โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

เมทริกซ์

ดัชนี เมทริกซ์

มทริกซ์ เป็นคำทับศัพท์ภาษาอังกฤษ matrix บ้างก็อ่านว่า แมทริกซ์ สามารถหมายถึง.

55 ความสัมพันธ์: ฟังก์ชันเลขชี้กำลังพีชคณิตเชิงเส้นกฎลูกโซ่กราฟ (แบบชนิดข้อมูลนามธรรม)กราฟระบุทิศทางกรุป (คณิตศาสตร์)การบวกการบวกเมทริกซ์การกรองตัวเลขในขอบเขตแบบธรรมดาการยกกำลังการดำเนินการทวิภาคการคูณการแยกตัวประกอบการแยกแบบโซเลสกี้การแจกแจงปรกติหลายตัวแปรการแปลงเฮาส์โฮลเดอร์ภาพดิจิทัลรายชื่อโครงสร้างข้อมูลริง (คณิตศาสตร์)วัฏจักรกรดซิตริกสมบัติการสลับที่สมบัติการแจกแจงสมบัติการเปลี่ยนหมู่สมาชิกเอกลักษณ์สัมประสิทธิ์สังยุค (จำนวนเชิงซ้อน)อสมการของอาดามาร์อุทยานโอลิมปิกลอนดอนผลรวมผลคูณผลคูณว่างผลคูณไขว้ผิวกำลังสองขั้นตอนวิธีฮังกาเรียนขั้นตอนวิธีของเฟรย์วัลส์ขั้นตอนวิธีของเฮิร์ชเบิร์กขั้นตอนวิธีซิมเพล็กซ์ความรู้พื้นฐานสำหรับแคลคูลัสตะแกรงกำลังสองแมตแล็บแถวลำดับแคลคูลัสเมทริกซ์พหุนามเมทริกซ์ศูนย์เมทริกซ์สลับเปลี่ยนเมทริกซ์สลับเปลี่ยนสังยุคเมทริกซ์หนึ่งเมทริกซ์ซิลเวสเตอร์เมทริกซ์แบบบล็อกเมทริกซ์แต่งเติม...เมทริกซ์เชิงตรรกะเวกเตอร์ลักษณะเฉพาะเส้นทแยงมุมเอกลักษณ์การบวก−1 ขยายดัชนี (5 มากกว่า) »

ฟังก์ชันเลขชี้กำลัง

กราฟของฟังก์ชันเลขชี้กำลัง y.

ใหม่!!: เมทริกซ์และฟังก์ชันเลขชี้กำลัง · ดูเพิ่มเติม »

พีชคณิตเชิงเส้น

ีชคณิตเชิงเส้น (Linear algebra) เป็นสาขาหนึ่งของคณิตศาสตร์ที่ศึกษาเวกเตอร์ ปริภูมิเวกเตอร์ (หรืออีกชื่อหนึ่งคือ ปริภูมิเชิงเส้น) การแปลงเชิงเส้น และระบบสมการเชิงเส้น ปริภูมิเวกเตอร์เป็นเรื่องที่ได้รับความสนใจอย่างมากในคณิตศาสตร์สมัยใหม่ เนื่องจากพีชคณิตเชิงเส้นถูกนำไปใช้อย่างกว้างขวางในคณิตศาสตร์สองสายหลักคือ พีชคณิตนามธรรมและการวิเคราะห์เชิงฟังก์ชัน พีชคณิตเชิงเส้นนั้นมีรูปแบบที่ชัดเจนในเรขาคณิตวิเคราะห์ และถูกขยายให้กว้างขึ้นในทฤษฎีตัวดำเนินการ และมีการประยุกต์ใช้อย่างแพร่หลายในวิชาวิทยาศาสตร์และสังคมศาสตร์ เนื่องจากแบบจำลองไม่เชิงเส้น (nonlinear model) ส่วนมากสามารถประมาณการณ์ได้ด้วยแบบจำลองเชิงเส้น (linear model) การประยุกต์ใช้อย่างหนึ่งของพีชคณิตเชิงเส้นคือการแก้ระบบสมการเชิงเส้นหลายตัวแปร กรณีที่ง่ายที่สุดคือเมื่อมีจำนวนที่ไม่ทราบค่า (ตัวแปร) เท่ากับจำนวนของสมการ ดังนั้นเราสามารถแก้ปัญหาระบบสมการเชิงเส้น n สมการ สำหรับจำนวนที่ไม่ทราบค่า n ตัว.

ใหม่!!: เมทริกซ์และพีชคณิตเชิงเส้น · ดูเพิ่มเติม »

กฎลูกโซ่

ในวิชาแคลคูลัส กฎลูกโซ่ (Chain rule) คือสูตรสำหรับการหาอนุพันธ์ของฟังก์ชันคอมโพสิต เห็นได้ชัดว่า หากตัวแปร y เปลี่ยนแปลงตามตัวแปร u ซึ่งเปลี่ยนแปลงตามตัวแปร x แล้ว อัตราการเปลี่ยนแปลงของ y เทียบกับ x หาได้จากผลคูณ ของอัตราการเปลี่ยนแปลงของ y เทียบกับ u คูณกับ อัตราการเปลี่ยนแปลงของ u เทียบกับ x สมมติให้คนหนึ่งปีนเขาด้วยอัตรา 0.5 กิโลเมตรต่อชั่วโมง อุณหภูมิจะลดต่ำลงเมื่อระดับความสูงเพิ่มขึ้น สมมติให้อัตราเป็น ลดลง 6 °F ต่อกิโลเมตร ถ้าเราคูณ 6 °F ต่อกิโลเมตรด้วย 0.5 กิโลเมตรต่อชั่วโมง จะได้ 3 °F ต่อชั่วโมง การคำนวณเช่นนี้เป็นตัวอย่างของการประยุกต์ใช้กฎลูกโซ่ ในทางพีชคณิต กฎลูกโซ่ (สำหรับตัวแปรเดียว) ระบุว่า ถ้าฟังก์ชัน f หาอนุพันธ์ได้ที่ g(x) และฟังก์ชัน g หาอนุพันธ์ได้ที่ x คือเราจะได้ f \circ g.

ใหม่!!: เมทริกซ์และกฎลูกโซ่ · ดูเพิ่มเติม »

กราฟ (แบบชนิดข้อมูลนามธรรม)

กราฟที่มี 6 จุดยอด และ 7 เส้นเชื่อม ในสาขาวิชาวิทยาการคอมพิวเตอร์ กราฟเป็นโครงสร้างข้อมูลที่นำแนวคิดของกราฟทางคณิตศาสตร์และไฮเปอร์กราฟมาทำให้เกิดผล โครงสร้างข้อมูลแบบกราฟประกอบด้วยเซตสองชุด คือ เซตของจุดยอด (หรือปม) และ เส้นเชื่อม เช่นเดียวกันกับทางคณิตศาสตร์ เส้นเชื่อม(x,y) มีหมายความว่า เส้นเชื่อมจากจุดยอด x ไปยังจุดยอด y โครงสร้างข้อมูลแบบกราฟอาจให้ค่ากับเส้นเชื่อมโดยอาจจะให้ความหมายได้หลายอย่าง เช่น มูลค่า ความจุ ความยาว น้ำหนัก ฯลฯ.

ใหม่!!: เมทริกซ์และกราฟ (แบบชนิดข้อมูลนามธรรม) · ดูเพิ่มเติม »

กราฟระบุทิศทาง

กราฟระบุทิศทาง ในทฤษฎีกราฟ กราฟระบุทิศทาง หรือ ไดกราฟ คือกราฟซึ่งเส้นเชื่อมมีทิศ กล่าวคือกราฟ G.

