โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

การสูญหาย (ดาราศาสตร์)

ดัชนี การสูญหาย (ดาราศาสตร์)

การสูญหาย (Extinction) เป็นคำศัพท์ทางดาราศาสตร์ที่ใช้ในความหมายของการดูดกลืนและการกระจายรังสีคลื่นแม่เหล็กไฟฟ้าที่แผ่ออกมาจากวัตถุทางดาราศาสตร์ โดยสสารบางอย่างเช่นฝุ่นและแก๊สที่อยู่ระหว่างวัตถุที่แผ่รังสีกับผู้สังเกต บุคคลแรกที่นำเสนอหลักการของการสูญหายในสสารระหว่างดาวคือ โรเบิร์ต จูเลียส ทรัมเพลอร์ แม้ว่าจะมีการระบุถึงสภาวการณ์นี้มาก่อนแล้วตั้งแต่ปี..

8 ความสัมพันธ์: บรรยากาศของโลกมวลสารระหว่างดาวรังสีอัลตราไวโอเลตรังสีแม่เหล็กไฟฟ้ารังสีเอกซ์อินฟราเรดดาราศาสตร์โรเบิร์ต จูเลียส ทรัมเพลอร์

บรรยากาศของโลก

ลักษณะบรรยากาศของโลก บรรยากาศของโลก คือ อากาศที่ห่อหุ้มโลกอยู่โดยรอบ วันที่สืบค้น 6 พฤศจิกายน..

ใหม่!!: การสูญหาย (ดาราศาสตร์)และบรรยากาศของโลก · ดูเพิ่มเติม »

มวลสารระหว่างดาว

การกระจายตัวของประจุไฮโดรเจน ซึ่งนักดาราศาสตร์เรียกว่า เอชทู ในช่องว่างระหว่างดาราจักร ที่สังเกตการณ์จากซีกโลกด้านเหนือผ่าน Wisconsin Hα Mapper มวลสารระหว่างดาว (interstellar medium; ISM) ในทางดาราศาสตร์หมายถึงกลุ่มแก๊สและฝุ่นที่กระจายตัวอยู่ในพื้นที่ว่างระหว่างดวงดาว เป็นสสารที่ดำรงอยู่ระหว่างดาวฤกษ์ต่างๆ ในดาราจักร เติมเติมช่องว่างระหว่างดวงดาวและผสานต่อเนื่องกับช่องว่างระหว่างดาราจักรที่อยู่โดยรอบ การแผ่คลื่นแม่เหล็กไฟฟ้าเป็นพลังงานของสสารมีปริมาณเท่ากันกับสนามการแผ่รังสีระหว่างดวงดาว มวลสารระหว่างดาวประกอบด้วยองค์ประกอบอันเจือจางอย่างมากของไอออน อะตอม โมเลกุล ฝุ่นขนาดใหญ่ รังสีคอสมิก และสนามแม่เหล็กของดาราจักร โดยที่ 99% ของมวลของสสารเป็นแก๊ส และอีก 1% เป็นฝุ่น มีความหนาแน่นเฉลี่ยในดาราจักรทางช้างเผือก ระหว่างไม่กี่พันจนถึงหลักร้อยล้านหน่วยอนุภาคต่อลูกบาศก์เมตร ประมาณ 90% ของแก๊สเป็นไฮโดรเจน ส่วนอีกประมาณ 10% เป็นฮีเลียม เมื่อพิจารณาตามจำนวนของนิวเคลียส โดยมีสสารมวลหนักผสมอยู่บ้างเล็กน้อย มวลสารระหว่างดาวมีบทบาทสำคัญอย่างยิ่งสำหรับการศึกษาฟิสิกส์ดาราศาสตร์ เนื่องจากมันอยู่ในระหว่างกลางของเหล่าดวงดาวในดาราจักร ดาวฤกษ์ใหม่จะเกิดขึ้นจากย่านที่หนาแน่นที่สุดของสสารนี้กับเมฆโมเลกุล โดยได้รับสสารและพลังงานมาจากเนบิวลาดาวเคราะห์ ลมระหว่างดาว และซูเปอร์โนวา ความสัมพันธ์ระหว่างดาวฤกษ์กับมวลสารระหว่างดาวช่วยให้นักดาราศาสตร์สามารถคำนวณอัตราการสูญเสียแก๊สของดาราจักร และสามารถคาดการณ์ช่วงเวลาการก่อตัวของดาวฤกษ์กัมมันต์ได้.

ใหม่!!: การสูญหาย (ดาราศาสตร์)และมวลสารระหว่างดาว · ดูเพิ่มเติม »

รังสีอัลตราไวโอเลต

แสงออโรราจากดาวพฤหัสบดีในช่วงรังสีอัลตราไวโอเลต ถ่ายโดยองค์การนาซา รังสีอัลตราไวโอเลต หรือ รังสียูวี (ultraviolet) หรือในชื่อภาษาไทยว่า รังสีเหนือม่วง เป็นช่วงหนึ่งของคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นกว่าแสงที่มองเห็น แต่ยาวกว่ารังสีเอกซ์อย่างอ่อน มีความยาวคลื่นในช่วง 400-10 นาโนเมตร และมีพลังงานในช่วง 3-124 eV มันได้ชื่อดังกล่าวเนื่องจากสเปกตรัมของมันประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูงกว่าคลื่นที่มนุษย์มองเห็นเป็นสีม่วง.

ใหม่!!: การสูญหาย (ดาราศาสตร์)และรังสีอัลตราไวโอเลต · ดูเพิ่มเติม »

รังสีแม่เหล็กไฟฟ้า

ในวิชาฟิสิกส์ รังสีแม่เหล็กไฟฟ้า (electromagnetic radiation) หมายถึงคลื่น (หรือควอนตัมโฟตอน) ของสนามแม่เหล็กไฟฟ้าที่แผ่ผ่านปริภูมิโดยพาพลังงานจากการแผ่รังสีแม่เหล็กไฟฟ้า โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นองสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย คลื่นแม่เหล็กไฟฟ้าเกิดเมื่ออนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E.

ใหม่!!: การสูญหาย (ดาราศาสตร์)และรังสีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

ใหม่!!: การสูญหาย (ดาราศาสตร์)และรังสีเอกซ์ · ดูเพิ่มเติม »

อินฟราเรด

มนุษย์ในย่าน mid-infrared เป็นภาพที่เกิดจากรังสีความร้อนที่แผ่ออกมาจากคน รังสีอินฟราเรด (Infrared (IR)) มีชื่อเรียกอีกชื่อว่า รังสีใต้แดง หรือรังสีความร้อน เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นอยู่ระหว่างคลื่นวิทยุและแสงมีความถี่ในช่วง 1011 – 1014 เฮิร์ตซ์หรือความยาวคลื่นตั้งแต่ 1-1000 ไมโครเมตร มีความถี่ในช่วงเดียวกับไมโครเวฟ มีความยาวคลื่นอยู่ระหว่างแสงสีแดงกับคลื่นวิทยุสสารทุกชนิดที่มีอุณหภูมิอยู่ระหว่าง -200 องศาเซลเซียสถึง 4,000 องศาเซลเซียส จะปล่อยรังสีอินฟราเรดออกมา คุณสมบัติเฉพาะตัวของรังสีอินฟราเรด เช่น ไม่เบี่ยงเบนในสนามแม่เหล็กไฟฟ้า ที่แตกต่างกันก็คือ คุณสมบัติที่ขึ้นอยู่กับความถี่ คือยิ่งความถี่สูงมากขึ้น พลังงานก็สูงขึ้นด้วย  ถูกค้นพบโดยนักวิทยาศาสตร์ชาวอังกฤษ คือ Sir William Herschel ซึ่งได้ค้นพบ รังสีอินฟราเรดสเปกตรัมในปี.. 1800จากการทดลองโดยทดสอบว่าในเลนส์แต่ละสี จะเปลี่ยนค่าแสดงความร้อนของดวงอาทิตย์หรือไม่ จึงประดิษฐ์อุปกรณ์การทดลองเพื่อหาคำตอบใช้ปริซึมแยกแสง แล้วให้แสงต่างๆมาตกที่เทอร์โมมิเตอร์ก็ตั้งเทอร์โมมิเตอร์ตัวหนึ่งนอกเหนือจากแสงสีต่าง ๆ นั้น เพื่อเป็นตัวควบคุมการทดลอง ปรากฏว่า แสงสีต่าง มีอุณหภูมิสูงกว่าแสงสีขาว และอุณหภูมิสูงขึ้นจาก สีม่วง ไปหาสีแดง ปรากฏว่า เทอร์โมมิเตอร์ ตัวที่อยู่นอกเหนือจากแสงสีแดงนั้น กลับวัดได้อุณหภูมิสูงกว่าทุกตัว พบว่า ส่วนของแสงที่มองไม่เห็นแต่ร้อนกว่าสีแดงนี้ มีคุณสมบัติทางกายภาพเช่นเดียวกับคลื่นแสงที่มองเห็นได้ทุกประการ เช่น การหักเห ดูดซับ ส่องผ่านหรือไม่ผ่านตัวกลาง รังสีที่ถูกค้นพบใหม่นี้ตั้งชื่อว่า " รังสีอินฟราเรด " (ขอบเขตที่ต่ำกว่าแถบสีแดงหรือรังสีใต้แดง)  ในการใช้ประโยชน์ ใช้ในการควบคุมเครื่องใช้ระบบไกล (remote control) สร้างกล้องอินฟราเรดที่สามารถมองเห็นวัตถุในความมืดได้ เช่น อเมริกาสามารถใช้กล้องอินฟราเรดมองเห็นเวียตกงได้ตั้งแต่สมัยสงครามเวียดนาม และสัตว์หลายชนิดมีนัยน์ตารับรู้รังสีชนิดนี้ได้ ทำให้มองเห็นหรือล่าเหยื่อได้ในเวลากลางคืน เรามองไม่เห็นรังสีอินฟราเรด แต่เราก็รู้สึกถึงความร้อนได้ สัตว์บางชนิด เช่น งู มีประสาทสัมผัสรังสีอินฟราเรด มันสามารถทราบตำแหน่งของเหยื่อได้ โดยการสัมผัสรังสีอินฟราเรดซึ่งแผ่ออกมาจากร่างกายของเหยื่อ รังสีที่มีความยาวคลื่นน้อยกว่าแสงสีม่วงเรียกว่า “รังสีอุลตราไวโอเล็ต” โลกและสิ่งชีวิตแผ่รังสีอินฟราเรดออกมา เช่น คาร์บอนไดออกไซด์ และไอน้ำ ในบรรยากาศดูดซับรังสีนี้ไว้ ทำให้โลกมีความอบอุ่น เหมาะกับการดำรงชีวิต .

ใหม่!!: การสูญหาย (ดาราศาสตร์)และอินฟราเรด · ดูเพิ่มเติม »

ดาราศาสตร์

ราจักรทางช้างเผือก ดาราศาสตร์ คือวิชาวิทยาศาสตร์ที่ศึกษาวัตถุท้องฟ้า (อาทิ ดาวฤกษ์ ดาวเคราะห์ ดาวหาง และดาราจักร) รวมทั้งปรากฏการณ์ทางธรรมชาติต่าง ๆ ที่เกิดขึ้นจากนอกชั้นบรรยากาศของโลก โดยศึกษาเกี่ยวกับวิวัฒนาการ ลักษณะทางกายภาพ ทางเคมี ทางอุตุนิยมวิทยา และการเคลื่อนที่ของวัตถุท้องฟ้า ตลอดจนถึงการกำเนิดและวิวัฒนาการของเอกภพ ดาราศาสตร์เป็นหนึ่งในสาขาของวิทยาศาสตร์ที่เก่าแก่ที่สุด นักดาราศาสตร์ในวัฒนธรรมโบราณสังเกตการณ์ดวงดาวบนท้องฟ้าในเวลากลางคืน และวัตถุทางดาราศาสตร์หลายอย่างก็ได้ถูกค้นพบเรื่อยมาตามยุคสมัย อย่างไรก็ตาม กล้องโทรทรรศน์เป็นสิ่งประดิษฐ์ที่จำเป็นก่อนที่จะมีการพัฒนามาเป็นวิทยาศาสตร์สมัยใหม่ ตั้งแต่อดีตกาล ดาราศาสตร์ประกอบไปด้วยสาขาที่หลากหลายเช่น การวัดตำแหน่งดาว การเดินเรือดาราศาสตร์ ดาราศาสตร์เชิงสังเกตการณ์ การสร้างปฏิทิน และรวมทั้งโหราศาสตร์ แต่ดาราศาสตร์ทุกวันนี้ถูกจัดว่ามีความหมายเหมือนกับฟิสิกส์ดาราศาสตร์ ตั้งแต่คริสต์ศตวรรษที่ 20 เป็นต้นมา ดาราศาสตร์ได้แบ่งออกเป็นสองสาขาได้แก่ ดาราศาสตร์เชิงสังเกตการณ์ และดาราศาสตร์เชิงทฤษฎี ดาราศาสตร์เชิงสังเกตการณ์จะให้ความสำคัญไปที่การเก็บและการวิเคราะห์ข้อมูล โดยการใช้ความรู้ทางกายภาพเบื้องต้นเป็นหลัก ส่วนดาราศาสตร์เชิงทฤษฎีให้ความสำคัญไปที่การพัฒนาคอมพิวเตอร์หรือแบบจำลองเชิงวิเคราะห์ เพื่ออธิบายวัตถุท้องฟ้าและปรากฏการณ์ต่าง ๆ ทั้งสองสาขานี้เป็นองค์ประกอบซึ่งกันและกัน กล่าวคือ ดาราศาสตร์เชิงทฤษฎีใช้อธิบายผลจากการสังเกตการณ์ และดาราศาสตร์เชิงสังเกตการณ์ใช้ในการรับรองผลจากทางทฤษฎี การค้นพบสิ่งต่าง ๆ ในเรื่องของดาราศาสตร์ที่เผยแพร่โดยนักดาราศาสตร์สมัครเล่นนั้นมีความสำคัญมาก และดาราศาสตร์ก็เป็นหนึ่งในวิทยาศาสตร์จำนวนน้อยสาขาที่นักดาราศาสตร์สมัครเล่นยังคงมีบทบาท โดยเฉพาะการค้นพบหรือการสังเกตการณ์ปรากฏการณ์ที่เกิดขึ้นเพียงชั่วคราว ไม่ควรสับสนระหว่างดาราศาสตร์โบราณกับโหราศาสตร์ ซึ่งเป็นความเชื่อที่นำเอาเหตุการณ์และพฤติกรรมของมนุษย์ไปเกี่ยวโยงกับตำแหน่งของวัตถุท้องฟ้า แม้ว่าทั้งดาราศาสตร์และโหราศาสตร์เกิดมาจากจุดร่วมเดียวกัน และมีส่วนหนึ่งของวิธีการศึกษาที่เหมือนกัน เช่นการบันทึกตำแหน่งดาว (ephemeris) แต่ทั้งสองอย่างก็แตกต่างกัน ในปี ค.ศ. 2009 นี้เป็นการครบรอบ 400 ปีของการพิสูจน์แนวคิดเรื่องดวงอาทิตย์เป็นศูนย์กลางของจักรวาล ของ นิโคเลาส์ โคเปอร์นิคัส อันเป็นการพลิกคติและโค่นความเชื่อเก่าแก่เรื่องโลกเป็นศูนย์กลางของจักรวาลของอริสโตเติลที่มีมาเนิ่นนาน โดยการใช้กล้องโทรทรรศน์สังเกตการณ์ทางดาราศาสตร์ของกาลิเลโอซึ่งช่วยยืนยันแนวคิดของโคเปอร์นิคัส องค์การสหประชาชาติจึงได้ประกาศให้ปีนี้เป็นปีดาราศาสตร์สากล มีเป้าหมายเพื่อให้สาธารณชนได้มีส่วนร่วมและทำความเข้าใจกับดาราศาสตร์มากยิ่งขึ้น.

ใหม่!!: การสูญหาย (ดาราศาสตร์)และดาราศาสตร์ · ดูเพิ่มเติม »

โรเบิร์ต จูเลียส ทรัมเพลอร์

รเบิร์ต จูเลียส ทรัมเพลอร์ (Robert Julius Trumpler; 2 ตุลาคม ค.ศ. 1886 - 10 กันยายน ค.ศ. 1956) เป็นนักดาราศาสตร์ชาวอเมริกัน-สวิส เกิดที่เมืองซูริค ประเทศสวิตเซอร์แลนด์ ต่อมาได้ไปศึกษาต่อที่เยอรมันและได้รับปริญญาเอกในปี..

ใหม่!!: การสูญหาย (ดาราศาสตร์)และโรเบิร์ต จูเลียส ทรัมเพลอร์ · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »