สารบัญ
32 ความสัมพันธ์: ชีวสังเคราะห์โปรตีนพันธุศาสตร์กรดจิบเบอเรลลิกการถ่ายโอนสัญญาณการแปลรหัส (พันธุศาสตร์)รหัสพันธุกรรมรอเบิร์ต ดับเบิลยู. ฮอลลีย์สารที่ยับยั้งการสังเคราะห์โปรตีนสเตรปโตมัยซินอะมิกาซินอาร์บีกาซินอาร์จินีนอาร์เอ็นเอทาลัสซีเมียแบบบีตาทีอาร์เอ็นเอนีโอมัยซินโพลีไรโบโซมโรคไวรัสอีโบลาโรงงานนาโนโทบรามัยซินไมโครอาร์เอ็นเอไรโบโซมไลนิโซลิดไดไฮโดรสเตรปโตมัยซินเฟอร์ริตินเซลล์ (ชีววิทยา)Complementary DNACYP2A6CYP2B6CYP3A4Nuclease protection assayShine-Dalgarno sequence
ชีวสังเคราะห์โปรตีน
tRNA โปรตีนที่สังเคราะห์ใหม่ (''สีดำ'') จะถูกปรับแต่งต่อไป เช่น การเชื่อมต่อกับโมเลกุลเอฟเฟคเตอร์ (''สีส้ม'') กลายเป็นโมเลกุลที่แอกตีฟเต็มที่ต่อไป การสังเคราะห์ (Protein biosynthesis (Synthesis)) เป็นกระบวนการสร้างโปรตีนที่เกิดขึ้นใน เซลล์ กระบวนการสร้างโปรตีนมีหลายขั้นตอนเริ่มตั้งแต่ ทรานสคริปชั่นและจบที่ ทรานสเลชั่น การสังเคราะห์โปรตีนโดยทั่วไปถึงแม้จะเหมือนกันแต่ก็มีความแตกต่างกันในระหว่าง โปรแคริโอต และ ยูแคริโอต.
ดู เอ็มอาร์เอ็นเอและชีวสังเคราะห์โปรตีน
พันธุศาสตร์
ีเอ็นเอเป็นโมเลกุลพื้นฐานของการถ่ายทอดลักษณะทางพันธุกรรม ดีเอ็นเอแต่ละสายประกอบขึ้นจากสายโซ่นิวคลีโอไทด์จับคู่กันรอบกึ่งกลางกลายเป็นโครงสร้างที่ดูเหมือนบันไดซึ่งบิดเป็นเกลียว พันธุศาสตร์ (genetics) เป็นอีกสาขาหนึ่งของชีววิทยา ศึกษาเกี่ยวกับยีน การถ่ายทอดลักษณะทางพันธุกรรม และความหลากหลายทางพันธุกรรมของสิ่งมีชีวิต พันธุศาสตร์ว่าด้วยโครงสร้างเชิงโมเลกุลและหน้าที่ของยีน พฤติกรรมของยีนในบริบทของเซลล์สิ่งมีชีวิต (เช่น ความเด่นและอีพิเจเนติกส์) แบบแผนของการถ่ายทอดลักษณะจากรุ่นสู่รุ่น การกระจายของยีน ความแตกต่างทางพันธุกรรมและการเปลี่ยนแปลงของพันธุกรรมในประชากรของสิ่งมีชีวิต (เช่นการศึกษาหาความสัมพันธ์ของยีนตลอดทั่วทั้งจีโนม) เมื่อถือว่ายีนเป็นพื้นฐานของสิ่งมีชีวิตทั้งหมด พันธุศาสตร์จึงเป็นวิชาที่นำไปใช้ได้กับสิ่งมีชีวิตทุกชนิด ทั้งไวรัส แบคทีเรีย พืช สัตว์ และมนุษย์ (เวชพันธุศาสตร์) ได้มีการสังเกตมาแต่โบราณแล้วว่าสิ่งมีชีวิตมีการถ่ายทอดลักษณะจากรุ่นสู่รุ่น ซึ่งเป็นความรู้ที่มนุษย์ใช้ในการปรับปรุงพันธุ์พืชและสัตว์ด้วยวิธีการคัดเลือกพันธุ์ อย่างไรก็ดี ความรู้พันธุศาสตร์สมัยใหม่ที่ว่าด้วยการพยายามทำความเข้าใจกระบวนการการถ่ายทอดลักษณะเช่นนี้เพิ่งเริ่มต้นในคริสต์ศตวรรษที่ 19 โดยเกรเกอร์ เมนเดล แม้เขาไม่สามารถศึกษาเจาะลึกไปถึงกระบวนการทางกายภาพของการถ่ายทอดลักษณะทางพันธุกรรม แต่ก็ค้นพบว่าลักษณะที่ถ่ายทอดนั้นมีแบบแผนจำเพาะ กำหนดได้ด้วยหน่วยพันธุกรรม ซึ่งต่อมาถูกเรียกว่า ยีน ยีนคือส่วนหนึ่งของสายดีเอ็นเอซึ่งเป็นโมเลกุลที่ประกอบด้วยนิวคลีโอไทด์สี่ชนิดเชื่อมต่อกันเป็นสายยาว ลำดับนิวคลีโอไทด์สี่ชนิดนี้คือข้อมูลทางพันธุกรรมที่ถูกเก็บและมีการถ่ายทอดในสิ่งมีชีวิต ดีเอ็นเอตามธรรมชาติอยู่ในรูปเกลียวคู่ โดยนิวคลีโอไทด์บนแต่ละสายจะเป็นคู่สมซึ่งกันและกันกับนิวคลีโอไทด์บนสายดีเอ็นเออีกสายหนึ่ง แต่ละสายทำหน้าที่เป็นแม่แบบในการสร้างสายคู่ขึ้นมาได้ใหม่ นี่คือกระบวนการทางกายภาพที่ทำให้ยีนสามารถจำลองตัวเอง และถ่ายทอดไปยังรุ่นลูกได้ ลำดับของนิวคลีโอไทด์ในยีนจะถูกแปลออกมาเป็นสายของกรดอะมิโน ประกอบกันเป็นโปรตีน ซึ่งลำดับของกรดอะมิโนที่มาประกอบกันเป็นโปรตีนนั้นถ่ายทอดออกมาจากลำดับของนิวคลีโอไทด์บนดีเอ็นเอ ความสัมพันธ์ระหว่างลำดับของนิวคลีโอไทด์และลำดับของกรดอะมิโนนี้เรียกว่ารหัสพันธุกรรม กรดอะมิโนแต่ละชนิดที่ประกอบขึ้นมาเป็นโปรตีนช่วยกำหนดว่าสายโซ่ของกรดอะมิโนนั้นจะพับม้วนเกิดเป็นโครงสร้างสามมิติอย่างไร โครงสร้างสามมิตินี้กำหนดหน้าที่ของโปรตีนนั้น ๆ ซึ่งโปรตีนมีหน้าที่ในกระบวนการเกือบทั้งหมดของเซลล์สิ่งมีชีวิต การเปลี่ยนแปลงที่เกิดกับดีเอ็นเอในยีนยีนหนึ่ง อาจทำให้เกิดการเปลี่ยนแปลงลำดับกรดอะมิโนในโปรตีน เปลี่ยนโครงสร้างโปรตีน เปลี่ยนการทำหน้าที่ของโปรตีน ซึ่งอาจส่งผลต่อเซลล์และสิ่งมีชีวิตนั้น ๆ ได้อย่างมาก แม้พันธุกรรมของสิ่งมีชีวิตจะมีบทบาทมากในการกำหนดลักษณะและพฤติกรรมของสิ่งมีชีวิต แต่ผลสุดท้ายแล้วตัวตนของสิ่งมีชีวิตหนึ่ง ๆ เป็นผลที่ได้จากการผสมผสานกันระหว่างพันธุกรรมและสิ่งแวดล้อมที่สิ่งมีชีวิตนั้น ๆ ประสบ ตัวอย่างเช่น ขนาดของสิ่งมีชีวิตไม่ได้ถูกกำหนดโดยยีนเพียงอย่างเดียว แต่ได้รับผลจากอาหารและสุขภาพของสิ่งมีชีวิตนั้น ๆ ด้วย เป็นต้น.
ดู เอ็มอาร์เอ็นเอและพันธุศาสตร์
กรดจิบเบอเรลลิก
กรดจิบเบอเรลลิก (หรือ Gibberellin A3, GA, และ (GA3) เป็นฮอร์โมนพืชกลุ่มจิบเบอเรลลิน สูตรโครงสร้างคือ C19H22O6 ในรูปบริสุทธิ์เป็นผงสีขาวหรือเหลืองละลายในเอทานอลและละลายในน้ำได้เล็กน้อย กรดจิบเบอเรลลิกเป็นจิบเบอเรลลินพื้นฐานที่ส่งเสริมการเจริญเติบโตและการยืดตัวของเซลล์ มีผลต่อการสลายตัวของพืชและช่วยให้พืชเจริญเติบโตถ้าใช้ในปริมาณน้อย ๆ กรดจิบเบอเรลลิกช่วยกระตุ้นเซลล์ระหว่างการงอกของเมล็ดพันธุ์ให้สร้าง mRNA สำหรับเอนไซม์ไฮโดรไลติก กรดจิบเบอเรลลิกเป็นฮอร์โมนธรรมชาติที่มีศักยภาพมากในการควบคุมการพัฒนาของพืช การประยุกต์ใช้จิบเบอเรลลินความเข้มข้นต่ำมากจะมีผลอย่างมากในขณะที่มากเกินไปจะมีผลตรงข้ามมักที่ความเข้มข้นระหว่าง 0.01-10 mg / L จิบเบอเรลลินถูกพบครั้งแรกในประเทศญี่ปุ่นเมื่อพ.ศ.
ดู เอ็มอาร์เอ็นเอและกรดจิบเบอเรลลิก
การถ่ายโอนสัญญาณ
วิถีการถ่ายโอนสัญญาณหลัก ๆ (แบบทำให้ง่าย) ในสัตว์เลี้ยงลูกด้วยนม ในเซลล์ การถ่ายโอนสัญญาณ หรือ การแปรสัญญาณ (signal transduction) เป็นกระบวนการทางเคมีหรือทางกายภาพโดยเป็นลำดับการทำงาน/ลำดับเหตุการณ์ในระดับโมเลกุล ที่โมเลกุลส่งสัญญาณ (ปกติฮอร์โมนหรือสารสื่อประสาท) จะเริ่มการทำงาน/ก่อสภาพกัมมันต์ของหน่วยรับ ซึ่งในที่สุดมีผลให้เซลล์ตอบสนองหรือเปลี่ยนการทำงาน โปรตีนที่ตรวจจับสิ่งเร้าโดยทั่วไปจะเรียกว่า หน่วยรับ (receptor) แม้ในบางที่ก็จะใช้คำว่า sensor ด้วย ความเปลี่ยนแปลงที่เกิดจากการจับของลิแกนด์กับหน่วยรับ (คือการพบสัญญาณ) จะก่อลำดับการส่งสัญญาณ (signaling cascade) ซึ่งเป็นลำดับเหตุการณ์ทางเคมีชีวภาพตามวิถีการส่งสัญญาณ (signaling pathway) เมื่อวิถีการส่งสัญญาณมากกว่าหนึ่งมีปฏิสัมพันธ์กับกันและกัน นี่ก็จะกลายเป็นเครือข่าย เป็นการประสานการตอบสนองของเซลล์ บ่อยครั้งโดยเป็นการส่งสัญญาณแบบร่วมกัน ในระดับโมเลกุล การตอบสนองเช่นนี้รวม.
ดู เอ็มอาร์เอ็นเอและการถ่ายโอนสัญญาณ
การแปลรหัส (พันธุศาสตร์)
ทรานสเลชันของโปรตีนที่หลั่งเข้าสู่เอนโดพลาสมิก เรติคิวลัม ทรานสเลชัน (Translation) เป็นขั้นตอนแรกของการสังเคราะห์โปรตีน ซึ่งเป็นส่วนหนึ่งของการแสดงออกของยีน ทรานสเลชันเป็นการผลิตโปรตีนโดยอ่านรหัสจาก mRNA ที่ได้จากทรานสคริบชัน ทรานสเลชันเกิดในไซโตพลาสซึมซึ่งมีไรโบโซมอยู่ ไรโบโซมนั้นประกอบด้วยหน่วยย่อยขนาดใหญ่และขนาดเล็ก ซึ่งจะมาประกบกันเมื่อมี mRNA ทรานสเลชันนี้จะสร้างพอลิเพปไทด์จากการอ่านรหัสพันธุกรรมที่เป็นลำดับเบสบน mRNA รหัสพันธุกรรมจะเป็นตัวบอกลำดับของกรดอะมิโนในโปรตีน ส่วน RNA ชนิดอื่น เช่น rRNA, tRNA, snRNA ไม่เกี่ยวข้องกับการกำหนดกรดอะมิโน ทรานสเลชันมี 4 ขั้นตอนคือ การกระตุ้น การเริ่มต้น การต่อเนื่องและการสิ้นสุด กรดอะมิโนจะถูกนำมายังไรโบโซมจากนั้นจึงต่อกันเป็นโปรตีน ขั้นตอนการกระตุ้น กรดอะมิโนจะเกิดพันธะโควาเลนต์กัน tRNA ที่เป็นคู่กัน กรดอะมิโนจะใช้หมู่คาร์บอกซิลจับกับหมู่ 3' OH ของ tRNA ด้วยพันธะเอสเทอร์ ขั้นตอนการเริ่มต้น เริ่มจากหน่วยเล็กของไรโบโซมจับกับปลาย 5' ของ mRNA โดยมี initiation factors (IF) เป็นผู้ช่วย การสิ้นสุดของการสร้างสายพอลิเพปไทด์เกิดขึ้นเมื่อด้าน A ของไรโบโซมเป็นรหัสพันธุกรรมหยุด (UAA, UAG, UGA) ซึ่งจะไม่มี tRNA เข้ามา แต่ releasing factor จะเข้ามาทำให้ปล่อยสายพอลิเพปไทด์ออกไป ปลาย 5' ของ mRNA ไปเป็นปลาย N ของพอลิเพปไทด์ และขั้นตอนทรานสเลชันเริ่มจาก N->C ยาปฏิชีวนะจำนวนหนึ่งออกฤทธิ์ยับยั้งทรานสเลชัน เช่น anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin และpuromycin ไรโบโซมของโปรคาริโอตมีโครงสร้างต่างจากของยูคาริโอต ทำให้ยาปฏิชีวนะจำเพาะเฉพาะแบคทีเรียไม่ทำลายยูคาริโอตที่เป็นเจ้าบ้าน หมวดหมู่:การแสดงออกของยีน หมวดหมู่:เซลล์ หมวดหมู่:อณูชีววิทยา.
ดู เอ็มอาร์เอ็นเอและการแปลรหัส (พันธุศาสตร์)
รหัสพันธุกรรม
ลำดับของกรดอะมิโนบน mRNAแต่ละรหัสมีนิวคลีโอไทด์ 3 ตัว และกำหนดกรดอะมิโน 1 ตัว รหัสพันธุกรรม (genetic code) เป็นชุดของการเก็บข้อมูลทางพันธุกรรมในดีเอ็นเอหรืออาร์เอ็นเอ และถูกทรานสเลชันเป็นโปรตีน หรือลำดับกรดอะมิโน ในเซลล์ที่มีชีวิต รหัสแต่ละรหัสประกอบไปด้วยลำดับนิวคลีโอไทด์สามตัว ซึ่งกำหนดกรดอะมิโน 1 ตัว แม้จะมีรหัสพันธุกรรมที่เป็นสากล แต่ก็อาจจะมีความแตกต่างกันไปได้บ้าง เช่น รหัสพันธุกรรมในไมโทคอนเดรียของคน ต่างจากรหัสพันธุกรรมที่รู้จักกันทั่วไป ข้อมูลทางพันธุกรรมทั้งหมดอาจไม่จำเป็นต้องเก็บในรหัสพันธุกรรม ดีเอ็นเอของสิ่งมีชีวิตทั้งหมดมีลำดับควบคุม (regulatory sequences) ส่วนที่รวมเข้าด้วยกัน (intergenic segments) และโครงสร้างโครโมโซม ที่มีผลต่อฟีโนไทป์ แต่ไม่ได้เปลี่ยนแปลงรหัสที่กำหนดกรดอะมิโน.
ดู เอ็มอาร์เอ็นเอและรหัสพันธุกรรม
รอเบิร์ต ดับเบิลยู. ฮอลลีย์
รอเบิร์ต วิลเลียม ฮอลลีย์ (Robert William Holley; 28 มกราคม ค.ศ. 1922 – 11 กุมภาพันธ์ ค.ศ. 1993) เป็นนักชีวเคมีชาวอเมริกัน เกิดที่เมืองเออร์แบนา รัฐอิลลินอยส์ เป็นบุตรของชาลส์ ฮอลลีย์และวิโอลา ฮอลลีย์ (นามสกุลเดิม วูลฟ์) เรียนที่โรงเรียนไฮสกูลเออร์แบนา ก่อนจะเรียนต่อปริญญาตรีด้านเคมีที่มหาวิทยาลัยอิลลินอยส์ เออร์แบนา-แชมเปญจน์และเรียนปริญญาเอกด้านเคมีอินทรีย์ที่มหาวิทยาลัยคอร์เนลล์ ช่วงสงครามโลกครั้งที่สอง ฮอลลีย์ทำงานกับวินเซนต์ ดู วิกโนดที่วิทยาลัยแพทย์ของมหาวิทยาลัยคอร์เนลล์ก่อนจะเรียนจบปริญญาเอกในปี..
ดู เอ็มอาร์เอ็นเอและรอเบิร์ต ดับเบิลยู. ฮอลลีย์
สารที่ยับยั้งการสังเคราะห์โปรตีน
alt.
ดู เอ็มอาร์เอ็นเอและสารที่ยับยั้งการสังเคราะห์โปรตีน
สเตรปโตมัยซิน
ตรปโตมัยซิน (Streptomycin) เป็นยาปฏิชีวนะชนิดหนึ่งในกลุ่มอะมิโนไกลโคไซด์ ซึ่งมีข้อบ่งใช้สำหรับรักษาโรคที่เกิดจากการติดเชื้อแบคทีเรียหลายชนิด รวมถึง วัณโรค, การติดเชื้อ ''Mycobacterium avium'' complex, เยื่อบุหัวใจอักเสบ, บรูเซลโลสิส, การติดเชื้อแบคทีเรียสกุลเบอโคเดอเรีย, กาฬโรค, ไข้กระต่าย, และไข้หนูกัด กรณีวัณโรคระยะแสดงอาการนั้นมักจะใช้สเตรปโตมัยซินร่วมกับไอโซไนอะซิด, ไรแฟมพิซิน, และไพราซินาไมด์ ยานี้สามารถบริหารยาได้โดยการฉีดเข้าหลอดเลือดดำและการฉีดเข้ากล้ามเนื้อ สเตรปโตมัยซินจัดเป็นยาในกลุ่มอะมิโนไกลโคไซด์ ซึ่งออกฤทธิ์ที่หน่วยย่อย 30 เอสของไรโบโซมแบคทีเรีย ทำให้แบคทีเรียนั้นๆไม่สามารถสร้างโปรตีนที่จำเป็นต่อการดำรงชีวิตและเพิ่มจำนวนได้ ส่งผลให้แบคทีเรียเซลล์นั้นๆตายไปในที่สุด อาการไม่พึงประสงค์ที่พบได้บ่อยจากการได้รับการรักษาด้วยสเตรปโตมัยซิน ได้แก่ อาการรู้สึกหมุน, อาเจียน, อาการชาบริเวณผิว, ไข้, และมีผื่นคัน การใช้ยานี้ในหญิงตั้งครรภ์อาจทำให้ทารกหูหนวกแต่กำเนิดได้ แต่การใช้ยานี้ในหญิงที่กำลังให้นมบุตรนั้นพบว่าค่อนข้างมีความปลอดภัย ทั้งนี้ ไม่แนะนำให้ใช้สเตรปโตมัยซินในผู้ป่วยที่มีโรคกล้ามเนื้ออ่อนแรงชนิดร้าย เนื่องจากอาจทำให้อาการของโรคแย่ลงได้ สเตรปโตมัยซินถูกค้นพบใน..
ดู เอ็มอาร์เอ็นเอและสเตรปโตมัยซิน
อะมิกาซิน
อะมิกาซิน (Amikacin) เป็นยาปฏิชีวนะในกลุ่มอะมิโนไกลโคไซด์ มีข้อบ่งใช้สำหรับการรักษาโรคที่เกิดจากการติดเชื้อแบคทีเรีย ได้แก่ การติดเชื้อในข้อ, การติดเชื้อในช่องท้อง, เยื่อหุ้มสมองอักเสบ, ปอดบวม, ภาวะพิษเหตุติดเชื้อ, และการติดเชื้อในระบบทางเดินปัสสาวะ นอกจากนี้ยังมีการใช้ยานี้ในผู้ป่วยวัณโรคที่ดื้อต่อยาหลายขนานอีกด้วย ยานี้มีทั้งในรูปแบบฉีดเข้ากล้ามเนื้อและ ฉีดเข้าหลอดเลือดดำ อะมิกาซินออกฤทธิ์ยับยั้งการสังเคราะห์โปรตีนของเชื้อแบคทีเรีย โดยจะเข้าจับกับหน่วยย่อยที่ 30 เอสของไรโบโซมแบคทีเรีย ทำให้แบคทีเรียนั้นๆไม่สามารถสังเคราะห์โปรตีนที่จำเป็นต่อการดำรงชีวิตและเจริญเติบโตได้ ซึ่งจะส่งผลให้เซลล์แบคทีเรียนั้นตายไปในที่สุด ทั้งนี้ อะมิกาซินมีอาการไม่พึงประสงค์จากการใช้ยาเช่นเดียวกันกับยาอื่นในกลุ่มอะมิโนไกลโคไซด์ คือ สามารถทำให้เกิดการสูญเสียการได้ยิน, การทรงตัวผิดปกติ, และเกิดปัญหาเกี่ยวกับไตได้ ส่วนอาการข้างเคียงที่อาจเกิดขึ้นได้ แต่พบอุบัติการณ์การเกิดค่อนข้างน้อย ได้แก่ กล้ามเนื้ออ่อนแรง ซึ่งจะทำให้ผู้ป่วยมีปัญหาเกี่ยวกับระบบการหายใจตามมาได้ นอกจากนี้ การใช้ยานี้ในหญิงตั้งครรภ์อาจทำให้เด็กที่คลอดออกมามีภาวะหูหนวกแบบถาวรได้ อะมิกาซินเป็นยาที่พัฒนาขึ้นมาจากกานามัยซิน ได้รับการจดสิทธิบัตรเมื่อ..
อาร์บีกาซิน
อาร์บีกาซิน (INN; Arbekacin) เป็นยาปฏิชีวนะกึ่งสังเคราะห์ในกลุ่มอะมิโนไกลโคไซด์ ใช้ในการรักษาโรคติดเชื้อที่มีสาเหตุมาจากเชื้อแบคทีเรียที่ดื้อยาหลายขนาน (multi-resistant bacteria) รวมถึง เชื้อสแตปฟิโลคอคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลิน (Methicillin-resistant Staphylococcus aureus; MRSA) ด้วย อาร์บีกาซินถูกค้นพบครั้งแรกใน..
ดู เอ็มอาร์เอ็นเอและอาร์บีกาซิน
อาร์จินีน
อาร์จินีน (Arginine) เป็นกรดอะมิโน-α ถูกแยกออกมาครั้งแรกในปี 1886 แอล-ฟอร์ม เป็นหนึ่งใน 20 กรดอะมิโนที่พบมากที่สุดในธรรมชาติ อยู่ในระดับอณูพันธุศาสตร์ ในโครงสร้างของกรดเอ็มอาร์เอ็นเอ, CGU, CGC, CGA, CGG, AGA, และ AGG แฝดสามของฐานเบสหรือโคดอนโค้ดที่มีสำหรับอาร์จินีนในระหว่างการสังเคราะห์โปรตีน ในสัตว์เลี้ยงลูกด้วยนม, อาร์จินีน จัดเป็นกรดอะมิโนจำเป็น หรือเงื่อนไขเซไมเอสเซนเตียล ขึ้นอยู่กับขั้นตอนการพัฒนาและสถานะสุขภาพของแต่ละบุคคล โดยทั่วไปคนส่วนใหญ่ไม่จำเป็นต้องใช้ผลิตภัณฑ์เสริมอาหารอาร์จินีน เพราะร่างกายมักจะสร้างเพียงพอ.
อาร์เอ็นเอ
กรดไรโบนิวคลีอิก (ribonucleic acid) หรือ อาร์เอ็นเอ เป็นกรดนิวคลีอิก ซึ่งเป็นหนึ่งในสี่สารชีวโมเลกุลหลัก ร่วมกับลิพิด คาร์โบไฮเดรตและโปรตีน ที่สำคัญแก่สิ่งมีชีวิตทุกชนิด อาร์เอ็นเอประกอบด้วยหน่วยย่อยที่เรียกว่า นิวคลีโอไทด์ สายยาว เช่นเดียวกับดีเอ็นเอ นิวคลีโอไทด์แต่ละหน่วยประกอบด้วยนิวคลีโอเบส น้ำตาลไรโบสและหมู่ฟอสเฟต ลำดับนิวคลีโอไทด์ทำให้อาร์เอ็นเอเข้ารหัสข้อมูลพันธุกรรมได้ สิ่งมีชีวิตทุกชนิดใช้อาร์เอ็นเอนำรหัส (mRNA) นำข้อมูลพันธุกรรมที่ชี้นำการสังเคราะห์โปรตีน ยิ่งไปกว่านั้น ไวรัสหลายชนิดใช้อาร์เอ็นเอเป็นสารพันธุกรรมแทนดีเอ็นเอ โมเลกุลอาร์เอ็นเอบางอย่างมีบทบาทสำคัญในเซลล์โดยเร่งปฏิกิริยาทางชีวภาพ ควบคุมการแสดงออกของยีนหรือรับรู้และสื่อสารการตอบสนองต่อสัญญาณของเซลล์ ขบวนการหนึ่ง คือ การสังเคราะห์โปรตีน ซึ่งเป็นหน้าที่สากลซึ่งโมเลกุลอาร์เอ็นเอสื่อสารชี้นำการสร้างโปรตีนบนไรโบโซม ขบวนการนี้ใช้โมเลกุลอาร์เอ็นเอถ่ายโอน (tRNA) เพื่อขนส่งกรดอะมิโนไปยังไรโบโซม ที่ซึ่งอาร์เอ็นเอไรโบโซม (rRNA) เชื่อมกรดอะมิโนเข้าด้วยกันเพื่อสร้างโปรตีน เรียกขั้นตอนการสังเคราะห์โปรตีนจากสายอาร์เอ็นเอนี้ว่า การแปลรหัส โครงสร้างทางเคมีของอาร์เอ็นเอคล้ายคลึงกับของดีเอ็นเอเป็นอย่างมาก แต่มีข้อแตกต่างอยู่สองประการ (1) อาร์เอ็นเอมีน้ำตาลไรโบส ขณะที่ดีเอ็นเอมีน้ำตาลดีออกซีไรโบส (ขาดออกซิเจนหนึ่งอะตอม) ซึ่งแตกต่างเล็กน้อย และ (2) อาร์เอ็นเอมีนิวคลีโอเบสยูราซิล ขณะที่ดีเอ็นเอมีไทมีน โมเลกุลอาร์เอ็นเอส่วนมากเป็นสายเดี่ยว และสามารถเกิดโครงสร้างสามมิติที่ซับซ้อนมากได้ ต่างจากดีเอ็นเอ.
ดู เอ็มอาร์เอ็นเอและอาร์เอ็นเอ
ทาลัสซีเมียแบบบีตา
ทาลัสซีเมียแบบบีตา (Beta thalassemias, β thalassemias) เป็นกลุ่มโรคเลือดที่สืบทอดทางพันธุกรรม เป็นรูปแบบของทาลัสซีเมียที่มีเหตุจากการสังเคราะห์ห่วงลูกโซ่บีตาของเฮโมโกลบิน (HBB) ที่ผิดปกติ คือลดลงหรือไม่มีเลย ซึ่งอาจมีผลต่าง ๆ เริ่มต้นจากภาวะเลือดจางอย่างรุนแรง จนถึงบุคคลที่ไม่มีอาการเลย ความชุกของโรคทั่วโลกต่อปีอยู่ที่ 1 ใน 100,000 เป็นโรคที่มีเหตุจากการกลายพันธุ์ของยีน HBB บนโครโมโซมคู่ที่ 11 โดยสืบทางกรรมพันธุ์แบบผ่านลักษณะด้อยของออโตโซม (autosomal recessive) ความรุนแรงของโรคขึ้นอยู่กับลักษณะการกลายพันธุ์ แต่โดยทั่วไปแล้วความไม่สมดุลของห่วงลูกโซ่แอลฟาและบีตาจะทำให้เกิดการสลายของเม็ดเลือดแดง (hemolysis) และการสร้างเม็ดเลือดแดงที่ไม่มีประสิทธิภาพ คนที่มีกรรมพันธุ์แบบลักษณะสืบสายพันธุ์ (trait) จะไม่มีอาการ ไม่ต้องรักษา และจะมีการคาดหมายคงชีพที่อายุปกติ ผู้ที่มีโรคเต็มตัว (major) จะมีภาวะเลือดจางแบบเม็ดเลือดแดงสลาย ไม่โต และมีความผิดปกติทางกระดูกในวัยทารก เด็กที่มีโรคเต็มตัวจะต้องถ่ายเลือดตลอดชีวิต ผู้ที่มีโรคเต็มตัวมักจะเสียชีวิตเกี่ยวกับปัญหาทางหัวใจเนื่องจากภาวะเหล็กเกินโดยอายุ 30 ปี ผู้ที่มีโรคระดับปานกลาง (intermedia) มีอาการรุนแรงน้อยกว่าแต่อาจจะต้องถ่ายเลือดเป็นครั้งคราว บุคคลที่มีโรคควรจะปรึกษาแพทย์ก่อนมีบุตร/ก่อนแต่งงาน ความขัดข้องในการถอดรหัสยีน HBB มีผลเป็นการสังเคราะห์ห่วงลูกโซ่บีตาของโปรตีนโกลบินที่ลดลง ซึ่งมีผลเป็นการผลิตเฮโมโกลบินแบบ A (HbA) ที่ลดลง เมื่อเม็ดเลือดแดงมีโกลบินเอน้อยลง ก็ทำให้เกิดภาวะโลหิตจางแบบเม็ดเลือดแดงเล็ก (microcytic anemia) ดังนั้น ภาวะโลหิตจางแบบเม็ดเลือดแดงเล็กจะเป็นผลโดยที่สุดของการขาด HBB เพราะเหตุนี้ คนไข้อาจจำเป็นต้องได้การถ่ายเลือดเพื่อทดแทนการไม่ผลิตห่วงลูกโซ่บีตา แต่การถ่ายเลือดซ้ำ ๆ อาจนำไปสู่ภาวะเหล็กเกิน (iron overload) ซึ่งมีผลเป็นภาวะเหล็กเป็นพิษ (iron toxicity) และภาวะเหล็กเป็นพิษสามารถมีผลหลายอย่าง รวมทั้ง myocardial siderosis (ภาวะสะสมเหล็กในหัวใจ) และหัวใจวายซึ่งอาจทำให้ถึงชีวิต.
ดู เอ็มอาร์เอ็นเอและทาลัสซีเมียแบบบีตา
ทีอาร์เอ็นเอ
tRNA_phe ในยีสต์ ทีอาร์เอ็นเอ หรือ อาร์เอ็นเอถ่ายโอน (transfer RNA; tRNA) เป็นอาร์เอ็นเอขนาดเล็ก ประมาณ 74-95 นิวคลีโอไทด์ มีหน้าที่นำกรดอะมิโนที่จำเพาะเข้ามาต่อเป็นสายพอลิเพปไทด์ที่ไรโบโซมระหว่างการแปลรหัส กรดอะมิโนจับกับปลาย 3' การสร้างพันธะเพปไทด์อาศัยการทำงานของ aminoacyl tRNA synthetase มีบริเวณที่มีเบสสามเบสเรียกแอนติโคดอนซึ่งจะจับกับโคดอนหรือรหัสพันธุกรรมบน mRNA tRNA แต่ละชนิดจะจับกับกรดอะมิโนตัวเดียวเท่านั้น แต่รหัสพันธุกรรมอาจจะมีหลายรหัสที่กำหนดกรดอะมิโนตัวเดียวกัน.
ดู เอ็มอาร์เอ็นเอและทีอาร์เอ็นเอ
นีโอมัยซิน
นีโอมัยซิน (Neomycin) เป็นยาปฏิชีวนะกลุ่มอะมิโนไกลโคไซด์ มีจำหน่ายในท้องตลาดในหลายรูปแบบเภสัชภัณฑ์ เช่น ครีม, ขี้ผึ้ง, และยาหยอดยา นีโอมัยซินถูกค้นพบในปี..
ดู เอ็มอาร์เอ็นเอและนีโอมัยซิน
โพลีไรโบโซม
ลีไรโบโซมหรือโพลีโซม (Polyribosomes หรือ polysomes) เป็นกลุ่มของไรโบโซมที่จับกับ mRNA ค้นพบครั้งแรกโดย Jonathan Warner Paul Knopf และ Alex Rich ใน..
ดู เอ็มอาร์เอ็นเอและโพลีไรโบโซม
โรคไวรัสอีโบลา
รคไวรัสอีโบลา หรือไข้เลือดออกอีโบลา เป็นโรคของมนุษย์ที่เกิดจากไวรัสอีโบลา ตรงแบบเริ่มมีอาการสองวันถึงสามสัปดาห์หลังสัมผัสไวรัส โดยมีไข้ เจ็บคอ ปวดกล้ามเนื้อและปวดศีรษะ จากนั้นมีอาการคลื่นไส้ อาเจียนและท้องร่วงร่วมกับการทำหน้าที่ของตับและไตลดลงตามมา เมื่อถึงจุดนี้ บางคนเริ่มมีปัญหาเลือดออก บุคคลรับโรคนี้ครั้งแรกเมื่อสัมผัสกับเลือดหรือสารน้ำในร่างกายจากสัตว์ที่ติดเชื้อ เช่น ลิงหรือค้างคาวผลไม้ เชื่อว่าค้างคาวผลไม้เป็นตัวพาและแพร่โรคโดยไม่ได้รับผลกระทบจากไวรัส เมื่อติดเชื้อแล้ว โรคอาจแพร่จากคนสู่คนได้ ผู้ที่รอดชีวิตอาจสามารถส่งผ่านโรคทางน้ำอสุจิได้เป็นเวลาเกือบสองเดือน ในการวินิจฉัย ต้องแยกโรคอื่นที่มีอาการคล้ายกันออกก่อน เช่น มาลาเรีย อหิวาตกโรคและไข้เลือดออกจากไวรัสอื่น ๆ อาจทดสอบเลือดหาแอนติบอดีต่อไวรัส ดีเอ็นเอของไวรัส หรือตัวไวรัสเองเพื่อยืนยันการวินิจฉัย การป้องกันรวมถึงการลดการระบาดของโรคจากลิงและหมูที่ติดเชื้อสู่คน ซึ่งอาจทำได้โดยการตรวจสอบหาการติดเชื้อในสัตว์เหล่านี้ และฆ่าและจัดการกับซากอย่างเหมาะสมหากพบโรค การปรุงเนื้อสัตว์และสวมเสื้อผ้าป้องกันอย่างเหมาะสมเมื่อจัดการกับเนื้อสัตว์อาจช่วยได้ เช่นเดียวกับสวมเสื้อผ้าป้องกันและล้างมือเมื่ออยู่ใกล้ผู้ที่ป่วยเป็นโรคดังกล่าว ตัวอย่างสารน้ำร่างกายจากผู้ป่วยควรจัดการด้วยความระมัดระวังเป็นพิเศษ ไม่มีการรักษาไวรัสอย่างจำเพาะ ความพยายามช่วยเหลือผู้ป่วยมีการบำบัดคืนน้ำ (rehydration therapy) ทางปากหรือหลอดเลือดดำ โรคนี้มีอัตราตายสูงระหว่าง 50% ถึง 90% ของผู้ติดเชื้อไวรัส มีการระบุโรคนี้ครั้งแรกในประเทศซูดานและสาธารณรัฐประชาธิปไตยคองโก ตรงแบบเกิดในการระบาดในเขตร้อนแอฟริกาใต้สะฮารา ระหว่างปี 2519 ซึ่งมีการระบุโรคครั้งแรก และปี 2555 มีผู้ติดเชื้อน้อยกว่า 1,000 คนต่อปี การระบาดครั้งใหญ่ที่สุดจนถึงปัจจุบัน คือ การระบาดของอีโบลาในแอฟริกาตะวันตก พ.ศ.
ดู เอ็มอาร์เอ็นเอและโรคไวรัสอีโบลา
โรงงานนาโน
รงงานนาโน เป็น อุปกรณ์ ในความคิดของเอริค เดรซเลิอร์ (Eric Drexler) ที่จะสามารกำหนดทิศทางของปฏิกิริยาเคมี โดยการจัดตำแหน่งอย่างแม่นยำของโมเลกุลที่อยู่ในปฏิกิริยานั้น โมเลกุลชีววิทยาบางชนิด เช่น ไรโบโซม มีคุณสมบัติที่ตรงกับโรงงานนาโน โดยพฤติกรรมของไรโบโซมเป็นดังนี้ ไรโบโซมรับคำสั่่งจาก เอ็มอาร์เอ็นเอ และทำการประกอบลำดับของกรดอะมิโนเพื่อสร้างโมเลกุลของโปรตีนตามคำสั่งนั้น ตั้งแต่ปี..
ดู เอ็มอาร์เอ็นเอและโรงงานนาโน
โทบรามัยซิน
ทบรามัยซิน (Tobramycin) เป็นยาปฏิชีวนะในกลุ่มอะมิโนไกลโคไซด์ ซึ่งแยกได้จากเชื้อแบคทีเรีย Streptomyces tenebrarius และถูกนำมาใช้ในการรักษาโรคที่เกิดจากการติดเชื้อแบคทีเรียหลายชนิด โดยเฉพาะอย่าง การติดเชื้อแบคทีเรียแกรมลบ ทั้งนี้ โทบรามัยซินสามารถออกฤทธิ์ครอบคลุมเชื้อแบคทีเรียสกุลซูโดโมแนสได้.
ดู เอ็มอาร์เอ็นเอและโทบรามัยซิน
ไมโครอาร์เอ็นเอ
รงสร้างแบบแตกกิ่งและเป็นห่วงของชิ้นส่วนเริ่มต้นของ microRNA จาก ''Brassica oleracea'' ไมโครอาร์เอ็นเอ (microRNA ย่อว่า miRNA) เป็นอาร์เอ็นเอโมเลกุลขนาดเล็ก ไม่เกิน 20 – 22 นิวคลีโอไทด์ สร้างมาจากอาร์เอ็นเอขนาดใหญ่ประมาณ 90 – 100 นิวคลีโอไทด์ ที่ถูกตัดให้มีขนาดเล็กลง ทำหน้าที่ในการควบคุมการแสดงออกของยีนโดยเข้าไปจับกับ mRNA ที่ตำแหน่งที่เป็นคู่สมกัน ซึ่งทำให้กระบวนการอ่านรหัสและถอดรหัสจาก mRNA นั้นๆถูกยับยั้ง.
ดู เอ็มอาร์เอ็นเอและไมโครอาร์เอ็นเอ
ไรโบโซม
หน่วยย่อยของไรโบโซมชิ้นเล็ก 30s หน่วยย่อยของไรโบโซมชิ้นใหญ่50s ไรโบโซม (Ribosome มาจาก ribonucleic acid และคำใน"ภาษากรีก: soma (หมายถึงร่างกาย)") เป็นออร์แกแนลล์ที่ไม่มีเยื่อหุ้มเซลล์ มีขนาดเล็กที่สุดและมีมากสุดประกอบด้วยโปรตีน และ rRNA มีเส้นผ่านศูนย์กลางขนาด 20 nm (200 อังสตรอม) และประกอบด้วย ribosomal RNA 65% และ ไรโบโซมอล โปรตีน35% (หรือ ไรโบนิวคลีโอโปรตีน หรือ RNP)เป็นสารเชิงซ้อนของ RNA และ โปรตีน ที่พบใน เซลล์ทุกชนิด ไรโบโซมจาก แบคทีเรีย, อาร์เคีย และ ยูคาริโอตมีโครงสร้างและ RNA ที่แตกต่างกัน ไรโบโซมในไมโตคอนเดรียของเซลล์ยูคาริโอตมีลักษณะคล้ายกับไรโบโซมของแบคทีเรีย ซึ่งเป็นการบอกถึงวิวัฒนาการของออร์แกแนลล์ชนิดนี้ ในแบคทีเรียมี 2 หน่วยย่อย คือ ขนาด 30S และ 50S ซึ่งจะรวมกันเป็นไรโบโซมขนาด 70S ส่วนในยูคาริโอต มี 2 หน่วยย่อย คือ ขนาด 40S และ 60S ซึ่งจะรวมกันเป็นไรโบโซมขนาด 80S หน้าที่คือเป็นแหล่งที่เกิดการอ่านรหัสจากยีนในนิวเคลียส ซึ่งถูกส่งออกจากนิวเคลียสในรูป mRNA มาสร้างเป็นโปรตีน การทำงานของไรโบโซมในการแสดงออกของยีนไปสู่การสร้างโปรตีนเรียกทรานสเลชัน ไรโบโซมยังทำหน้าที่ในการต่อกรดอะมิโนเดี่ยวให้เป็นพอลิเพปไทด์ โดยต้องมีการจับกับ mRNA และอ่านข้อมูลจาก mRNA เพื่อกำหนดลำดับของกรดอะมิโนให้ถูกต้อง การนำโมเลกุลของกรดอะมิโนเข้ามาเป็นการทำงานของ tRNA ซึ่งจับอยู่กับโมเลกุลของกรดอะมิโนอยู่ก่อนแล้ว.
ไลนิโซลิด
ลนิโซลิด (Linezolid) เป็นยาปฏิชีวนะชนิดหนึ่งที่ใช้ในการรักษาโรคติดเชื้อที่มีสาเหตุมาจากเชื้อแบคทีเรียกรัมบวกที่ดื้อต่อยาปฏิชีวนะชนิดอื่น ไลนิโซลิดสามารถออกฤทธิ์ฆ่าเชื้อแบคทีเรียกรัมบวกได้เกือบทุกสายพันธ์ุ รวมถึงเชื้อแบคทีเรียในสกุลสเตรปโตคอกคัส (Streptococcus), สกุลเอนเทอโรคอคคัสที่ดื้อต่อยาแวนโคมัยซิน (Vancomycin-resistant Enterococcus; VRE), และเชื้อสแตปฟิโลคอคคัส ออเรียสที่ดื้อต่อยาเมทิซิลลิน (Methicillin-resistant Staphylococcus aureus; MRSA) ส่วนมากแล้วมักใช้ยานี้ในการรักษาโรคติดเชื้อดังข้างต้นบริเวณผิวหนังและในปอด อย่างไรก็ตาม ยานี้อาจถูกใช้ในโรคติดเชื้อแบคทีเรียอื่นได้เช่นกัน เช่น วัณโรคที่ดื้อต่อยารักษาวัณโรคสูตรปกติ โดยยานี้สามารถบริหารยาได้ทั้งการฉีดเข้าหลอดเลือดดำ (intravenous) และการรับประทาน การใช้ยาไลนิโซลิดในระยะเวลาสั้นนั้นมีความปลอดภัยค่อนข้างสูง ทั้งในกลุ่มผู้ป่วยปกติ และผู้ป่วยที่มีภาวะไตวายเรื้อรัง หรือโรคตับอักเสบ อาการไม่พึงประสงค์ทั่วไปที่อาจเกิดขึ้นกับผู้ป่วยที่ได้รับยานี้ในช่วงสั้น ได้แก่ ปวดศีรษะ, ท้องเสีย, ผื่น, และอาเจียน ส่วนอาการไม่พึงประสงค์ที่รุนแรงที่อาจเกิดขึ้นได้ในผู้ป่วยบางราย ได้แก่ กลุ่มอาการเซโรโทนิน (Serotonin syndrome), การกดไขกระดูก (Bone marrow suppression) และภาวะเลือดเป็นกรดแล็กติก (lactic acidosis) โดยความเสี่ยงต่อการเกิดอาการไม่พึงประสงค์ที่รุนแรงจะเพิ่มมากขึ้นอย่างมีนัยยะเมื่อใช้ยาไลนิโซลิดต่อเนื่องกันเป็นระยะเวลานานมากกว่า 2 สัปดาห์ ในบางครั้งการใช้ยานี้ต่อเนื่องเป็นระยะเวลานานอาจทำให้เกิดการทำลายเส้นประสาทส่วนปลายจนไม่สามารถฟื้นฟูกลับคืนสภาพเดิมได้ ซึ่งรวมถึงการทำลายเส้นประสาทที่ควบคุมการทำงานของการมองเห็นด้วย ไลนิโซลิดเป็นยาปฏิชีวนะอีกชนิดหนึ่งในยากลุ่มออกซาโซลิโดน (Oxazolidone) เนื่องจากยาดังกล่าวมีคุณสมบัติในการยับยั้งการสังเคราะห์โปรตีนของแบคทีเรีย ทำให้ยาดังกล่าวสามารถยับยั้งการเจริญเติบโตและฆ่าเชื้อแบคทีเรียได้ อย่างไรก็ตาม ถึงแม้ว่าในปัจจุบันจะมีนาปฏิชีวนะหลายชนิดที่ออกฤทธิ์ยับยั้งการสร้างโปรตีนของเชื้อแบคทีเรียได้เหมือนกับไลนิโซลิด แต่โดยแท้จริงแล้ว ไลนิโซลิดนั้นมีกลไกการออกฤทธิ์ที่แตกต่างไปจากยาปฏิชีวนะชนิดอื่น กล่าวคือ ยาดังกล่าวจะไปออกฤทธิ์ยับยั้งขั้นตอนแรกในการสร้างโปรตีน ในขณะที่ยาปฏิชีวนะอื่นนั้นจะออกฤทธิ์ในขั้นตอนที่เป็นลำดับถัดมา ด้วยกลไกการออกฤทธิ์ที่แตกต่างจากยาปฏิชีวนะชนิดอื่นนี้ ทำให้อุบัติการณ์การดื้อต่อยาไลนิโซลิดของเชื้อแบคทีเรียในปัจจุบันยังอยู่ในระดับที่ค่อนข้างต่ำ (ข้อมูล ปี ค.ศ.
ไดไฮโดรสเตรปโตมัยซิน
รสเตรปโตมัยซิน (Dihydrostreptomycin) เป็นอนุพันธ์ของสเตรปโตมัยซิน ที่มีคุณสมบัติในการฆ่าเชื้อแบคทีเรีย โดยไดไฮโดรสเตรปโตมัยซินถูกจัดเป็นยาปฏิชีวนะกลุ่มอะมิโนไกลโคไซด์กึ่งสังเคราะห์ และถูกนำมาใช้ในการรักษาวัณโรค ส่วนกลไกการออกฤทธิ์ของไดไฮโดรสเตรปโตมัยซินนั้น หลังจากถูกลำเลียงผ่านเยื่อหุ้มเซลล์เข้าไปภายในเซลล์แบคทีเรีย ไดไฮโดรสเตรปโตมัยซินจะเข้าจับกับโปรตีน S12 บนหน่วยย่อย 30 เอสของไรโบมโซมแบคทีเรียแบบไม่ผันกลับ ซึ่งจะส่งผลรบกวนการเข้าจับกันเป็นสารเซิงซ้อนแรกเริ่ม (initial complex) ของเอ็มอาร์เอ็นเอและไรโบโซมของแบคทีเรีย ทำให้โปรตีนที่สังเคราะห์ได้จากกระบวนการดังกล่าวไม่สามารถทำงานได้ ส่งผลให้เซลล์แบคทีเรียตายในที่สุด ทั้งนี้ พบว่าการใช้ไดไฮโดรสเตรปโตมัยซินนั้นเป็นสาเหตุทำให้เกิดความเป็นพิษต่อระบบการได้ยิน (ototoxicity) ได้ ทำให้ในปัจจุบันไม่มีการใช้ยานี้ในมนุษย์แล้ว.
ดู เอ็มอาร์เอ็นเอและไดไฮโดรสเตรปโตมัยซิน
เฟอร์ริติน
ฟอร์ริติน (Ferritin) เป็นโปรตีนในเซลล์ทั่วไปที่สะสมธาตุเหล็กและปล่อยมันอย่างเป็นระบบ โปรตีนนี้มีในสิ่งมีชีวิตเกือบทั้งหมด รวมทั้งสาหร่าย แบคทีเรีย พืชชั้นสูง และสัตว์ ในมนุษย์ มันมีหน้าที่เป็นสารบัฟเฟอร์เพื่อไม่ให้ขาดเหล็กหรือมีเหล็กเกิน และพบในเนื้อเยื่อโดยมากในรูปแบบของโปรตีนในไซโตซอล (ในไซโทพลาซึมของเซลล์) แต่ก็มีส่วนหนึ่งที่อยู่ในเลือดโดยทำหน้าที่เป็นตัวขนส่งธาตุเหล็ก ระดับเฟอร์ริตินในเลือดยังเป็นตัวชี้ทางชีวภาพ (biomarker) ของปริมาณธาตุเหล็กที่สะสมในร่างกาย และดังนั้น จึงสามารถตรวจสอบเพื่อวินิจฉัยภาวะเลือดจางเหตุขาดธาตุเหล็ก (iron-deficiency anemia) เฟอร์ริตินเป็นคอมเพล็กซ์โปรตีนรูปทรงกลมที่มีหน่วยย่อย 24 หน่วยและเป็น "โปรตีนเก็บธาตุเหล็กในเซลล์" หลักทั้งในโพรแคริโอตและยูแคริโอต โดยเก็บเหล็กในรูปแบบที่ละลายน้ำได้และไม่มีพิษ ส่วนเฟอร์ริตินที่ไม่รวมเข้ากับธาตุเหล็กก็จะเรียกว่า apoferritin.
ดู เอ็มอาร์เอ็นเอและเฟอร์ริติน
เซลล์ (ชีววิทยา)
ทฤษฎีเซลล์ถูกพัฒนาขึ้นครั้งแรกในปี พ.ศ. 2382 (ค.ศ. 1839) โดยแมตเทียส จาคอบ ชไลเดน (Matthias Jakob Schleiden) และ ทีโอดอร์ ชวานน์ (Theodor Schwann) ได้อธิบายว่า สิ่งมีชีวิตทั้งหมดประกอบด้วยเซลล์หนึ่งเซลล์หรือมากกว่า เซลล์ทั้งหมดมีกำเนิดมาจากเซลล์ที่มีมาก่อน (preexisting cells) ระบบการทำงานเพื่อความอยู่รอดของสิ่งที่มีชีวิตทั้งหมดเกิดขึ้นภายในเซลล์ และภายในเซลล์ยังประกอบด้วยข้อมูลทางพันธุกรรม (hereditary information) ซึ่งจำเป็นสำหรับการควบคุมการทำงานของเซลล์ และการส่งต่อข้อมูลทางพันธุกรรมไปยังเซลล์รุ่นต่อไป คำว่าเซลล์ มาจากภาษาละตินที่ว่า cella ซึ่งมีความหมายว่า ห้องเล็กๆ ผู้ตั้งชื่อนี้คือโรเบิร์ต ฮุก (Robert Hooke) เมื่อเขาเปรียบเทียบเซลล์ของไม้คอร์กเหมือนกับห้องเล็ก.
ดู เอ็มอาร์เอ็นเอและเซลล์ (ชีววิทยา)
Complementary DNA
microarray ในพันธุศาสตร์ complementary DNA หรือ cDNA คือ ดีเอ็นเอที่ถูกสังเคราะห์ขึ้นโดยใช้เอ็มอาร์เอ็นเอ (mRNA) เป็นต้นแบบโดยอาศัยเอนไซม์ reverse transcriptase และ DNA polymerase cDNA มักใช้สำหรับ clone ยีนของยูคาริโอตเข้าไปในโปรคาริโอต เมื่อนักวิทยาศาสตร์ต้องการให้มีการแสดงออกของโปรตีนที่ปกติจะไม่มีการแสดงในเซลล์นั้น พวกเขาสามารถนำ cDNA เข้าไปยังเซลล์ตัวรับ (recipient cell) ซึ่งจะทำให้เซลล์สามารถให้ (code) โปรตีนชนิดนั้นได้ นอกจากนี้ cDNA ยังสามารถสร้างขึ้นโดย retrovirus เช่น HIV-1, HIV-2, Simian Immunodeficiency Virus ซึ่งสามารถเข้าไปแทรกตัว (integrate) เข้าไปยัง host เพื่อสร้าง provirus อีกด้ว.
ดู เอ็มอาร์เอ็นเอและComplementary DNA
CYP2A6
รงสร้างผลึกของไมโครโซมอล P450 2A6 ของมนุษย์ที่จับอยู่กับสารยับยั้งชนิด (5-(Pyridin-3-yl)furan-2-yl)methanamine (รหัสทะเบียนโปรตีน: '''2fdw''') ไซโทโครม P450 2A6 (Cytochrome P450 2A6; ชื่อย่อ: CYP2A6) เป็นโปรตีนในมหาสกุลไซโทโครม P450 ซึ่งเป็นระบบเอนไซม์ออกซิเดซอเนกประสงค์ของร่างกายมนุษย์ โดยการแสดงออกของ CYP2A6 นั้นจะถูกควบคุมโดยยีน CYP2A6 บน โครโมโซมคู่ที่ 19 โลคัส 19q13.2 และถือเป็นยีนอีกชนิดหนึ่งในกลุ่มยีน cytochrome P450 โดย CYP2A6 ของมนุษย์จะมีหน้าที่ในกระตุ้นการเกิดเมแทบอลิซึมของสารซีโนไบโอติคในร่างกาย นอกจากนี้ CYP2A6 ยังถือเป็นเอนไซม์หลักที่จะมีการแสดงออกเพื่อให้เกิดปฏิกิริยาออกซิเดชันของนิโคตินและโคตินีน เมื่อมีสารทั้งสองเข้ามาในระบบ นอกเหนือจากนั้นจะเป็นการเมแทบอไลซ์ยาชนิดต่างๆ สารก่อมะเร็ง อัลคาลอยด์จำพวกคูมารีน โดย CYP2A6 เป็นเอนไซม์เพียงชนิดเดียวในร่างกายมนุษย์ที่มีความสามารถในการกระตุ้นการเกิดปฏิกิริยา 7-hydroxylation เพื่อเมแทบอไลซ์คูมาริน โดยสารที่เกิดจากปฏิกิริยาการเมแทบอไลซ์นี้คือ 7-hydroxycoumarin ซึ่งใช้เป็นตัวชี้วัดการทำงานของ CYP2A6 ทั้งนี้ CYP2A6 เดิมชื่อ CYP2A3 ถือเป็นสมาชิกของกลุ่มเอนไซม์ขนาดใหญ่ของไซโทโครม P450 ที่มียีนควบคุมอยู่บนโครโมโซม 19q เช่นเดียวกันเอนไซม์อื่นในสกุลย่อย CYP2A, CYP2B และ CYP2F แต่ในภายหลังมีการพิจารณาเปลี่ยนชื่อเอนไซม์นี้จาก CYP2A3 เป็น CYP2A6 เนื่องจากชื่อเดิมซ้ำซ้อนกับ CYP2A3 ที่พบในหนู แต่มีโครงสร้างและหน้าที่แตกต่างกัน.
CYP2B6
ซโทโครม P450 2B6 (Cytochrome P450 2B6; ชื่อย่อ: CYP2B6) เป็นเอนไซม์ชนิดหนึ่งในกลุ่มออกซิไดซิงเอนไซม์ตระกูลไซโตโครม P450 ที่มีความสำคัญยิ่งต่อร่างกายมนุษย์ โดยโปรตีน CYP3A5 ในมนุษย์จะถูกเข้ารหัสโดยยีน CYP2B6 ซึ่งยีนนี้เป็นส่วนหนึ่งของกลุ่มยีน cytochrome P450 บนแขนด้านยาวของโครโมโซมคู่ที่ 19 โลคัส 19q13.2 โดย CYP2B6 จะทำงานร่วมกับ CYP2A6 ในการเมแทบอไลซ์นิโคติน รวมไปถึงยาหรือสารเคมีอื่นๆ CYP2B6 มีอยู่ด้วยกันหลายไอโซฟอร์ม แต่ก็ยังไม่อาจทราบได้แน่ชัดว่าไอโซฟอร์มเหล่านั้นถูกสร้างมาจากยีน CYP2B6 หรือยีนเทียมของ CYP2B6 โดยทั้ง CYP2B6 และยีนเทียมของมันมีตำแหน่งอยู่ระหว่างกลางของยีนเทียม CYP2A ซึ่งทั้งหมดนี้ถือเป็นส่วนหนึ่งของกลุ่มยีนขนาดใหญ่ของ cytochrome P450 บนโครโมโซม 9q ซึ่งทำหน้าที่ผลิตเอนไซม์สกุลย่อย CYP2A, CYP2B และ CYP2F.
CYP3A4
ซโทโครม P450 3A4 (Cytochrome P450 3A4; ชื่อย่อ: CYP3A4) เป็นเอนไซม์ชนิดหนึ่งที่มีความสำคัญยิ่งต่อร่างกายมนุษย์ ส่วนใหญ่พบได้ที่ตับและลำไส้ โดยเอนไซม์นี้จะทำหน้าที่ออกซิไดซ์โมเลกุลอินทรีย์แปลกปลอมขนาดเล็ก (ซีโนไบโอติค) เช่น สารพิษ หรือยา เพื่อให้ร่างกายสามารถกำจัดสารแปลกปลอมเหล่านี้ออกไปได้ ยารักษาโรคส่วนใหญ่มักถูกทำให้หมดฤทธิ์ได้โดยเอนไซม์ CYP3A4 แต่ในทางตรงกันข้าม กลับมียาบางชนิดที่ถูกทำให้มีฤทธิ์ในการรักษาได้ด้วยเอนไซม์นี้ อย่างไรก็ตาม สารบางอย่าง เช่น น้ำเกรปฟรูต และยาบางชนิดอาจมีฤทธิ์รบกวนการทำงานของเอนไซม์ CYP3A4 ได้ โดยผลที่เกิดขึ้นจากอันตรกิริยาระหว่างสารเหล่านี้กับเอนไซม์ CYP3A4 อาจเพิ่มหรือลดประสิทธิภาพการรักษาของยาที่จำเป็นต้องมีการเปลี่ยนแปลงโครงสร้างด้วยเอนไซม์ CYP3A4 ได้ CYP3A4 เป็นเอนไซม์ในกลุ่มออกซิไดซิงเอนไซม์ตระกูลไซโตโครม P450 ซึ่งเอนไซม์สมาชิกอื่นในกลุ่มเอนไซม์นี้ล้วนมีส่วนสำคัญยิ่งในกระบวนการเปลี่ยนแปลงยาหลายชนิดที่แตกต่างกันออกไป แต่ CYP3A4 เป็นเอนไซม์มีส่วนเกี่ยวเนื่องกับการเปลี่ยนแปลงยาได้หลากหลายชนิดมากที่สุด CYP3A4 เป็นเอนไซม์ที่เป็นสารฮีโมโปรตีนเช่นเดียวกันกับเอนไซม์อื่นในตระกูลนี้ กล่าวคือ เป็นโปรตีนที่มีกลุ่มของฮีมซึ่งมีอะตอมของธาตุเหล็กเป็นส่วนประกอบ ในมนุษย์ โปรตีน CYP3A4 จะถูกเข้ารหัสโดยยีน CYP3A4 ซึ่งยีนนี้เป็นส่วนหนึ่งของกลุ่มยีน cytochrome P450 บน โครโมโซมคู่ที่ 7 โลคัส 7q21.1.
Nuclease protection assay
Nuclease protection assay เป็นเทคนิคทางห้องปฏิบัติการทางชีวเคมีและพันธุศาสตร์สำหรับบ่งชี้อาร์เอ็นเอที่จำเพาะในอาร์เอ็นเอที่สกัดออกมาจากเซลล์ เทคนิคนี้สามารถบ่งชี้อาร์เอ็นเอที่รู้ลำดับเบสถึงแม้จะมีระดับความเข้มข้นที่ต่ำ โดยอาร์เอ็นเอจะถูกรวมกับ antisense RNA probes หรือ DNA probes ที่สามารถจับ (complementary) กับลำดับเบสที่ต้องการซึ่งจะอยู่ในรูปของอาร์เอ็นเอสายคู่ (double-stranded RNA) หรือ การจับกันของดีเอ็นเอ-อาร์เอ็นเอ (DNA-RNA hybrid) หลังจากนั้น จะนำไปใส่ ribonuclease ซึ่งเป็นเอนไซม์ที่จะตัดอาร์เอ็นเอสายเดี่ยว (single-stranded RNA) เท่านั้น เมื่อปฏิกิริยาสมบูรณ์อาร์เอ็นเอสายเดี่ยวจะถูกตัดเป็น oligomer สายสั้น ๆ แต่อาร์เอ็นเอสายคู่ซึ่งมีลำดับเบสที่เราสนใจจะไม่ถูกตัดไป.
ดู เอ็มอาร์เอ็นเอและNuclease protection assay
Shine-Dalgarno sequence
Shine-Delgarno sequence หรือ Shine-Dalgerno box เสนอโดยนักวิทยาศาสตร์ชาวออสเตรเลีย John Shine และLynn Dalgerno เป็นตำแหน่งที่ไรโบโซมจับกับ mRNA โดยทั่วไปอยู่ที่ตำแหน่ง 16 นิวคลีโอไทด์ ก่อนรหัสพันธุกรรมเริ่มต้น AUG Shine-Dalgarno sequence พบเฉพาะในโปรคาริโอต ลำดับซ้ำๆกัน 6 นิวคลีโอไทด์ AGGAGG ใน E.
ดู เอ็มอาร์เอ็นเอและShine-Dalgarno sequence
หรือที่รู้จักกันในชื่อ MRNAMessenger RNAอาร์เอ็นเอนำรหัสเมสเซนเจอร์ อาร์เอ็นเอเมสเซนเจอร์อาร์เอ็นเอ