ใหม่!!: เมทริกซ์และกราฟระบุทิศทาง · ดูเพิ่มเติม »

กรุป (คณิตศาสตร์)

กรุป (group) ในพีชคณิตนามธรรม คือ เซตกับการดำเนินการทวิภาค เช่น การคูณหรือการบวก ซึ่งสอดคล้องกับสัจพจน์ ตัวอย่างเช่น เซตของจำนวนเต็มเป็นกรุปภายใต้การดำเนินการการบวก สาขาของคณิตที่ศึกษาเกี่ยวกับกรุปเรียกว่า ทฤษฎีกรุป ต้นกำเนิดของทฤษฎีกรุปนั้นย้อนกลับไปสู่ผลงานของเอวาริสต์ กาลัว (พ.ศ. 2373) เกี่ยวกับปัญหาที่ว่าเมื่อใดสมการเชิงพีชคณิตจึงจะสามารถหาคำตอบได้จากราก ก่อนผลงานของเขาการศึกษากรุปเป็นไปอย่างเป็นรูปธรรม ในรูปแบบการเรียงสับเปลี่ยน หลักเกณฑ์บางข้อของอาบีเลียนกรุป อยู่ในทฤษฎีรูปแบบกำลังสอง หลายสิ่งที่ศึกษากันในคณิตศาสตร์เป็นกรุป รวมไปถึงระบบจำนวนที่คุ้นเคย เช่น จำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อน ภายใต้การบวก เช่นเดียวกับจำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อนที่ไม่ใช่ศูนย์ ภายใต้การคูณ ตัวอย่างที่สำคัญอีกตัวอย่างหนึ่งคือ เมทริกซ์ไม่เอกฐาน ภายใต้การคูณ และฟังก์ชันที่หาฟังก์ชันผกผันได้ ภายใต้ การประกอบฟังก์ชัน ทฤษฎีกรุปรองรับคุณสมบัติของระบบเหล่านี้และระบบอื่นๆอีกมากมายในรูปแบบทั่วไป ผลลัพธ์ยังสามารถประยุกต์ได้หลากหลาย ทฤษฎีกรุปยังเต็มไปด้วยทฤษฎีบทในตัวมันเองอีกมากเช่นกัน ภายใต้กรุปยังมีโครงสร้างเชิงพีชคณิตอีกมาก เช่นฟิลด์ และปริภูมิเวกเตอร์ กรุปยังเป็นเครื่องมือที่สำคัญในการศึกษาสมมาตรในรูปแบบต่างๆ หลักการที่ว่า "สมมาตรของวัตถุใดๆก่อให้เกิดกรุป" เป็นหลักพื้นฐานของคณิตศาสตร์มากมาย ด้วยเหตุผลเหล่านี้ทฤษฎีกรุปจึงเป็นสาขาที่สำคัญในคณิตศาสตร์ยุดใหม่ และยังเป็นหนึ่งในบทประยุกต์ของ ฟิสิกส์เชิงคณิตศาสตร์ อีกด้วย (ตัวอย่างเช่น ฟิสิกส์อนุภาค).

ใหม่!!: เมทริกซ์และกรุป (คณิตศาสตร์) · ดูเพิ่มเติม »

การบวก

แอปเปิล3 + 2.

ใหม่!!: เมทริกซ์และการบวก · ดูเพิ่มเติม »

การบวกเมทริกซ์

การบวกเมทริกซ์ ในทางคณิตศาสตร์ เป็นการดำเนินการการบวกบนสองเมทริกซ์ โดยบวกสมาชิกที่สอดคล้องกันเข้าด้วยกันเป็นเมทริกซ์ใหม.

ใหม่!!: เมทริกซ์และการบวกเมทริกซ์ · ดูเพิ่มเติม »

การกรองตัวเลขในขอบเขตแบบธรรมดา

ในทฤษฎีจำนวนนั้น การกรองตัวเลขในขอบเขตแบบธรรมดา (General number field sieve: GNFS) เป็น วิธีการในการแยกตัวประกอบจำนวนเต็มที่มีขนาดใหญ่ (มีตัวประกอบ 100 ตัวขึ้นไป) ได้เร็วที่สุด มักจะใช้กับเลขที่มีจำนวนมากกว่า 110 บิท โดยนำไปใช้ในการเข้ารหัสลับแบบกุญแจอสมมาตร (Public-key cryptography) ซึ่งเป็นขั้นตอนวิธีที่เหมาะสำหรับลายเซ็นดิจิตอลรวมทั้งการเข้ารหัสที่มีความปลอดภัย การกรองตัวเลขในขอบเขตแบบธรรมดา นั้นมีเป้าหมายเพื่ออธิบายความสัมพันธ์ของที่มา, ข้อมูล และทฤษฎี ให้ผู้อ่านที่มีความเข้าใจในด้านต่างๆ เข้าใจและได้ข้อสรุปตรงกันและร่วมกันยกระดับพื้นฐานของวิธีการนี้ให้มีประสิทธิภาพมากขึ้นอีกด้วย จะเห็นได้ว่า การกรองตัวเลขในขอบเขตแบบธรรมดานั้นมีความสำคัญอย่างมากในการรับส่งข้อความที่เป็นความลับ จึงเป็นสิ่งที่นักวิชาการให้ความสนใจ ไม่ว่าจะเป็นตัวขั้นตอนการทำงาน ผลลัพธ์จากหลากหลายขอบเขตของคณิตศาสตร์และวิทยาการคอมพิวเตอร์, ทฤษฎีเลขพีชคณิต, สมการเชิงเส้น, ค่าจำนวนจริง และการวิเคราะห์เชิงซ้อน.

ใหม่!!: เมทริกซ์และการกรองตัวเลขในขอบเขตแบบธรรมดา · ดูเพิ่มเติม »

การยกกำลัง

้าx+1ส่วนx.

ใหม่!!: เมทริกซ์และการยกกำลัง · ดูเพิ่มเติม »

การดำเนินการทวิภาค

ในทางคณิตศาสตร์ การดำเนินการทวิภาค หมายถึงการคำนวณที่ต้องเกี่ยวข้องกับตัวถูกดำเนินการสองค่า หรือกล่าวอีกนัยหนึ่ง หมายถึงการดำเนินการที่มีอาริตี้ (arity) เท่ากับสอง การดำเนินการทวิภาคสามารถคำนวณให้สำเร็จได้โดยใช้ฟังก์ชันทวิภาคหรือตัวดำเนินการทวิภาคอย่างใดอย่างหนึ่ง การดำเนินการทวิภาคบางครั้งถูกเรียกว่าเป็น dyadic operation ในภาษาอังกฤษเพื่อหลีกเลี่ยงความสับสนกับระบบเลขฐานสอง (binary numeral system) ตัวอย่างการดำเนินการทวิภาคที่คุ้นเคยเช่น การบวก การลบ การคูณ และการหาร เป็นต้น การดำเนินการทวิภาคบนเซต S คือความสัมพันธ์ f ที่จับคู่สมาชิกในผลคูณคาร์ทีเซียน S×S ไปยัง S ถ้าความสัมพันธ์ดังกล่าวไม่เป็นฟังก์ชัน แต่เป็นฟังก์ชันบางส่วน เราจะเรียกการดำเนินการนี้ว่า การดำเนินการ (ทวิภาค) บางส่วน ตัวอย่างเช่น การหารในจำนวนจริงถือว่าเป็นฟังก์ชันบางส่วน เพราะไม่นิยามการหารด้วยศูนย์ แต่บางครั้งในวิทยาการคอมพิวเตอร์ การดำเนินการทวิภาคอาจหมายถึงฟังก์ชันทวิภาคใดๆ ก็ได้ และถ้าความสัมพันธ์ f ให้ผลลัพธ์ออกมาเป็นสมาชิกในเซต S เหมือนกับตัวตั้ง จะเรียกได้ว่าการดำเนินการทวิภาคนั้นมีสมบัติการปิด (closure) การดำเนินการทวิภาคเป็นส่วนสำคัญในโครงสร้างเชิงพีชคณิตในการศึกษาพีชคณิตนามธรรม ซึ่งใช้สำหรับสร้างกรุป โมนอยด์ กึ่งกรุป ริง และอื่นๆ หรือกล่าวโดยทั่วไป เซตที่นิยามการดำเนินการทวิภาคใดๆ บนเซตนั้น เรียกว่า แม็กม่า (magma) การดำเนินการทวิภาคหลายอย่างในพีชคณิตและตรรกศาสตร์มีสมบัติการเปลี่ยนหมู่และสมบัติการสลับที่ และหลายอย่างก็มีสมาชิกเอกลักษณ์และสมาชิกผกผัน ตัวอย่างการดำเนินการที่มีคุณสมบัติทั้งหมดนี้เช่น การบวก (+) และการคูณ (*) บนจำนวนและเมทริกซ์ หรือการประกอบฟังก์ชัน (function composition) บนเซตเซตหนึ่ง ส่วนการดำเนินการที่ไม่มีสมบัติการเปลี่ยนหมู่ ยกตัวอย่างเช่น การลบ (−) และ การดำเนินการบางส่วน ที่ไม่มีสมบัตินี้เช่น การหาร (/) การยกกำลัง (^) และการยกกำลังซ้อน (tetration) (↑↑) การเขียนการดำเนินการทวิภาคส่วนมากใช้สัญกรณ์เติมกลาง (infix notation) เช่น a * b, a + b, หรือ a · b นอกจากนั้นก็เขียนอยู่ในรูปแบบของสัญกรณ์ฟังก์ชัน f (a, b) หรือแม้แต่การเขียนย่อด้วยวิธี juxtaposition เหลือเพียง ab ส่วนการยกกำลัง ปกติแล้วจะเขียนโดยไม่ใช้ตัวดำเนินการ แต่เขียนจำนวนที่สองด้วยตัวยก (superscript) แทน นั่นคือ ab บางครั้งอาจพบเห็นการใช้สัญกรณ์เติมหน้า (prefix notation) หรือสัญกรณ์เติมหลัง (postfix notation) ซึ่งอาจต้องใช้วงเล็บกำกั.

ใหม่!!: เมทริกซ์และการดำเนินการทวิภาค · ดูเพิ่มเติม »

การคูณ

3 × 4.

ใหม่!!: เมทริกซ์และการคูณ · ดูเพิ่มเติม »

การแยกตัวประกอบ

หุนาม ''x''2 + ''cx'' + ''d'' เมื่อ ''a + b.

ใหม่!!: เมทริกซ์และการแยกตัวประกอบ · ดูเพิ่มเติม »

การแยกแบบโซเลสกี้

ในเรื่องเมทริกซ์ การแยกแบบโซเลสกี้ (Cholesky decomposition) ซึ่งตั้งชื่อตาม หลุยส์ อังเดร โซเลสกี้ นักคณิตศาสตร์ชาวฝรั่งเศส เป็นวิธีการแยกเมทริกซ์ของเมทริกซ์สมมาตรที่เป็นบวกแน่นอน (Symmetric positive-definite matrix) ไปเป็น เมทริกซ์สามเหลี่ยมล่าง (Lower triangular matrix) และ เมทริกซ์สลับเปลี่ยนของเมทริกซ์สามเหลี่ยมล่าง เมทริกซ์จัตุรัส (Square Matrix) ใด ๆ A สามารถเขียนให้อยู่ในรูปผลคูณของ เมทริกซ์สามเหลี่ยมล่าง L และ เมทริกซ์สามเหลี่ยมบน (Upper triangular matrix) U หรือเรียกว่า การแยกแบบแอลยู (LU decomposition) ซึ่งหาก A เป็นเมทริกซ์สมมาตรที่เป็นบวกแน่นอนแล้ว เราสามารถหาเมทริกซ์ U ที่เป็นเมทริกซ์สลับเปลี่ยนของ L ได้ เรียกวิธีนี้ว่า การแยกแบบโซเลสกี้ ทั้งวิธีการแยกแบบแอลยู และ แบบโซเลสกี้ ใช้ในการแก้ปัญหาเรื่องสมการเชิงเส้น โดยวิธีการแยกแบบโซเลสกี้จะมีประสิทธิภาพมากกว.

ใหม่!!: เมทริกซ์และการแยกแบบโซเลสกี้ · ดูเพิ่มเติม »

การแจกแจงปรกติหลายตัวแปร

การแจกแจงแบบปรกติหลายตัวแปร (multivariate normal distribution) เป็นการขยายวางนัยทั่วไปจากการแจกแจงแบบปรกติ (ตัวแปรเดียว) ไปเป็นหลายมิติ(หลายตัวแปร) เวกเตอร์สุ่มที่มีการแจกแจงแบบปรกติหลายตัวแปร คือ ทุกๆผลรวมเชิงเส้น (linear combination) ของส่วนประกอบของเวกเตอร์มีการแจกแจงเป็นการแจกแจงแบบปรกติ การแจกแจงแบบปรกติหลายตัวแปร มักใช้อธิบาย เซตของตัวแปรสุ่มหลายๆตัวที่มีความสัมพันธ์กัน โดยที่แต่ค่าของตัวแปรจะมีค่าเกาะกลุ่มอยู่ใกล้ๆกับค่ามัชฌิม.

ใหม่!!: เมทริกซ์และการแจกแจงปรกติหลายตัวแปร · ดูเพิ่มเติม »

การแปลงเฮาส์โฮลเดอร์

การแปลงเฮาส์โฮลเดอร์ (Householder transformation) ในคณิตศาสตร์ และในปริภูมิสามมิติ เป็นการสะท้อนเวกเตอร์กับระนาบ ในปริภูมิยูคลิเดียนทั่วไป การแปลงเฮาส์โฮลเดอร์เป็นการแปลงเชิงเส้นซึ่งเวกเตอร์กับระนาบเกินที่ผ่านจุดกำเนิด อัลสตัน สกอตต์ เฮาส์โฮลเดอร์ ตีพิมพ์ผลงานเกี่ยวกับการแปลงชนิดนี้เป็นครั้งแรกในปี พ.ศ. 2501 การแปลงเฮาส์โฮลเดอร์เป็นเครื่องมือสำคัญในการหาการแยก QR ของเมทริกซ.

ใหม่!!: เมทริกซ์และการแปลงเฮาส์โฮลเดอร์ · ดูเพิ่มเติม »

ภาพดิจิทัล

ทัล เป็นการแสดงผลภาพในลักษณะสองมิติในหน่วยที่เรียกว่าพิกเซล ภาพดิจิทัลสามารถนิยามเป็นฟังก์ชันสองมิติ f(x,y) โดยที่ x และ y เป็นพิกัดของภาพ และแอมพลิจูดของ f ที่พิกัด (x,y) ใดๆภายในภาพคือค่าความเข้มแสงของภาพ (Intensity) ที่ตำแหน่งนั้นๆ และเมื่อ x,y และแอมพลิจูดของ f เป็นค่าจำกัด (Finite value) จึงเรียกรูปภาพนี้ว่าเป็นภาพดิจิทัล (Digital Image) และถ้ากำหนดให้ภาพ f(x,y) มีขนาด M แถวและ N คอลัมน์ และพิกัดของจุดกำเนิด (Origin) ของภาพคือที่ตำแหน่ง (x,y).

ใหม่!!: เมทริกซ์และภาพดิจิทัล · ดูเพิ่มเติม »

รายชื่อโครงสร้างข้อมูล

ไม่มีคำอธิบาย.

ใหม่!!: เมทริกซ์และรายชื่อโครงสร้างข้อมูล · ดูเพิ่มเติม »

ริง (คณิตศาสตร์)

ในทางคณิตศาสตร์ ริง (ring) หมายถึงโครงสร้างเชิงพีชคณิตประเภทหนึ่ง ซึ่งประกอบด้วยคุณสมบัติต่างๆ ทางพีชคณิตของจำนวนเต็ม ริงหนึ่งๆ มีการดำเนินการสองชนิดที่มักเรียกว่า การบวก กับ การคูณ ต่างกับกรุป (group) ที่มีการดำเนินการเพียงชนิดเดียว สาขาหนึ่งของพีชคณิตนามธรรมที่ศึกษาเกี่ยวกับริง เรียกว่า ทฤษฎีริง.

