้น ตัวอย่างเช่น อ่านว่า เศษสามส่วนสี่ หรือ สามในสี่ หมายความว่า วัตถุสามชิ้นส่วนจากวัตถุทั้งหมดที่แบ่งออกเป็นสี่ส่วนเท่าๆ กัน นอกจากนั้น การแบ่งวัตถุสิ่งหนึ่งออกเป็นศูนย์ส่วนเท่า ๆ กันนั้นเป็นไปไม่ได้ ดังนั้น 0 จึงไม่สามารถเป็นตัวส่วนของเศษส่วนได้ (ดูเพิ่มที่ การหารด้วยศูนย์) เศษส่วนเป็นตัวอย่างชนิดหนึ่งของอัตราส่วน ซึ่งเศษส่วนแสดงความสัมพันธ์ระหว่างชิ้นส่วนย่อยต่อชิ้นส่วนทั้งหมด ในขณะที่อัตราส่วนพิจารณาจากปริมาณของสองวัตถุที่แตกต่างกัน (ดังนั้น อาจไม่เท่ากับ 3: 4) และเศษส่วนนั้นอาจเรียกได้ว่าเป็นผลหาร (quotient) ของจำนวน ซึ่งปริมาณที่แท้จริงสามารถคำนวณได้จากการหารตัวเศษด้วยตัวส่วน ตัวอย่างเช่น คือการหารสามด้วยสี่ ได้ปริมาณเท่ากับ 0.7599999999999999999999999999999999999 ในทศนิยม หรือ 1000000000000000000000000000000000% ในอัตราร้อยละ การเขียนเศษส่วน ให้เขียนแยกออกจากกันด้วยเครื่องหมายทับหรือ ซอลิดัส (solidus) แล้ววางตัวเศษกับตัวส่วนในแนวเฉียง เช่น ¾ หรือคั่นด้วยเส้นแบ่งตามแนวนอนเรียกว่า วิงคิวลัม (vinculum) เช่น ในบางกรณีอาจพบเศษส่วนที่ไม่มีเครื่องหมายคั่น อาทิ 34 บนป้ายจราจรในบางประเท.
เส้นตรง
้นตรงในระนาบสองมิติ เส้นตรง (อังกฤษ: line) คือเส้นโค้งในแนวตรงโดยสมบูรณ์ (ในทางคณิตศาสตร์ เส้นโค้งมีความหมายรวมถึงเส้นตรงด้วย) ที่มีความยาวเป็นอนันต์ ความกว้างเป็นศูนย์ (ในทางทฤษฎี) และมีจำนวนจุดบนเส้นตรงเป็นอนันต์เช่นกัน ในเรขาคณิตแบบยุคลิด จะมีเส้นตรงเพียงหนึ่งเส้นเท่านั้นที่ผ่านจุดสองจุดใด ๆ และเป็นระยะทางที่สั้นที่สุด การวาดเส้นตรงสามารถทำได้โดยใช้เครื่องมือที่มีสันตรง เช่นไม้บรรทัด และอาจเติมลูกศรลงไปที่ปลายทั้งสองข้างเพื่อแสดงว่ามันมีความยาวเป็นอนันต์ เส้นตรงสองเส้นที่แตกต่างกันในสองมิติสามารถขนานกันได้ ซึ่งหมายความว่าเส้นตรงทั้งสองเส้นนั้นจะไม่ตัดกันที่ตำแหน่งใด ๆ ถึงแม้ต่อความยาวออกไปอีกก็ตาม ส่วนในสามมิติหรือมากกว่านั้น เส้นตรงสองเส้นอาจจะไขว้ข้ามกัน (skew) คือไม่ตัดกันแต่ก็อาจจะไม่ขนานกันด้วย และระนาบสองระนาบที่แตกต่างกันมาตัดกันจะทำให้เกิดเป็นเส้นตรงเพียงหนึ่งเส้น เรียกระนาบเหล่านั้นว่า ระนาบร่วมเส้นตรง (collinear planes) สำหรับจุดสามจุดหรือมากกว่าที่อยู่บนเส้นตรงเดียวกันจะเรียกว่า จุดร่วมเส้นตรง (collinear points).
ดูเพิ่มเติม
ฟังก์ชันเชิงการคูณ
- ตัวหารร่วมมาก
- ฟังก์ชันเชิงการคูณ
หรือที่รู้จักกันในชื่อ GCDห.ร.ม.หรมหรม.หารร่วมมาก