เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

จำนวนเชิงพีชคณิต

ดัชนี จำนวนเชิงพีชคณิต

ำนวนเชิงพีชคณิต (algebraic number) คือจำนวนเชิงซ้อนที่เป็นรากของพหุนามหนึ่งตัวแปร ซึ่งพหุนามไม่เป็นศูนย์ และมีสัมประสิทธิ์เป็นจำนวนตรรกยะ แทนด้วยสัญลักษณ์ \mathbb หรือ \mathbb จำนวนที่ไม่ใช่จำนวนเชิงพีชคณิตจะเรียกว่าจำนวนอดิศัย (transcendental number).

สารบัญ

  1. 13 ความสัมพันธ์: พหุนามพาย (ค่าคงตัว)วงเวียนสัมประสิทธิ์อัตราส่วนอัตราส่วนทองจำนวนอดิศัยจำนวนอตรรกยะจำนวนตรรกยะจำนวนเชิงซ้อนจำนวนเต็มไม้บรรทัดE (ค่าคงตัว)

พหุนาม

upright พหุนาม ในคณิตศาสตร์ หมายถึง นิพจน์ที่สร้างจากตัวแปรอย่างน้อยหนึ่งตัวและสัมประสิทธิ์ โดยใช้การดำเนินการแค่ การบวก การลบ การคูณ และการยกกำลังโดยที่เลขชี้กำลังเป็นจำนวนเต็มที่ไม่เป็นลบเท่านั้น ตัวอย่างของพหุนามตัวแปรเดียวที่มี เป็นตัวแปร เช่น ซึ่งเป็นฟังก์ชันกำลังสอง พหุนามสามารถนำไปใช้ในสาขาต่าง ๆ ของคณิตศาสตร์และวิทยาศาสตร์ได้อย่างกว้างขวาง ตัวอย่างเช่น สมการพหุนาม ซึ่งสามารถนำไปใช้ในการแก้ปัญหาได้อย่างกว้างขวาง จากโจทย์ปัญหาพื้นฐาน ไปจนถึงปัญหาที่ซับซ้อนทางวิทยาศาสตร์ และยังใช้ในการนิยาม ฟังก์ชันพหุนาม ซึ่งนำไปใช้ตั้งแต่พื้นฐานของเคมีและฟิสิกส์ ไปจนถึงเศรษฐศาสตร์และสังคมศาสตร์ รวมถึงการนำไปใช้ในแคลคูลัส และการวิเคราะห์เชิงตัวเลข ซึ่งคล้ายคลึงกับฟังก์ชันต่าง ๆ ในคณิตศาสตร์ขั้นสูงนั้น พหุนามยังใช้ในการสร้างวงล้อพหุนาม และความหลากหลายทางพีชคณิต และเป็นแนวคิดสำคัญในพีชคณิต และเรขาคณิตเชิงพีชคณิตอีกด้ว.

ดู จำนวนเชิงพีชคณิตและพหุนาม

พาย (ค่าคงตัว)

ัญลักษณ์ของพาย พาย หรือ ไพ (อักษรกรีก) เป็นค่าคงตัวทางคณิตศาสตร์ ที่เกิดจากความยาวเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม ค่า π มักใช้ในคณิตศาสตร์, ฟิสิกส์ และวิศวกรรม π เป็นอักษรกรีกที่ตรงกับตัว "p" ในอักษรละติน มีชื่อว่า "pi" (อ่านว่า พาย ในภาษาอังกฤษ แต่อ่านว่า พี ในภาษากรีก) บางครั้งเรียกว่า ค่าคงตัวของอาร์คิมิดีส (Archimedes' Constant) หรือจำนวนของลูดอล์ฟ (Ludolphine number หรือ Ludolph's Constant) ในเรขาคณิตแบบยุคลิด π มีนิยามว่าเป็นอัตราส่วนของเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม หรือเป็นอัตราส่วนของพื้นที่วงกลม หารด้วย รัศมียกกำลังกำลังสอง ในคณิตศาสตร์ชั้นสูงจะนิยาม π โดยใช้ฟังก์ชันตรีโกณมิติ เช่น π คือจำนวนบวก x ที่น้อยสุดที่ทำให้ sin (x).

ดู จำนวนเชิงพีชคณิตและพาย (ค่าคงตัว)

วงเวียน

วงเวียน อาจหมายถึง.

ดู จำนวนเชิงพีชคณิตและวงเวียน

สัมประสิทธิ์

ัมประสิทธิ์ ของความในทางคณิตศาสตร์หมายถึงตัวประกอบการคูณในบางพจน์ของนิพจน์ (หรือของอนุกรม) ปกติแล้วจะเป็นจำนวนจำนวนหนึ่ง ซึ่งไม่เกี่ยวข้องกับตัวแปรของนิพจน์ ตัวอย่างเช่น สามพจน์แรกมีสัมประสิทธิ์เป็น 7, −3 และ 1.5 ตามลำดับ (พจน์ที่สามไม่มีตัวแปร ดังนั้นพจน์ดังกล่าวจึงเป็นสัมประสิทธิ์โดยตัวเอง เรียกว่าพจน์คงตัวหรือสัมประสิทธิ์คงตัวของนิพจน์) ส่วนพจน์สุดท้ายไม่ปรากฏการเขียนสัมประสิทธิ์อย่างชัดเจน แต่ปกติจะพิจารณาว่ามีสัมประสิทธิ์เท่ากับ 1 เนื่องจากการคูณด้วยตัวประกอบนี้จะไม่ทำให้พจน์เปลี่ยนแปลง บ่อยครั้งที่สัมประสิทธิ์เป็นจำนวนดังเช่นตัวอย่างดังกล่าว แต่ก็สามารถเป็นพารามิเตอร์ของข้อปัญหาได้เช่นในประโยคต่อไปนี้ พารามิเตอร์ a, b และ c จะไม่ถูกพิจารณาว่าเป็นตัวแปร ดังนั้นพหุนามตัวแปรเดียว x สามารถเขียนได้เป็น สำหรับจำนวนเต็ม k บางจำนวน จะมี a_k,..., a_1, a_0 เป็นสัมประสิทธิ์ เพื่อให้นิพจน์เช่นนี้เป็นจริงในทุกกรณี เราจะต้องไม่ให้พจน์แรกมีสัมประสิทธิ์เป็น 0 สำหรับจำนวนที่มากที่สุด i โดยที่ แล้ว ai จะเรียกว่า สัมประสิทธิ์นำ ของพหุนาม เช่นจากตัวอย่างนี้ สัมประสิทธิ์นำของพหุนามคือ 4 สัมประสิทธิ์เฉพาะหลายชนิดถูกกำหนดขึ้นในเอกลักษณ์ทางคณิตศาสตร์ เช่นทฤษฎีบททวินามซึ่งเกี่ยวข้องกับสัมประสิทธิ์ทวินาม สัมประสิทธิ์เหล่านี้ถูกจัดระเบียบอยู่ในรูปสามเหลี่ยมปาสกาล.

ดู จำนวนเชิงพีชคณิตและสัมประสิทธิ์

อัตราส่วน

อัตราส่วนความยาวต่อความสูงของจอมอนิเตอร์โดยทั่วไป อัตราส่วน (อังกฤษ: ratio, IPA: เรโช) คือปริมาณอย่างหนึ่งที่แสดงถึงจำนวนหรือขนาดตามสัดส่วนเมื่อเปรียบเทียบกับอีกปริมาณหนึ่งที่เกี่ยวข้องกัน อัตราส่วนจะเป็นปริมาณที่ไม่มีหน่วย หากอัตราส่วนนั้นเกี่ยวข้องกับปริมาณที่อยู่ในมิติเดียวกัน และเมื่อปริมาณสองอย่างที่เปรียบเทียบกันเป็นคนละชนิดกัน หน่วยของอัตราส่วนจะเป็นหน่วยแรก "ต่อ" หน่วยที่สอง ตัวอย่างเช่น ความเร็วสามารถแสดงได้ในหน่วย "กิโลเมตรต่อชั่วโมง" เป็นต้น ถ้าหน่วยที่สองเป็นหน่วยวัดเวลา เราจะเรียกอัตราส่วนชนิดนี้ว่า อัตรา (rate) ทั้งเศษส่วนและอัตราร้อยละเป็นอัตราส่วนที่นำเอาไปใช้เฉพาะทาง เศษส่วนเป็นปริมาณส่วนหนึ่งที่เทียบกับปริมาณทั้งหมด ในขณะที่อัตราร้อยละจะแบ่งปริมาณทั้งหมดออกเป็น 100 ส่วน นอกจากนั้น อัตราส่วนอาจสามารถเปรียบเทียบปริมาณได้มากกว่าสองอย่างซึ่งพบได้น้อยกว่า เช่นสูตรอาหาร หรือการผสมสารเคมี เป็นต้น อัตราส่วน 2:3 (สองต่อสาม) หมายความว่าปริมาณทั้งหมดประกอบขึ้นจากวัตถุแรก 2 ส่วนและวัตถุหลังอีก 3 ส่วน ดังนั้นปริมาณวัตถุจะมีทั้งหมด 5 ส่วน หรืออธิบายให้เจาะจงกว่านี้ ถ้าในตะกร้ามีแอปเปิล 2 ผลและส้ม 3 ผล เรากล่าวว่าอัตราส่วนระหว่างแอปเปิลกับส้มคือ 2:3 ถ้าหากเพิ่มแอปเปิลอีก 2 ผลและส้มอีก 3 ผลลงในตะกร้าใบเดิม ทำให้ในตะกร้ามีแอปเปิล 4 ผลกับส้ม 6 ผล เป็นอัตราส่วน 4:6 ซึ่งก็ยังเทียบเท่ากันกับ 2:3 (แสดงให้เห็นว่าอัตราส่วนก็สามารถลดทอนได้เหมือนกับเศษส่วน) ซึ่งในกรณีนี้ หรือ 40% ของผลไม้ทั้งหมดคือแอปเปิล และ หรือ 60% ของผลไม้ทั้งหมดคือส้ม หรือกล่าวอีกนัยหนึ่งคือ อัตราส่วน 2:3 ไม่ได้มีความหมายเหมือนกับเศษส่วน ในทางวิทยาศาสตร์ อัตราส่วนของปริมาณทางกายภาพมักจะถูกทำให้เป็นจำนวนจริงจำนวนหนึ่ง เช่นอัตราส่วนของ 2\pi เมตรต่อ 1 เมตร (อัตราส่วนระหว่างเส้นรอบวงกับรัศมีของรูปวงกลม) เท่ากับจำนวนจริง 2\pi ด้วยเหตุจากนิยามของการวัดที่มีมาแต่เดิม ซึ่งเป็นการประมาณอัตราส่วนระหว่างปริมาณหนึ่งกับอีกปริมาณหนึ่งที่เป็นชนิดเดียวกัน ในทางพีชคณิต ปริมาณสองชนิดที่มีอัตราส่วนเป็นค่าคงตัว คือความสัมพันธ์เชิงเส้นชนิดพิเศษเรียกว่า สัดส่วน (proportionality) หมวดหมู่:คณิตศาสตร์มูลฐาน หมวดหมู่:พีชคณิต.

ดู จำนวนเชิงพีชคณิตและอัตราส่วน

อัตราส่วนทอง

'''สัดส่วนทองคำ (golden section)''' คือส่วนของเส้นที่ถูกแบ่งตรงตำแหน่งที่ก่อให้เกิด "อัตราส่วนทอง (golden ratio)": อัตราส่วนของความยาวรวม '''''a + b''''' ต่อความยาวส่วนที่ยาว '''''a''''' มีค่าเท่ากับความยาวส่วนที่ยาว '''''a''''' ต่อความยาวของส่วนที่สั้น '''''b'''''.

ดู จำนวนเชิงพีชคณิตและอัตราส่วนทอง

จำนวนอดิศัย

ในทางคณิตศาสตร์นั้น จำนวนอดิศัย (transcendental number) คือ จำนวนอตรรกยะที่ไม่ใช่จำนวนเชิงพีชคณิต ซึ่งหมายถึงจำนวนที่ไม่ใช่ราก (คำตอบ) ของสมการพหุนาม โดย n ≥ 1 และสัมประสิทธิ์ a_j เป็นจำนวนเต็ม (หรือจำนวนตรรกยะ ซึ่งให้ความหมายเดียวกัน เนื่องจากเราสามารถคูณสัมประสิทธิ์ทั้งหมดด้วยตัวคูณร่วมน้อย เพื่อให้สัมประสิทธิ์ทั้งหมดกลายเป็นจำนวนเต็ม) ซึ่งไม่เท่ากับศูนย์อย่างน้อยหนึ่งตัว.

ดู จำนวนเชิงพีชคณิตและจำนวนอดิศัย

จำนวนอตรรกยะ

ำนวนอตรรกยะ ในวิชาคณิตศาสตร์ คือจำนวนที่ไม่สามารถเขียนได้ในรูปเศษส่วนที่มีทั้งตัวเศษและส่วนเป็นจำนวนเต็มได้ หรือกล่าวได้ว่ามันไม่สามารถเขียนในรูป ได้ เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ เห็นได้ชัดว่าจำนวนอตรรกยะคือจำนวนที่ไม่ว่าเขียนทศนิยมในฐานใดก็ตามจะไม่รู้จบ และไม่มีรูปแบบตายตัว แต่นักคณิตศาสตร์ก็ไม่ได้ให้นิยามจำนวนอตรรกยะเช่นนั้น จำนวนจริงเกือบทั้งหมดเป็นจำนวนอตรรกยะโดยนัยที่จะอธิบายต่อไปนี้ จำนวนอตรรกยะบางจำนวนเป็นจำนวนพีชคณิต เช่น √2 รากที่สองของ 2 3√5 รากที่สามของ 5 และสัดส่วนทอง แทนด้วยอีกษรกรีก \varphi (ฟาย) หรือบางครั้ง \tau (เทา) ที่เหลือเป็นจำนวนอดิศัย เช่น π และ e เมื่ออัตราส่วนของความยาวของส่วนของเส้นตรงสองเส้นเป็นจำนวนอตรรกยะ เราเรียกส่วนของเส้นตรงทั้งสองเส้นนั้นว่าวัดไม่ได้ (incommensurable) หมายความว่า ทั้งสองเส้นไม่มีมาตรวัดเดียวกัน มาตรวัดของส่วนของเส้นตรง I ในที่นี้หมายถึงส่วนของเส้นตรง J ที่วัด I โดยวาง J แบบหัวต่อหางเป็นจำนวนเต็มจนยาวเท่ากับ I.

ดู จำนวนเชิงพีชคณิตและจำนวนอตรรกยะ

จำนวนตรรกยะ

ในทางคณิตศาสตร์ จำนวนตรรกยะ (หรือเศษส่วน) คืออัตราส่วนของจำนวนเต็มสองจำนวน มักเขียนอยู่ในรูปเศษส่วน a/b เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ จำนวนตรรกยะแต่ละจำนวนสามารถเขียนได้ในรูปแบบที่หลากหลาย ตัวอย่างเช่น 3/6.

ดู จำนวนเชิงพีชคณิตและจำนวนตรรกยะ

จำนวนเชิงซ้อน

ำนวนเชิงซ้อน (อังกฤษ: complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i^2+1.

ดู จำนวนเชิงพีชคณิตและจำนวนเชิงซ้อน

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

ดู จำนวนเชิงพีชคณิตและจำนวนเต็ม

ไม้บรรทัด

ม้บรรทัด ไม้บรรทัด (Ruler) เป็นอุปกรณ์ทางเรขาคณิต อาจทำจากพลาสติก ไม้ อะลูมิเนียม หรือ เหล็ก ใช้ในการวัดความยาว ส่วนใหญ่จะมี 2 สเกล คือ นิ้ว และ เซนติเมตร พบได้หลายขนาด ส่วนใหญ่จะเป็นขนาด 15 หรือ 30 เซนติเมตร และอาจมีความยาวถึง 100 เซนติเมตร (1 เมตร) สำหรับใช้วัดแบบก่อสร้าง นอกจากนี้แล้ว เราอาจใช้ไม้บรรทัดในการขีดเส้นให้ตรง ซึ่งเป็นสาเหตุหลักที่นักเรียนจะต้องพกไม้บรรทัด ในการสร้างรูปด้วยไม้บรรทัดและวงเวียนนั้น ไม้บรรทัดที่ใช้ไม่จำเป็นต้องมีสเกลวัดความยาวเหมือนไม้บรรทัดปกติ ดังนั้นเราจึงกล่าวถึงไม้บรรทัดที่วัดความยาวไม่ได้ว่า สันตรง (Straightedge).

ดู จำนวนเชิงพีชคณิตและไม้บรรทัด

E (ค่าคงตัว)

กราฟแสดงอนุพันธ์ของฟังก์ชัน f(x).

ดู จำนวนเชิงพีชคณิตและE (ค่าคงตัว)

หรือที่รู้จักกันในชื่อ จำนวนพีชคณิต