ใหม่!!: เมทริกซ์และริง (คณิตศาสตร์) · ดูเพิ่มเติม »

วัฏจักรกรดซิตริก

รวมของวัฏจักรกรดซิตริก วัฏจักรกรดซิตริกหรือวัฏจักรเครบส์ (Krebs' cycle) หรือ วัฏจักรกรดไตรคาร์บอกซิลิก เป็นวัฏจักรกลางในการผลิต ATP รวมทั้ง NADH + H+ และ FADH2 ที่จะเข้าสู่ปฏิกิริยาฟอสโฟรีเลชั่นเพื่อสร้าง ATP ต่อไป เกิดขึ้นบริเวณเมทริกซ์ซึ่งเป็นของเหลวในไมโทคอนเดรีย โดยมีการสลายแอซิทิลโคเอนไซม์ เอ ซึ่งจะเกิดแก๊สคาร์บอนไดออกไซด์ และเก็บพลังงานจากปฏิกิริยาดังกล่าวไว้ในรูปของ NADH FADH2 และ ATP การย่อยสลายสารอาหารใดๆให้สมบูรณ์เป็นคาร์บอนไดออกไซด์และน้ำต้องเข้าวัฏจักรนี้เสมอ เป็นขั้นตอนการสร้างคาร์บอนไดออกไซด์มากที่สุดในการหายใจระดับเซลล.

ใหม่!!: เมทริกซ์และวัฏจักรกรดซิตริก · ดูเพิ่มเติม »

สมบัติการสลับที่

ตัวอย่างแสดงสมบัติการสลับที่ของการบวก (3 + 2.

ใหม่!!: เมทริกซ์และสมบัติการสลับที่ · ดูเพิ่มเติม »

สมบัติการแจกแจง

ในทางคณิตศาสตร์ สมบัติการแจกแจง (distributivity) คือสมบัติหนึ่งที่สามารถมีได้บนการดำเนินการทวิภาค ซึ่งเป็นกรณีทั่วไปของกฎการแจกแจงจากพีชคณิตมูลฐาน ตัวอย่างเช่น ข้างซ้ายของสมการข้างต้น 2 คูณเข้ากับผลบวกของ 1 กับ 3 ส่วนข้างขวา 2 คูณเข้ากับ 1 และ 3 แต่ละตัวแยกกัน แล้วค่อยนำผลคูณเข้ามาบวก เนื่องจากตัวอย่างข้างต้นให้ผลลัพธ์เท่ากันคือ 8 เราจึงกล่าวว่า การคูณด้วย 2 แจกแจงได้ (distribute) บนการบวกของ 1 กับ 3 เราสามารถแทนที่จำนวนเหล่านั้นด้วยจำนวนจริงใดๆ แล้วทำให้สมการยังคงเป็นจริง เราจึงกล่าวว่า การคูณของจำนวนจริง แจกแจงได้บนการบวกของจำนวนจริง สมบัติการแจกแจงจึงต้องเกี่ยวข้องกับการดำเนินการสองชน.

ใหม่!!: เมทริกซ์และสมบัติการแจกแจง · ดูเพิ่มเติม »

สมบัติการเปลี่ยนหมู่

ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (associativity) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใดๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative) ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้ ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร.

ใหม่!!: เมทริกซ์และสมบัติการเปลี่ยนหมู่ · ดูเพิ่มเติม »

สมาชิกเอกลักษณ์

ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.

ใหม่!!: เมทริกซ์และสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

สัมประสิทธิ์

ัมประสิทธิ์ ของความในทางคณิตศาสตร์หมายถึงตัวประกอบการคูณในบางพจน์ของนิพจน์ (หรือของอนุกรม) ปกติแล้วจะเป็นจำนวนจำนวนหนึ่ง ซึ่งไม่เกี่ยวข้องกับตัวแปรของนิพจน์ ตัวอย่างเช่น สามพจน์แรกมีสัมประสิทธิ์เป็น 7, −3 และ 1.5 ตามลำดับ (พจน์ที่สามไม่มีตัวแปร ดังนั้นพจน์ดังกล่าวจึงเป็นสัมประสิทธิ์โดยตัวเอง เรียกว่าพจน์คงตัวหรือสัมประสิทธิ์คงตัวของนิพจน์) ส่วนพจน์สุดท้ายไม่ปรากฏการเขียนสัมประสิทธิ์อย่างชัดเจน แต่ปกติจะพิจารณาว่ามีสัมประสิทธิ์เท่ากับ 1 เนื่องจากการคูณด้วยตัวประกอบนี้จะไม่ทำให้พจน์เปลี่ยนแปลง บ่อยครั้งที่สัมประสิทธิ์เป็นจำนวนดังเช่นตัวอย่างดังกล่าว แต่ก็สามารถเป็นพารามิเตอร์ของข้อปัญหาได้เช่นในประโยคต่อไปนี้ พารามิเตอร์ a, b และ c จะไม่ถูกพิจารณาว่าเป็นตัวแปร ดังนั้นพหุนามตัวแปรเดียว x สามารถเขียนได้เป็น สำหรับจำนวนเต็ม k บางจำนวน จะมี a_k,..., a_1, a_0 เป็นสัมประสิทธิ์ เพื่อให้นิพจน์เช่นนี้เป็นจริงในทุกกรณี เราจะต้องไม่ให้พจน์แรกมีสัมประสิทธิ์เป็น 0 สำหรับจำนวนที่มากที่สุด i โดยที่ แล้ว ai จะเรียกว่า สัมประสิทธิ์นำ ของพหุนาม เช่นจากตัวอย่างนี้ สัมประสิทธิ์นำของพหุนามคือ 4 สัมประสิทธิ์เฉพาะหลายชนิดถูกกำหนดขึ้นในเอกลักษณ์ทางคณิตศาสตร์ เช่นทฤษฎีบททวินามซึ่งเกี่ยวข้องกับสัมประสิทธิ์ทวินาม สัมประสิทธิ์เหล่านี้ถูกจัดระเบียบอยู่ในรูปสามเหลี่ยมปาสกาล.

ใหม่!!: เมทริกซ์และสัมประสิทธิ์ · ดูเพิ่มเติม »

สังยุค (จำนวนเชิงซ้อน)

''z'' บนระนาบจำนวนเชิงซ้อน ในทางคณิตศาสตร์ สังยุคของจำนวนเชิงซ้อน (complex conjugate) เปรียบได้กับการเปลี่ยนเครื่องหมายบนส่วนจินตภาพของจำนวนเชิงซ้อนนั้นให้เป็นตรงข้าม เช่น กำหนดให้จำนวนเชิงซ้อน z.

ใหม่!!: เมทริกซ์และสังยุค (จำนวนเชิงซ้อน) · ดูเพิ่มเติม »

อสมการของอาดามาร์

ในคณิตศาสตร์ อสมการของอาดามาร์ (Hadamard's inequality) ให้ขอบเขตบนของปริมาตรของรูปทรงด้านขนานที่มีด้านเป็นเวกเตอร์ v_1, v_2, \ldots, v_n ในปริภูมิยูคลิเดียน n มิติ อสมการของอาดามาร์สามารถตีความได้ในทางเรขาคณิตว่า ปริมาตรของรูปทรงจะมีค่ามากที่สุดเมื่อเซตของเวกเตอร์ทั้ง n เป็นเซตเชิงตั้งฉาก โดยในกรณีนี้ ปริมาตรของรูปทรงคือผลคูณของความยาวเวกเตอร์ทั้งหมด ให้ M เป็นเมทริกซ์ขนาด n \times n ที่มีเวกเตอร์ v_i เป็นคอลัมน์ที่ i เราสามารถเขียนอสมการของอาดามาร์เป็นประโยคสัญลักษณ์ได้ว่า เมทริกซ์ M ที่อสมการข้างบนเป็นอสมการ โดยที่เลขแต่ละตัวในเมทริกซ์มีค่า +1 หรือ −1 เท่านั้น เรียกว่า เมทริกซ์อาดามาร์ หมวดหมู่:อสมการ.

ใหม่!!: เมทริกซ์และอสมการของอาดามาร์ · ดูเพิ่มเติม »

อุทยานโอลิมปิกลอนดอน

อุทยานโอลิมปิกลอนดอน (London Olympic Park) เป็นศูนย์กีฬาและสวนสาธารณะซึ่งจัดสร้างขึ้น สำหรับกีฬาโอลิมปิกฤดูร้อน 2012 และการแข่งขันพาราลิมปิกฤดูร้อน 2012 ตั้งอยู่บริเวณทิศตะวันออกของลอนดอน ประเทศอังกฤษ ติดกับพื้นที่ขยายของย่านสแตรตเฟิร์ด (Stratford) ภายในมีหมู่บ้านนักกีฬาโอลิมปิก และสนามกีฬานานาชนิด รวมทั้งสนามกีฬาโอลิมปิกและศูนย์กีฬาทางน้ำ หลังจากโอลิมปิกผ่านไป อุทยานแห่งนี้จะเปลี่ยนชื่อเป็น “อุทยานโอลิมปิกราชินีเอลิซาเบธ” (Queen Elizabeth Olympic Park) เพื่อเป็นอนุสรณ์ในวโรกาส พระราชพิธีพัชราภิเษกในสมเด็จพระราชินีนาถเอลิซาเบธที่ 2 แห่งสหราชอาณาจักรStaff (7 October 2010).

ใหม่!!: เมทริกซ์และอุทยานโอลิมปิกลอนดอน · ดูเพิ่มเติม »

ผลรวม

ในทางคณิตศาสตร์ ผลรวม (summation) หมายถึงการบวกของเซตของจำนวน ซึ่งจะให้ผลลัพธ์เป็น ผลบวก (sum, total) จำนวนที่กล่าวถึงอาจเป็นจำนวนธรรมชาติ จำนวนเชิงซ้อน เมตริกซ์ หรือวัตถุอื่นที่ซับซ้อนกว่านั้น ผลรวมไม่จำกัดของลำดับเรียกว่าเป็นอนุกรม.

ใหม่!!: เมทริกซ์และผลรวม · ดูเพิ่มเติม »

ผลคูณ

ผลคูณ ในทางคณิตศาสตร์ คือ ผลลัพธ์ที่ได้จากการคูณของพจน์ต่าง ๆ ซึ่งแตกต่างกันไปตามแต่ละชนิด ผลคูณที่พบบ่อยในทางคณิตศาสตร์ เช่น.

ใหม่!!: เมทริกซ์และผลคูณ · ดูเพิ่มเติม »

ผลคูณว่าง

ผลคูณว่าง (empty product, nullary product) ในทางคณิตศาสตร์ หมายถึงผลของการคูณจำนวนหรือสมาชิกที่ไม่มีอยู่ ไม่ว่าจะเป็นการคูณสเกลาร์ เวกเตอร์ หรือเมทริกซ์เป็นต้น ผลคูณว่างจะให้ผลลัพธ์เป็นเอกลักษณ์การคูณ ซึ่งโดยทั่วไปก็คือหนึ่ง ผลคูณว่างมีการใช้ในการศึกษาอนุกรมกำลัง พีชคณิต และในทางโปรแกรมคอมพิวเตอร์ เพื่อใช้ในการเติมเต็มนิยามที่เกี่ยวข้องกับการคูณ เช่น (การยกกำลัง) หรือ (แฟกทอเรียล) เป็นต้น.

ใหม่!!: เมทริกซ์และผลคูณว่าง · ดูเพิ่มเติม »

ผลคูณไขว้

ผลคูณไขว้ '''a''' × '''b''' มีทิศตรงข้ามกับ '''b''' × '''a''' ผลคูณไขว้ หรือ ผลคูณเชิงเวกเตอร์ ในทางคณิตศาสตร์ คือ การดำเนินการทวิภาคบนเวกเตอร์สองอันในปริภูมิแบบยุคลิดสามมิติ ซึ่งให้ผลลัพธ์เป็นเวกเตอร์อีกอันหนึ่งที่ตั้งฉากกับสองเวกเตอร์แรก ในขณะที่ผลคูณจุดของสองเวกเตอร์จะให้ผลลัพธ์เป็นปริมาณสเกลาร์ ผลคูณไขว้ไม่มีการนิยามบนมิติอื่นนอกจากสามมิติ และไม่มีคุณสมบัติการเปลี่ยนกลุ่ม เมื่อเทียบกับผลคูณจุด สิ่งที่เหมือนกันคือผลลัพธ์จะขึ้นอยู่กับปริภูมิอิงระยะทาง (metric space) ของปริภูมิแบบยุคลิด แต่สิ่งที่ต่างกันคือผลลัพธ์จะขึ้นอยู่กับการกำหนดทิศทาง (orientation).

ใหม่!!: เมทริกซ์และผลคูณไขว้ · ดูเพิ่มเติม »

ผิวกำลังสอง

ผิวกำลังสอง หรือ ควอดริก (quadric surface) ในทางคณิตศาสตร์ หมายถึง ผิว (hypersurface) ใน D มิติ ซึ่งกำหนดโดยคำตอบหรือทางเดินรากของสมการพหุนามกำลังสอง (quadratic polynomial) ถ้าเราพิจารณาพิกัด \ ผิวกำลังสองถูกกำหนดด้วยสมการพีชคณิตดังต่อไปนี้ \sum_^D Q_ x_i x_j + \sum_^D P_i x_i + R.

ใหม่!!: เมทริกซ์และผิวกำลังสอง · ดูเพิ่มเติม »

ขั้นตอนวิธีฮังกาเรียน

ั้นตอนวิธีชาวฮังกาเรียน (Hungarian Algorithm) คือ ขั้นตอนวิธีการหาค่าเหมาะสมที่สุดเชิงการจัด ซึ่งใช้ในการแก้ ปัญหาการกำหนดงาน ถูกคิดค้นและตั้งชื่อโดย แฮโรลด์ วิลเลียม คุห์น ในปี ค.ศ. 1955 ที่ตั้งชื่อนี้เพราะว่าขั้นตอนวิธีนี้มีพื้นฐานส่วนใหญ่จากการคิดของนักคณิตศาสตร์ชาวฮังกาเรียน 2 คน คือ Dénes Kőnig และ Jenő Egerváry ต่อมาเจมส์ มุนเครสได้นำขั้นตอนวิธีนี้มาตรวจสอบในปี ค.ศ. 1957 และได้พบว่ามีประสิทธิภาพเชิงเวลาเป็นแบบ strongly polynomial ตั้งแต่นั้นมาขั้นตอนวิธีนี้จึงเป็นที่รู้จักในชือว่า ขั้นตอนวิธีคุห์น-มุนเครส หรือ ขั้นตอนวิธีการกำหนดงานมุนเครส โดยมีประสิทธิภาพเชิงเวลาของขั้นตอนวิธีดั้งเดิมเป็น O(n^4) แต่อย่างไรก็ตามขั้นตอนวิธีนี้ แจ็ค เอดมันด์ และ ริชาร์ด แมนนิ่งคาร์ป ได้สามารถปรับปรุงให้มีประสิทธิภาพเชิงเวลาเป็น O(n^3) ได้ และในปี ค.ศ. 2006 มีการค้นพบว่า คาร์ล กุสตาฟ จาโคบี (Carl Gustav Jacobi) สามารถแก้ปัญหาการกำหนดงานได้ในคริสต์ศตวรรษที่ 19 และได้เผยแพร่ในปี ค.ศ. 1890 ในภาษาละติน.

ใหม่!!: เมทริกซ์และขั้นตอนวิธีฮังกาเรียน · ดูเพิ่มเติม »

ขั้นตอนวิธีของเฟรย์วัลส์

ั้นตอนวิธีของเฟรย์วัลส์ (Freivalds' algorithm) เป็นขั้นตอนวิธีแบบสุ่ม (randomised algorithm) ที่รูซินส์ มาร์ตินส์ เฟรย์วัลส์ (Rusins Martins Freivalds) นักวิทยาศาสตร์ชาวลัตเวีย นำเสนอขึ้นสำหรับใช้ตรวจสอบความเท่ากันของผลคูณของเมทริกซ์กับเมทริกซ์ต้นแ.

ใหม่!!: เมทริกซ์และขั้นตอนวิธีของเฟรย์วัลส์ · ดูเพิ่มเติม »

ขั้นตอนวิธีของเฮิร์ชเบิร์ก

ั้นตอนวิธีของเฮิร์ชเบิร์ก เป็นขั้นตอนวิธีสำหรับการเปรียบเทียบของสายอักขระ มีชื่อมาจากผู้คิดค้น แดน เฮิร์ชเบิร์ก (Dan Hirschberg) ซึ่งขั้นตอนวิธีนี้เป็นขั้นตอนวิธีการเขียนโปรแกรมแบบพลวัต (Dynamic programming algorithm) ที่ถูกออกแบบมาเพื่อแก้ปัญหาลำดับย่อยร่วมยาวสุด (Longest common subsequence) โดยขั้นตอนวิธีนี้จะแก้ปัญหาการเปรียบเทียบสายอักขระโดยใช้ปริภูมิเชิงเส้น (Linear space) เพื่อหาระยะทางที่ถูกแก้ไขของราเวนสตีน (Levenshtein edit distance) ของสายอักขระ 2 สายที่เปรียบเทียบกันรวมทั้งหาการเรียงตัวของสายอักขระทั้งสองด้ว.

ใหม่!!: เมทริกซ์และขั้นตอนวิธีของเฮิร์ชเบิร์ก · ดูเพิ่มเติม »

ขั้นตอนวิธีซิมเพล็กซ์

ั้นตอนวิธีซิมเพล็กซ์ (simplex algorithm) หรือ วิธีซิมเพล็กซ์ (simplex method) จะอาศัยหลักการของเมทริกซ์เข้าช่วยในการหาผลลัพธ์ที่เหมาะสมที่สุด ซึ่งจะทำให้เห็นถึงการเปลี่ยนแปลงของตัวแปรในแต่ละขั้นตอนอย่างมีเหตุผล และเปลี่ยนแปลงไปในทางที่จะนำมาซึ่งผลลัพธ์ที่โมเดลทางคณิตศาสตร์ต้องการ.

ใหม่!!: เมทริกซ์และขั้นตอนวิธีซิมเพล็กซ์ · ดูเพิ่มเติม »

ความรู้พื้นฐานสำหรับแคลคูลัส

วามรู้พื้นฐานสำหรับแคลคูลัส (precalculus) เป็นหัวข้อวิชาคณิตศาสตร์ที่เป็นรูปแบบขั้นสูงของพีชคณิตในระดับมัธยมศึกษา หลักสูตรและตำราของวิชานี้มีจุดประสงค์เพื่อเตรียมตัวให้พร้อมก่อนที่จะเรียนแคลคูลัส ความรู้พื้นฐานสำหรับแคลคูลัสมีหัวข้อต่างๆ ที่ต้องศึกษาดังนี้.

ใหม่!!: เมทริกซ์และความรู้พื้นฐานสำหรับแคลคูลัส · ดูเพิ่มเติม »

ตะแกรงกำลังสอง

ั้นตอนวิธีตะแกรงกำลังสอง (quadratic sieve algorithm: QS) เป็นหนึ่งในขั้นตอนวิธีในการแยกตัวประกอบของจำนวนเต็มให้อยู่ในรูปของผลคูณของเลขยกกำลังของจำนวนเฉพาะซึ่งยังเป็นสิ่งที่น่าสนใจเนื่องจากมีการนำไปใช้ในการเข้ารหัส (โดยถ้าใช้บางขั้นตอนวิธีอาจจะต้องใช้เวลามากกว่าอายุของจักรวาลเสียอีก) Carl Pomerance เป็นผู้ค้นพบขั้นตอนวิธีนี้ในปี..

ใหม่!!: เมทริกซ์และตะแกรงกำลังสอง · ดูเพิ่มเติม »

แมตแล็บ

ัญลักษณ์ของแมตแล็บ แมตแล็บ (MATLAB: Matrix Laboratory) เป็นซอฟต์แวร์ในการคำนวณและการเขียนโปรแกรม โปรแกรมหนึ่ง ที่มีความสามารถครอบคลุมตั้งแต่ การพัฒนาอัลกอริธึม การสร้างแบบจำลองทางคณิตศาสตร์ และการทำซิมูเลชั่นของระบบ การสร้างระบบควบคุม และโดยเฉพาะเรื่อง image processing และ wavelet การสร้างเมตริกซ์ ผลิตโดยบริษัทแมตเวิรกส์ ตัวแทนจำหน่ายในประเทศไทยคือ บริษัท เทคซอร์ส ซิสเท็มส์ (ประเทศไทย) จำกัด แมตแล็บเป็นโปรแกรมสำเร็จรูปที่ใช้กันอย่างแพร่หลายในแวดวงของนักวิทยาศาสตร์และ วิศวกรในปัจจุบัน ชื่อโปรแกรม MATLAB นั้นย่อมาจาก Matrix Laboratory แมตแล็บได้เริ่มต้น ขึ้นเพื่อต้องการให้เราสามารถแก้ปัญหาตัวแปรที่มีลักษณะเป็นเมทริดซ์ได้ง่ายขึ้น แมตแล็บ เริ่มพัฒนาครั้งแรกโดย Dr.

ใหม่!!: เมทริกซ์และแมตแล็บ · ดูเพิ่มเติม »

แถวลำดับ

ในวิทยาการคอมพิวเตอร์ แถวลำดับ (array) คือโครงสร้างข้อมูลที่เป็นรายการอย่างหนึ่ง ข้อมูล (value) จะถูกเก็บบนหน่วยความจำคอมพิวเตอร์ แบบอยู่ติดกันไปเรื่อย ๆ การเข้าถึงข้อมูลสามารถกระทำได้ผ่านดัชนี (index) หรืออาจเรียกว่า คีย์ โดยดัชนีจะเป็นจำนวนเต็มซึ่งบอกถึงลำดับที่ของข้อมูลในแถวลำดับ นอกจากนี้ ค่าของดัชนียังไปจับคู่กับที่อยู่หน่วยความจำ ผ่านสูตรคณิตศาสตร์ ทำให้สามารถเข้าถึงข้อมูลได้ ตัวอย่างเช่นแถวลำดับที่มีข้อมูล 10 ตัว โดยมีดัชนีตั้งแต่ 0 ถึง 9 สมมุติให้ข้อมูลแต่ละตัวใช้หน่วยความจำ 4 ไบต์ และแถวลำดับนี้มีที่อยู่ในหน่วยความจำคือ 2000 จะได้ว่าที่อยู่หน่วยความจำของข้อมูลตัวที่ i คือ 2000 + 4i แถวลำดับยังสามารถขยายมิติไปเป็นสองมิติหรือมากกว่านั้นได้ เนื่องจากรูปแบบของแถวลำดับสองมิติมีรูปร่างเป็นตาราง คล้ายกับเมตริกซ์ บางทีจึงอาจเรียกแถวลำดับสองมิติว่าเมตริกซ์หรือตาราง (สำหรับตารางโดยส่วนมากแล้วจะหมายความถึงตาราง lookup) เช่นเดียวกับแถวลำดับมิติเดียวที่บางครั้งก็อาจเรียกว่าเวกเตอร์หรือทูเพิล แถวลำดับถือได้ว่าเป็นโครงสร้างข้อมูลที่ถือกำเนิดขึ้นพร้อม ๆ กับการเขียนโปรแกรม และสำคัญมากในการเขียนโปรแกรมเช่นเดียวกัน และแทบจะไม่มีโปรแกรมใดเลยที่ไม่ใช้แถวลำดับ โดยแถวลำดับนี้ยังนำไปอิมพลีเมนต์โครงสร้างข้อมูลอื่นอีกมากมายเช่นรายการหรือสายอักขระ แม้แต่หน่วยเก็บข้อมูลที่มีที่อยู่หน่วยความจำก็อาจจะมองหน่วยเก็บข้อมูลเป็นแถวลำดับขนาดยักษ์ก็ได้.

ใหม่!!: เมทริกซ์และแถวลำดับ · ดูเพิ่มเติม »

แคลคูลัส

แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ และสังคมศาสตร์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้ แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้.

ใหม่!!: เมทริกซ์และแคลคูลัส · ดูเพิ่มเติม »

เมทริกซ์พหุนาม

มทริกซ์พหุนาม หมายถึงเมทริกซ์ที่มีสมาชิกเป็นพหุนาม โดยจะเป็นพหุนามตัวแปรเดียวหรือหลายตัวก็ได้ สำหรับเมทริกซ์พหุนามตัวแปรเดียว A ที่มีดีกรีของพหุนามเท่ากับ p นิยามโดย เมื่อ A(i) แทนเมทริกซ์ของสัมประสิทธิ์คงตัว และ A(p) ไม่เป็นเมทริกซ์ศูนย์ ดังนั้นเมทริกซ์พหุนามก็มีความหมายเทียบเท่าพหุนามของเมทริกซ์ ซึ่งสมาชิกแต่ละตัวของเมทริกซ์สามารถเข้ากันได้กับนิยามของ พหุนามดีกรี p ตัวอย่างเมทริกซ์พหุนามมิติ 3×3 ที่มีดีกรีเท่ากับ 2 สามารถแยกได้ดังนี้ P.

ใหม่!!: เมทริกซ์และเมทริกซ์พหุนาม · ดูเพิ่มเติม »

เมทริกซ์ศูนย์

ในทางคณิตศาสตร์ โดยเฉพาะพีชคณิตเชิงเส้น เมทริกซ์ศูนย์ หมายถึงเมทริกซ์ที่มีสมาชิกทุกตัวเป็นศูนย์ ตัวอย่างเมทริกซ์ศูนย์เช่น \bold_.

ใหม่!!: เมทริกซ์และเมทริกซ์ศูนย์ · ดูเพิ่มเติม »

เมทริกซ์สลับเปลี่ยน

ในพีชคณิตเชิงเส้น เมทริกซ์สลับเปลี่ยน (ทับศัพท์ว่า ทรานสโพส) คือเมทริกซ์ที่ได้จากการสลับสมาชิก จากแถวเป็นหลัก และจากหลักเป็นแถว ของเมทริกซ์ต้นแบบ เมทริกซ์สลับเปลี่ยนของ A ที่มีมิติ m×n จะเขียนแทนด้วย AT (บางครั้งอาจพบในรูปแบบ At, Atr, tA หรือ A′) ซึ่งจะมีมิติเป็น n×m (สลับกัน) นิยามโดย สำหรับทุกค่าของ i และ j ที่ 1 ≤ i ≤ n และ 1 ≤ j ≤ m ตัวอย่างเช่น 1 & 2 \\ 3 & 4 \end^ \!\! \;\!.

ใหม่!!: เมทริกซ์และเมทริกซ์สลับเปลี่ยน · ดูเพิ่มเติม »

เมทริกซ์สลับเปลี่ยนสังยุค

มทริกซ์สลับเปลี่ยนสังยุค (conjugate transpose) ของเมทริกซ์ A มิติ m×n ซึ่งมีสมาชิกเป็นจำนวนเชิงซ้อน คือเมทริกซ์สลับเปลี่ยนของเมทริกซ์ A ซึ่งเปลี่ยนสมาชิกทั้งหมดเป็นสังยุค เขียนแทนด้วยเมทริกซ์ A* หรือสามารถนิยามได้จาก เมื่อ 1 ≤ i ≤ n และ 1 ≤ j ≤ m และขีดเส้นตรงหมายถึงสังยุคของจำนวนเชิงซ้อน (อาทิ สังยุคของ a + bi คือ a − bi เป็นต้น) นิยามดังกล่าวสามารถเขียนได้อีกรูปแบบหนึ่งดังนี้ ซึ่ง A^\mathrm\! คือเมทริกซ์สลับเปลี่ยน และ \overline คือเมทริกซ์ที่มีสมาชิกเป็นสังยุค ชื่ออื่นๆ ของเมทริกซ์สลับเปลี่ยนสังยุคเช่น เมทริกซ์สลับเปลี่ยนเอร์มีเชียน (Hermitian transpose) เมทริกซ์สังยุคเอร์มีเชียน (Hermitian conjugate) ทรานสจูเกต (transjugate) หรือแม้แต่ เมทริกซ์ผูกพัน (adjoint matrix) ซึ่งคำสุดท้ายนี้อาจหมายถึงเมทริกซ์แอดจูเกต (adjugate matrix) ก็ได้ เมทริกซ์สลับเปลี่ยนสังยุคของ A สามารถเขียนด้วยสัญลักษณ์ได้อีกหลายรูปแบบ เช่น.

ใหม่!!: เมทริกซ์และเมทริกซ์สลับเปลี่ยนสังยุค · ดูเพิ่มเติม »

เมทริกซ์หนึ่ง

ในทางคณิตศาสตร์ เมทริกซ์หนึ่ง (matrix of ones) หมายถึงเมทริกซ์ที่มีสมาชิกทุกตัวเป็นหนึ่ง ดังตัวอย่าง 1 & 1 \\ 1 & 1 \end;\quad J_3.

ใหม่!!: เมทริกซ์และเมทริกซ์หนึ่ง · ดูเพิ่มเติม »

เมทริกซ์ซิลเวสเตอร์

มทริกซ์ซิลเวสเตอร์ (Sylvester matrix) คือเมทริกซ์ที่เกิดจากการรวมสัมประสิทธิ์ของพหุนามสองพหุนามเข้าด้วยกัน เพื่อคำนวณหาคุณสมบัติบางประการของพหุนามเหล่านั้น เมทริกซ์ซิลเวสเตอร์ เป็นชื่อที่ตั้งไว้เพื่อเป็นเกียรติให้กับ เจมส์ โจเซฟ ซิลเวสเตอร์ (James Joseph Sylvester) นักคณิตศาสตร์ชาวอังกฤษ ผู้เผยแพร่ทฤษฎีเมทริกซ.

ใหม่!!: เมทริกซ์และเมทริกซ์ซิลเวสเตอร์ · ดูเพิ่มเติม »

เมทริกซ์แบบบล็อก

มทริกซ์แบบบล็อก (block matrix) หมายถึงเมทริกซ์ใดๆ ที่สามารถแบ่งกลุ่มสมาชิกออกเป็นเมทริกซ์ย่อยที่เรียกว่า บล็อก (block) เมทริกซ์แบบบล็อกจะถูกแบ่งที่ตำแหน่งของสมาชิกที่สามารถเข้ากันได้จัดอยู่ในกลุ่มเดียวกัน และจะต้องแบ่งตามเส้นแนวตั้งหรือเส้นแนวนอนของแถวและหลักทั้งหมด เปรียบเสมือนการตีตารางลงในเมทริกซ์แล้วตัดแบ่งออกเป็นส่วนๆ ตัวอย่างเมทริกซ์แบบบล็อกเช่น กำหนดให้เมทริกซ์ P 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \\ \end จะเห็นว่ามีสมาชิกที่คล้ายกันอยู่เป็นกลุ่มๆ ซึ่งสามารถตัดแบ่งออกเป็นเมทริกซ์ย่อยขนาด 2×2 1 & 1 \\ 1 & 1 \end,\ P_.

ใหม่!!: เมทริกซ์และเมทริกซ์แบบบล็อก · ดูเพิ่มเติม »

เมทริกซ์แต่งเติม

มทริกซ์แต่งเติม (augmented matrix) คือเมทริกซ์ที่เกิดจากการรวมกันของเมทริกซ์อื่นสองเมทริกซ์ที่มีจำนวนแถวเท่ากัน เพื่อประโยชน์ในการคำนวณหาตัวผกผันของเมทริกซ์และการแก้ระบบสมการเชิงเส้นเป็นต้น ตัวอย่าง กำหนดให้เมทริกซ์ A และ B 1 & 3 & 2 \\ 2 & 0 & 1 \\ 5 & 2 & 2 \\ \end, \quad B.

ใหม่!!: เมทริกซ์และเมทริกซ์แต่งเติม · ดูเพิ่มเติม »

เมทริกซ์เชิงตรรกะ

มทริกซ์เชิงตรรกะ, เมทริกซ์ทวิภาค, เมทริกซ์ความสัมพันธ์, เมทริกซ์แบบบูล หรือ เมทริกซ์ศูนย์-หนึ่ง คือเมทริกซ์ที่ประกอบด้วยสมาชิกจากโดเมนแบบบูล B.

ใหม่!!: เมทริกซ์และเมทริกซ์เชิงตรรกะ · ดูเพิ่มเติม »

เวกเตอร์ลักษณะเฉพาะ

รูปที่1. 1. ในการส่งแบบไข้ว(shear mapping)ของภาพโมนาลิซา, รูปถูกทำให้ผิดปกติในในทางแกนแนวยืนกึ่งกลางของมัน(เวกเตอร์สีแดง)ไม่เปลี่ยนทิศทาง, แต่เวกเตอร์ทแยงมุม(สีน้ำเงิน)มีการเปลี่ยนทิศทาง ด้วยเหตุนี้เวกเตอร์สีแดงเป็น '''เวกเตอร์ลักษณะเฉพาะ''' ของการแปลง ขณะที่เวกเตอร์สีน้ำเงินนั้นไม่ใช่ เวกเตอร์สีแดงไม่มีการขยายหรือหดตัว '''ค่าลักษณะเฉพาะ ''' ของมันจึงคือ 1 ทุกเวกเตอร์ที่มีทิศทางในแนวยืนที่เหมือนกัน เช่น ขนานกับเวกเตอร์นี้เป็นเวกเตอร์ลักษณะเฉพาะเหมือนกันที่มีค่าลักษณะเฉพาะค่าเดียวกัน พร้อมทั้งเวกเตอร์ศูนย์ จาก '''ปริภูมิลักษณะเฉพาะ''' สำหรับค่าลักษณะเฉพาะนี้ ในทางคณิตศาสตร์การแปลงเชิงเส้น เวกเตอร์ลักษณะเฉพาะ (eigenvector) ของการแปลงเชิงเส้นนั้นต้องเป็นเวกเตอร์ที่ไม่ใช่เวกเตอร์ศูนย์ที่เมื่อนำไปใช้ในการแปลงนั้นจะเปลี่ยนระยะแต่ไม่เปลี่ยนทิศทาง สำหรับทุกเวกเตอร์ลักษณะเฉพาะของการแปลงเชิงเส้น จะมีค่าสเกลาร์ที่เรียกว่า ค่าลักษณะเฉพาะ (eigenvalue) สำหรับเวกเตอร์นั้นซึ่งกำหนดผลรวมเวกเตอร์ลักษณะเฉพาะเป็นมาตราส่วนภายใต้การแปลงเชิงเส้น ตัวอย่างเช่น: ค่าลักษณะเฉพาะเท่ากับ +2 หมายความว่าเวกเตอร์ลักษณะเฉพาะมีความยาวและจุดเป็นเท่าตัวในทิศทางเดิม, ค่าลักษณะเฉพาะเท่ากับ +1 หมายความว่าเวกเตอร์ลักษณะเฉพาะไม่มีการเปลี่ยนแปลง, ในขณะที่ค่าลักษณะเฉพาะเท่ากับ −1 หมายความว่าเวกเตอร์ลักษณะเฉพาะจะมีทิศทางผันกลับ ปริภูมิลักษณะเฉพาะ (eigenspace) ของการแปลงที่ให้มาสำหรับค่าลักษณะเฉพาะเฉพาะส่วนเป็นเซต(ผลการแผ่เชิงเส้น(linear span))ของเวกเตอร์ลักษณะเฉพาะที่ความความสัมพันธ์กับค่าลักษณะเฉพาะนี้ พร้อมทั้งเวกเตอร์ศูนย์(ไม่มีทิศทาง) ในพีชคณิตเชิงเส้น ทุกๆการแปลงเชิงเส้นระหว่างปริภูมิเวกเตอร์มิติอันตะ(finite-dimensional vector spaces)สามารถแสดงอยู่ในรูปของเมทริกซ์ซึ่งเป็นแถวลำดับสี่เหลี่ยมของตัวเลขที่อยู่ในแถวและหลัก วิธีพื้นฐานสำหรับการหา ค่าลักษณะเฉพาะ, เวกเตอร์ลักษณะเฉพาะ, และ ปริภูมิลักษณะเฉพาะ ของเมทริกซ์จะกล่าวถึงอยู่ด้านล่าง มันมีบทบาทหลักในหลายๆสาขาของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ — เป็นส่วนสำคัญในพีชคณิตเชิงเส้น, การวิเคราห์เชิงฟังก์ชัน, และเล็กน้อยในคณิตศาสตร์ไม่เป็นเชิงเส้น วัตถุทางคณิตศาสตร์หลายชนิดสามารถเขียนอยู่ในรูปแบบเวกเตอร์ได้เช่น ฟังก์ชัน, ฮาร์มอนิก, กลศาสตร์ควอนตัม, และความถี่, ในกรณีนี้แนวคิดของทิศทางโดยทั่วไปจะสูญเสียความหมายของมันไป และถูกให้นิยามที่เลื่อนลอย ดังนั้นทิศทางที่ไม่มีตัวตนนี้จะไม่เปลี่ยนแปลงตามการแปลงเชิงเส้นที่ให้มา ถ้าใช้"ไอเกน(eigen)"นำหน้า อย่างใน ฟังก์ชันลักษณะเฉพาะ(eigenfunction), วิธีลักษณะเฉพาะ(eigenmode), สภาวะลักษณะเฉพาะ(eigenstate), และ ความถี่ลักษณะเฉพาะ(eigenfrequency).

ใหม่!!: เมทริกซ์และเวกเตอร์ลักษณะเฉพาะ · ดูเพิ่มเติม »

เส้นทแยงมุม

้นทแยงมุมในทรงสี่เหลี่ยมมุมฉาก เส้นทแยงมุม หมายถึงเส้นตรงที่ลากผ่านจุดยอดสองจุดที่ไม่อยู่ติดกันบนรูปหลายเหลี่ยมหรือทรงหลายหน้า หรือในบริบทอื่นจะหมายถึงเส้นตรงที่เฉียงขึ้นหรือเฉียงลง คำว่า diagonal ในภาษาอังกฤษ มีที่มาจากภาษากรีก διαγωνιος (diagonios) ประกอบด้วย dia- แปลว่า "ทะลุหรือข้าม" และ gonia แปลว่า "มุม" จากนั้นจึงมีการยืมไปใช้ไปเป็นภาษาละติน diagonus แปลว่า "เส้นเอียง" ในทางคณิตศาสตร์ คำว่าเส้นทแยงมุมมีการใช้ในเมทริกซ์ แทนกลุ่มของสมาชิกที่อยู่บนเส้นทแยงมุมสมมติของเมทริกซ์ และเพื่อให้ความหมายของเมทริกซ์ทแยงมุม.

ใหม่!!: เมทริกซ์และเส้นทแยงมุม · ดูเพิ่มเติม »

เอกลักษณ์การบวก

ในทางคณิตศาสตร์ เอกลักษณ์การบวก ของเซตที่มีการดำเนินการของการบวก คือสมาชิกในเซตที่บวกกับสมาชิก x ใดๆ แล้วได้ x เอกลักษณ์การบวกตัวหนึ่งที่เป็นที่คุ้นเคยมากที่สุดคือจำนวน 0 จากคณิตศาสตร์มูลฐาน แต่เอกลักษณ์การบวกก็สามารถมีในโครงสร้างทางคณิตศาสตร์อื่นๆ ที่นิยามการบวกเอาไว้ เช่นในกรุปหรือริง.

ใหม่!!: เมทริกซ์และเอกลักษณ์การบวก · ดูเพิ่มเติม »

−1

−1 (ลบหนึ่ง) เป็นจำนวนเต็มลบมากสุด ที่มากกว่า −2 แต่น้อยกว่า 0 −1 เป็นตัวผกผันการบวกของ 1 หมายความว่า เมื่อจำนวนนี้บวกกับ 1 แล้วจะได้เอกลักษณ์การบวกนั่นคือ 0 −1 สัมพันธ์กับเอกลักษณ์ของออยเลอร์นั่นคือ e^.

ใหม่!!: เมทริกซ์และ−1 · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Matrixแมทริกซ์แมตริกซ์เมตริกซ์

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »