เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

อนุภาคแอลฟา

ดัชนี อนุภาคแอลฟา

อนุภาคแอลฟา (เขียนแทนด้วยอักษรกรีก แอลฟา α) คืออนุภาคที่ประกอบด้วยโปรตอน 2 ตัวและนิวตรอน 2 ตัว เหมือนกับนิวเคลียสของอะตอมของธาตุฮีเลียม (He) จึงสามารถเขียนสัญลักษณ์ได้อีกอย่างหนึ่งเป็น He^\,\! หรือ ^4_2He^ อนุภาคแอลฟาหนึ่งอนุภาคมีมวล 6.644656×10−27 กิโลกรัม หรือเทียบเท่ากับพลังงาน 3.72738 จิกะอิเล็กตรอนโวลต์ (GeV) มีประจุเป็น +2e โดยที่ e คือความจุไฟฟ้าของอิเล็กตรอนซึ่งมีค่าเท่ากับ 1.602176462×10−19 คูลอมบ์ อนุภาคแอลฟามักเกิดจากการสลายของอะตอมของธาตุกัมมันตรังสี เช่นยูเรเนียม (U) หรือเรเดียม (Ra) ด้วยกระบวนการที่รู้จักกันในชื่อการสลายให้อนุภาคแอลฟา (alpha decay) เมื่ออนุภาคแอลฟาถูกปลดปล่อยออกจากนิวเคลียส มวลอะตอมของธาตุกัมมันตรังสีจะลดลงประมาณ 4.0015 u เนื่องจากการสูญเสียทั้งโปรตอนและนิวตรอน และเลขอะตอมจะลดลง 2 ทำให้อะตอมกลายเป็นธาตุใหม่ ดังตัวอย่างการสลายให้อนุภาคแอลฟาของยูเรเนียม จะได้ธาตุใหม่เป็นทอเรียม (Th) ^_U \rightarrow ^_Th + ^4_2He^.

สารบัญ

  1. 32 ความสัมพันธ์: ฟิสิกส์นิวเคลียร์พลูโทเนียมกระบวนการทริปเปิล-อัลฟากระบวนการเผาไหม้นีออนการบำบัดด้วยการจับยึดนิวตรอนการกระตุ้นนิวตรอนการสร้างภาพประสาทการสลายให้กัมมันตรังสีการสลายให้อนุภาคแอลฟาการแตกตัวด้วยแสงรังสีคอสมิกลิเทียมสารก่อกลายพันธุ์สารก่อมะเร็งหมู่เกาะแห่งเสถียรภาพหน่วยไทยอนุภาคย่อยของอะตอมดาวฤกษ์ซีเวอร์ตปฏิกิริยานิวเคลียร์ปริมาณรังสีสมมูลนิวตรอนนิวไคลด์กัมมันตรังสีนิวเคลียสของอะตอมแอลฟาแอลฟา (แก้ความกำกวม)แคลิฟอร์เนียมไอโซโทปของพลูโทเนียมเมนเดลีเวียมเรดอนเลขมวล4

ฟิสิกส์นิวเคลียร์

ฟิสิกส์นิวเคลียร์ (Nuclear physics) หรือฟิสิกส์ของนิวเคลียส เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่ศึกษาองค์ประกอบต่าง ๆ และปฏิสัมพันธ์ระหว่างกันของนิวเคลียสทั้งหลายของอะตอม การประยุกต์ใช้ฟิสิกส์นิวเคลียร์ที่ทราบกันดีที่สุดคือ การผลิตไฟฟ้าจากพลังงานนิวเคลียร์และเทคโนโลยีอาวุธนิวเคลียร์ แต่การวิจัยได้ประยุกต์ในหลายสาขา เช่น เวชศาสตร์นิวเคลียร์และการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก การปลูกฝังไอออนในวิศวกรรมศาสตร์วัสดุ และการหาอายุจากคาร์บอนกัมมันตรังสีในวิชาภูมิศาสตร์และโบราณคดี นิวเคลียสเป็นสิ่งที่ยังไม่เป็นที่เข้าใจทางทฤษฏี เพราะมันประกอบไปด้วยอนุภาคจำนวนมาก (เช่น โปรตอน และนิวตรอน) แต่ไม่มีขนาดใหญ่พอที่จะอธิบายลักษณะได้ถูกต้องเหมือนอย่างผลึก จึงมีการใช้แบบจำลองของนิวเคลียสซึ่งใช้ศึกษาพฤติกรรมทางนิวเคลียร์ส่วนใหญ่ได้ โดยอาจใช้เป็นวิธีการเดียวหรือร่วมกับวิธีการอื่น.

ดู อนุภาคแอลฟาและฟิสิกส์นิวเคลียร์

พลูโทเนียม

ลูโทเนียม (Plutonium) เป็นธาตุที่มีเลขอะตอม 94 และสัญลักษณ์ คือ Pu เป็นธาตุโลหะกัมมันตรังสี เป็นโลหะแอกทิไนด์สีขาวเงิน และจะมัวลงเมื่อสัมผัสอากาศซึ่งเกิดจากการรวมตัวกับออกซิเจน โดยปกติ พลูโทเนียมมี 6 ไอโซโทป และ 4 สถานะออกซิเดชัน สามารถเกิดปฏิกิริยาทางเคมีกับคาร์บอน ฮาโลเจน ไนโตรเจน และซิลิกอน เมื่อสัมผัสอากาศชื้นจะสร้างสารประกอบออกไซด์และไฮไดรด์มากกว่า 70 % ของปริมาตรซึ่งจะแตกออกเป็นผงแป้งที่สามารถติดไฟได้เอง พลูโทเนียมมีพิษที่เกิดจากการแผ่รังสีที่จะสะสมที่ไขกระดูก นอกจากนี้ยังมีคุณสมบัติอื่น ๆ ที่ทำให้การจัดการพลูโทเนียมเป็นเรื่องที่อันตรายมาก ไอโซโทปที่สำคัญของพลูโทเนียม คือ พลูโทเนียม-239 ซึ่งมีครึ่งชีวิต 24,100 ปี พลูโทเนียม-239 และ 241 เป็นวัสดุฟิสไซล์ ซึ่งหมายความว่านิวเคลียสของอะตอมสามารถแตกตัว โดยการชนของนิวตรอนความร้อนเคลื่อนที่ช้า ซึ่งจะปลดปล่อยพลังงาน รังสีแกมมา และนิวตรอนจำนวนมาก ด้วยเหตุนี้ จึงสามารถเกิดปฏิกิริยาลูกโซ่นิวเคลียร์ได้ นำไปสู่การประยุกต์สร้างอาวุธนิวเคลียร์และเครื่องปฏิกรณ์นิวเคลียร์ ไอโซโทปที่เสถียรที่สุด คือ พลูโทเนียม-244 ซึ่งมีครึ่งชีวิตประมาณ 80 ล้านปี นานพอที่จะสามารถพบได้ในธรรมชาติ พลูโทเนียม-238 มีครึ่งชีวิต 88 ปี และปลดปล่อยอนุภาคแอลฟาออกมา มันเป็นแหล่งความร้อนของเครื่องผลิตไฟฟ้าด้วยความร้อนจากไอโซโทปรังสี ซึ่งใช้ในการให้พลังงานในยานอวกาศ พลูโทเนียม-240 มีอัตราของการแตกตัวของนิวเคลียสของอะตอมด้วยตัวเองสูง เป็นการเพิ่มอัตรานิวตรอนพื้นฐานของตัวอย่างที่มีไอโซโทปนี้ประกอบอยู่ด้วย การมีอยู่ของ Pu-240 เป็นข้อจำกัดสมรรถภาพของพลูโทเนียมที่ใช้ในอาวุธหรือแหล่งพลังงานและเป็นตัวกำหนดเกรดของพลูโทเนียม: อาวุธ (19%) ธาตุลำดับที่ 94 สังเคราะห์ได้เป็นครั้งแรกในปี..

ดู อนุภาคแอลฟาและพลูโทเนียม

กระบวนการทริปเปิล-อัลฟา

ทั่วไปของกระบวนการทริปเปิลอัลฟา กระบวนการทริปเปิล-อัลฟา (Triple alpha process) คือกลุ่มของปฏิกิริยานิวเคลียร์ฟิวชั่นซึ่งนิวเคลียสของฮีเลียม-4 สามตัว (อนุภาคอัลฟา) จะแปลงไปเป็นคาร์บอน ดาวฤกษ์ที่มีอายุมากขึ้นจะสะสมฮีเลียมเอาไว้ ซึ่งเป็นผลผลิตจากห่วงโซ่ปฏิกิริยาโปรตอน-โปรตอนและวงจรซีเอ็นโอซึ่งเกิดขึ้นที่แกนของดาว ผลผลิตที่เกิดจากปฏิกิริยานิวเคลียร์ฟิวชั่นต่อเนื่องของฮีเลียมกับไฮโดรเจนหรือนิวเคลียสฮีเลียมอื่นๆ จะทำให้เกิด ลิเทียม-5 และเบริลเลียม-8 ขึ้นมาตามลำดับ ธาตุทั้งสองนี้ไม่เสถียรอย่างรุนแรงและแทบจะสลายตัวกลับไปเป็นนิวเคลียสขนาดเล็กตามเดิมในทันทีG.

ดู อนุภาคแอลฟาและกระบวนการทริปเปิล-อัลฟา

กระบวนการเผาไหม้นีออน

กระบวนการเผาไหม้นีออน (Neon-burning process) เป็นชุดของปฏิกิริยานิวเคลียร์ฟิวชั่นซึ่งเกิดขึ้นในดาวฤกษ์มวลมาก (อย่างน้อย 8 เท่าของมวลดวงอาทิตย์) การเผาไหม้นีออนต้องใช้อุณหภูมิและความดันที่สูงมาก (ประมาณ 1.2 x 109 K หรือ 100 KeV และ 4 x 109 kg/m3) ที่อุณหภูมิสูงขนาดนั้น photodisintegration จึงส่งผลกระทบอย่างสำคัญ ทำให้นิวเคลียสอะตอมของนีออนบางตัวแตกตัวออกและปลดปล่อยอนุภาคอัลฟาออกมาClayton, Donald.

ดู อนุภาคแอลฟาและกระบวนการเผาไหม้นีออน

การบำบัดด้วยการจับยึดนิวตรอน

การบำบัดด้วยการจับยึดนิวตรอน (Neutron capture therapy (NCT)) เป็นการรักษาโรคแบบไม่รุกล้ำ(เข้าในร่างกาย)เพื่อรักษาเนื้องอกร้ายแรงแบบแพร่กระจายเป็นที่ เช่นเนื้องอกในสมองหลักและมะเร็งที่หัวและลำคอกำเริบ มีสองขั้นตอนได้แก่: ขั้นตอนแรก ผู้ป่วยจะถูกฉีดด้วยยาที่ใช้กำหนดตำแหน่งเนื้องอก ยานี้จะประกอบด้วยไอซโทปไม่มีกัมมันตภาพรังสีที่มีความโน้มเอียงหรือภาคตัดขวาง (ฟิสิกส์) (σ) สูงต่อการจับยึดนิวตรอนช้า ตัวแทนการจับยึด (capture agent) จะมีภาคตัดขวางมากกว่าหลายเท่าเมื่อเทียบกับขององค์ประกอบอื่น ๆ ที่ปรากฏอยู่ในเนื้อเยื่อต่าง ๆ เช่นไฮโดรเจน ออกซิเจน และไนโตรเจน ในขั้นตอนที่สอง ผู้ป่วยจะปล่อยรังสีนิวตรอนเอพิเทอร์มัล ซึ่งหลังจากการสูญเสียพลังงานเมื่อพวกมันเจาะข้าไปในเนื้อเยื่อ รังสีเอพิเทอร์มัลจะถูกดูดซึมโดยตัวแทนการจับยึดซึ่งภายหลังก็ปลดปล่อยอนุภาคพลังงานสูงที่มีประจุออกมา ด้วยเหตุนี้จึงส่งผลให้เกิดปฏิกิริยานิวเคลียร์แบบทำลายล้างทางชีวภาพ (รูปที่ 1) ทั้งหมดของประสบการณ์ทางคลินิกกับ NCT จนถึงวันนี้จะทำกับไอโซโทปของโบรอน-10ที่ไม่มีกัมมันตรังสี และถูกเรียกว่าการบำบัดด้วยการจับยึดนิวตรอนจากธาตุโบรอน (BNCT) ในเวลานี้ การใช้ไอโซโทปที่ไม่มีกัมมันตรังสีอื่น ๆ เช่น gadolinium ได้ถูกจำกัด และจนถึงปัจจุบัน มันก็ยังไม่ได้ถูกนำมาใช้ในทางคลินิก.

ดู อนุภาคแอลฟาและการบำบัดด้วยการจับยึดนิวตรอน

การกระตุ้นนิวตรอน

การกระตุ้นนิวตรอน (Neutron activation) เป็นกระบวนการที่ นิวตรอน ไปเหนี่ยวนำให้เกิดกัมมันตภาพรังสีในวัสดุ และจะเกิดขึ้นเมื่อนิวเคลียสของอะตอมจับยึดนิวตรอนอิสระ กลายเป็นนิวเคลียสที่หนักกว่าและเข้าสู่สภาวะกระตุ้น นิวเคลียสที่ถูกกระตุ้นมักจะสลายตัวทันทีโดยการเปล่ง รังสีแกมมา หรือเปล่งอนุภาคเช่น อนุภาคบีตา อนุภาคแอลฟา ผลผลิตฟิชชัน และนิวตรอน (ในนิวเคลียร์ฟิชชัน) ดังนั้นกระบวนการของการจับยึดนิวตรอน แม้ว่าจะหลังจากการสลายตัวระดับกลางใด ๆ มักจะส่งผลให้เกิดผลผลิตจากการกระตุ้นที่ไม่เสถียร นิวเคลียสกัมมันตรังสีดังกล่าวสามารถแสดงครึ่งชีวิตในพิสัยตั้งแต่เศษส่วนขนาดเล็กของหนึ่งวินาทีจนถึงหลายปี การกระตุ้นนิวตรอนเป็นวิธีที่พบบ่อยเท่านั้นที่สามารถเหนี่ยวนำวัสดุที่มีความเสถียรให้กลายเป็นสารกัมมันตรังสีโดยเนื้อแท้ของมันเอง วัสดุที่เกิดขึ้นตามธรรมชาติทั้งหมด รวมทั้งอากาศ น้ำและดินสามารถถูกเหนี่ยวนำ (กระตุ้น) โดย การจับยึดนิวตรอน ให้เปล่งกัมมันตภาพรังสีในปริมาณที่แตกต่างกัน โดยเป็นผลมาจากการผลิตไอโซโทปรังสีที่อุดมไปด้วยนิวตรอน บางอะตอมต้องใช้นิวตรอนมากกว่าหนึ่งตัวเพื่อให้มันกลายเป็นไม่เสถียร ซึ่งทำให้พวกมันยากขึ้นที่จะกระตุ้นเพราะความน่าจะเป็นของการจับยึดสองเท่าหรือสามเท่าโดยหนึ่งนิวเคลียสจะยากกว่าของการจับยึดเพียงครั้งเดียว ยกต้วอย่างเช่นน้ำ มันถูกสร้างขึ้นจากไฮโดรเจนและออกซิเจน ไฮโดรเจนต้องมีการจับยึดสองครั้งเพื่อให้บรรลุความไม่เสถียรเป็นไฮโดรเจน-3 (ทริเทียม) ในขณะที่ออกซิเจนธรรมชาติ (ออกซิเจน-16) ต้องจับยึดสามครั้งเพื่อให้กลายเป็นออกซิเจน-19 ที่ไม่เสถียร ดังนั้นน้ำค่อนข้างยากที่จะกระตุ้นเมื่อเทียบกับเกลือทะเล (โซเดียมคลอไรด์) ซึ่งอะตอมของทั้งโซเดียมและคลอรีนจะไม่เสถียรด้วยการจับยึดเพียงครั้งเดียวในแต่ละอะตอม ข้อเท็จจริงเหล่านี้ได้ตระหนักถึงตั้งแต่แรกที่ชุดทดสอบอะตอมใน Operation Crossroads ในปี 1946.

ดู อนุภาคแอลฟาและการกระตุ้นนิวตรอน

การสร้างภาพประสาท

MRI ของศีรษะ แสดงภาพตั้งแต่ยอดจนถึงฐานของกะโหลก ภาพตามระนาบแบ่งซ้ายขวาของศีรษะคนไข้ที่มีหัวโตเกิน (macrocephaly) แบบไม่ร้ายที่สืบต่อในครอบครัว การสร้างภาพประสาท หรือ การสร้างภาพสมอง (Neuroimaging, brain imaging) เป็นการใช้เทคนิคต่าง ๆ เพื่อสร้างภาพทั้งโดยตรงหรือโดยอ้อมของโครงสร้าง หน้าที่ หรือการทำงานทางเภสัชวิทยา ของระบบประสาท เป็นศาสตร์ใหม่ที่ใช้ในการแพทย์ ประสาทวิทยา และจิตวิทยา แพทย์ที่ชำนาญเฉพาะในการสร้างและตีความภาพสมองในสถานพยาบาลเรียกตามภาษาอังกฤษว่า neuroradiologist (ประสาทรังสีแพทย์) การสร้างภาพวิธีต่าง ๆ ตกอยู่ในหมวดกว้าง ๆ 2 หมวดคือ.

ดู อนุภาคแอลฟาและการสร้างภาพประสาท

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ดู อนุภาคแอลฟาและการสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา

การสลายให้อนุภาคแอลฟาการสลายให้อนุภาคแอลฟา (Alpha decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีซึ่งนิวเคลียสอะตอมจะปลดปล่อยอนุภาคแอลฟาออกมา ดังนั้นจึงเปลี่ยนสภาพ (หรือ 'สลาย') อะตอมโดยสูญเสียเลขมวล 4 และเลขอะตอม 2 เช่น: U \rightarrow Th + He^ Suchocki, John.

ดู อนุภาคแอลฟาและการสลายให้อนุภาคแอลฟา

การแตกตัวด้วยแสง

การแตกตัวด้วยแสง (Photodisintegration (หรือที่เรียกว่า การแปรธาตุด้วยแสง (phototransmutation) เป็นกระบวนการทางฟิสิกส์ที่รังสีแกมมาพลังงานสูงอย่างยื่งยวดถูกดูดซึมโดยนิวเคลียสและทำให้มันเข้าสู่สภาพตื่นตัวซึ่งจะสลายตัวทันทีโดยการปลดปล่อยอนุภาคย่อยออกมา.

ดู อนุภาคแอลฟาและการแตกตัวด้วยแสง

รังสีคอสมิก

ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค รังสีคอสมิก (cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556) ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์ ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่ รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง ที่ 50 จูล รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้ ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J) ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟ.

ดู อนุภาคแอลฟาและรังสีคอสมิก

ลิเทียม

ลิเทียม (Lithium) เป็นธาตุมีสัญลักษณ์ Li และเลขอะตอม 3 ในตารางธาตุ ตั้งอยู่ในกลุ่ม 1 ในกลุ่มโลหะอัลคาไล ลิเทียมบริสุทธิ์ เป็นโลหะที่อ่อนนุ่ม และมีสีขาวเงิน ซึ่งถูกออกซิไดส์เร็วในอากาศและน้ำ ลิเทียมเป็นธาตุของแข็ง ที่เบาที่สุด และใช้มากในโลหะผสมสำหรับการนำความร้อน ในถ่านไฟฉายและเป็นส่วนผสมในยาบางชนิดที่เรียกว่า "mood stabilizer".

ดู อนุภาคแอลฟาและลิเทียม

สารก่อกลายพันธุ์

ัญลักษณ์สากลสำหรับสารก่อกลายพันธุ์, สารก่อมะเร็งและสารพิษต่อระบบสืบพันธุ์ สารก่อกลายพันธุ์ (mutagen) คือสารที่สามารถเปลี่ยนสารพันธุกรรม โดยเฉพาะดีเอ็นเอของสิ่งมีชีวิตและเพิ่มความถี่ของการกลายพันธุ์จนเกินระดับปกติ การกลายพันธุ์หลายแบบก่อให้เกิดโรคมะเร็ง สารก่อกลายพันธุ์จึงมักถูกจัดอยู่ในกลุ่มสารก่อมะเร็ง อย่างไรก็ตาม สารก่อกลายพันธุ์บางชนิด เช่น โซเดียมอะไซด์ไม่ก่อให้เกิดโรคมะเร็ง การกลายพันธุ์ที่ไม่ได้เกิดจากสารก่อกลายพันธุ์เรียกว่า "การกลายพันธุ์แบบเกิดเอง" (spontaneous mutations) ซึ่งเกิดได้จากความผิดพลาดของกระบวนการไฮโดรไลซิส การถ่ายแบบดีเอ็นเอและการรวมกลุ่มใหม่ของยีน.

ดู อนุภาคแอลฟาและสารก่อกลายพันธุ์

สารก่อมะเร็ง

ัญลักษณ์เตือน"สารเคมีนี้อาจเป็นสารก่อมะเร็ง" สารก่อมะเร็ง (carcinogen) หมายถึง สาร วัตถุ นิวไคลด์กัมมันตรังสี หรือการแผ่รังสีใดๆ ที่เป็นตัวกระตุ้นที่ก่อให้เกิดมะเร็ง ซึ่งเกิดจากการเปลี่ยนแปลงเสถียรภาพของจีโนม หรือการรบกวนกระบวนการสร้างและสลายในระดับเซลล์ ธาตุกัมมันตรังสีบางชนิดก็ถูกจัดให้เป็นสารก่อมะเร็ง ซึ่งการกระตุ้นนั้นจะมาจากรังสีที่แผ่ออกมา อาทิ รังสีแกมมาหรืออนุภาคแอลฟา สารก่อมะเร็งอย่างหนึ่งที่รู้จักโดยทั่วไปคือ ควันบุหรี.

ดู อนุภาคแอลฟาและสารก่อมะเร็ง

หมู่เกาะแห่งเสถียรภาพ

Z.

ดู อนุภาคแอลฟาและหมู่เกาะแห่งเสถียรภาพ

หน่วยไทย

หน่วยไทย เป็นหลักในการวัดความยาว น้ำหนัก พื้นที่ ปริมาตร ในประเทศไทย ซึ่งมีการวัดความยาวมาแต่สมัยก่อน ประเทศไทยได้มีการปรับเปลี่ยนมาใช้ หน่วยเอสไอ เป็นมาตรฐานตั้งแต่วันที่ 17 ธันวาคม..

ดู อนุภาคแอลฟาและหน่วยไทย

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ดู อนุภาคแอลฟาและอนุภาคย่อยของอะตอม

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ดู อนุภาคแอลฟาและดาวฤกษ์

ซีเวอร์ต

ซีเวอร์ต (sievert, Sv) เป็นหน่วยอนุพันธ์เอสไอของปริมาณรังสีสมมูล มันจะแสดงถึงผลทางชีวภาพของรังสีตรงข้ามกับลักษณะทางกายภาพซึ่งเป็นลักษณะของปริมาณรังสีดูดซึมโดยวัดเป็นหน่วยเกรย์ ซีเวอร์ตได้ชื่อตาม รอล์ฟ ซีเวอร์ต (Rolf Sievert) นักฟิสิกส์การแพทย์ชาวสวีเดนที่อุทิศตนเพื่อศึกษาผลของรังสีที่มีต่อสิ่งมีชีวิต.

ดู อนุภาคแอลฟาและซีเวอร์ต

ปฏิกิริยานิวเคลียร์

4) 2 ตัว โปรตอนถูกแสดงด้วยลูกกลมสีแดง และนิวตรอนถูกแสดงด้วยลูกกลมสีน้ำเงิน ปฏิกิริยานิวเคลียร์ (Nuclear reaction) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ หมายถึงกระบวนการที่นิวเคลียส 2 ตัวของอะตอมเดียวกัน หรือนิวเคลียสของอะตอมหนึ่งและอนุภาคย่อย ของอีกอะตอมหนึ่งจากภายนอกอะตอมนั้น ชนกัน ทำให้เกิดนิวเคลียสใหม่หนึ่งตัวหรือมากกว่าหนึ่งตัวที่มีจำนวนอนุภาคย่อยแตกต่างจากนิวเคลียสที่เริ่มต้นกระบวนการ ดังนั้นปฏิกิริยานิวเคลียร์จะต้องทำให้เกิดการเปลี่ยนแปลงของอย่างน้อยหนึ่งนิวไคลด์ ไปเป็นอย่างอื่น หากนิวเคลียสหนึ่งมีปฏิกิริยากับอีกนิวเคลียสหนึ่งหรืออนุภาคอื่นและพวกมันก็แยกออกจากกันโดยไม่มีการเปลี่ยนแปลงลักษณะของนิวไคลด์ใด ๆ กระบวนการนี้เป็นแต่เพียงประเภทหนึ่งของการกระเจิงของนิวเคลียสเท่านั้น ไม่ใช่ปฏิกิริยานิวเคลียร์ ในหลักการ ปฏิกิริยาสามารถเกิดขึ้นจากการชนกันของอนุภาคมากกว่าสองอนุภาค แต่เป็นไปได้น้อยมากที่นิวเคลียสมากกว่าสองตัวจะมาชนกันในเวลาเดียวกันและสถานที่เดียวกัน เหตุการณ์ดังกล่าวจึงเป็นของหายากเป็นพิเศษ (ดูกระบวนการสามอัลฟา ซึ่งเป็นตัวอย่างหนึ่งที่ใกล้เคียงกับการเกิดปฏิกิริยานิวเคลียร์สามเส้า) "ปฏิกิริยานิวเคลียร์" เป็นคำที่หมายความถึงการเปลี่ยนแปลงที่"ถูกเหนี่ยวนำให้เกิด"ในนิวไคลด์ ดังนั้นมันจึงไม่สามารถนำไปใช้กับการสลายกัมมันตรังสีชนิดใด ๆ ได้ (เพราะโดยคำจำกัดความแล้ว การสลายกัมมันตรังสีเป็นกระบวนการที่เกิดขึ้นเอง) ปฏิกิริยานิวเคลียร์ในธรรมชาติจะเกิดขึ้นจากการปฏิสัมพันธ์ระหว่างรังสีคอสมิกและสสาร และปฏิกิริยานิวเคลียร์สามารถถูกประดิษฐ์ขึ้นเพื่อให้ได้พลังงานนิวเคลียร์ในอัตราที่ปรับได้ตามความต้องการ บางทีปฏิกิริยานิวเคลียร์ที่โดดเด่นมากที่สุดจะเป็นปฏิกิริยาลูกโซ่นิวเคลียร์ในวัสดุที่แตกตัวได้ (fissionable material) เพื่อเหนี่ยวนำให้เกิดปฏิกิริยานิวเคลียร์ฟิชชั่นและปฏิกิริยานิวเคลียร์ฟิวชันต่างๆขององค์ประกอบเบาที่ผลิตพลังงานให้กับดวงอาทิตย์และดวงดาวทั้งหลาย ทั้งสองประเภทในการเกิดปฏิกิริยานี้ถูกใช้ในการผลิตอาวุธนิวเคลียร.

ดู อนุภาคแอลฟาและปฏิกิริยานิวเคลียร์

ปริมาณรังสีสมมูล

ปริมาณรังสีสมมูล (equivalent dose, HT) เป็นการวัดค่าปริมาณรังสีต่อเนื้อเยื่อที่ผลกระทบเชิงชีววิทยาสัมพันธ์จะต่างกันเมื่อชนิดของกัมมันตภาพรังสีต่างกัน ปริมาณรังสีสมมูลเป็นปริมาณพื้นฐานน้อยกว่าปริมาณรังสีดูดซึม แต่ในทางชีวภาพมีนัยสำคัญมากกว่า ปริมาณรังสีสมมูลมีหน่วยเป็นซีเวอร์ต และยังมีหน่วยอื่น Röntgen equivalent man (REM หรือ rem) ที่ยังคงใช้กันทั่วไปในสหรัฐอเมริกา แม้ว่ากฎระเบียบให้เปลี่ยนไปใช้ซีเวอร์ต (100 Röntgen equivalent man.

ดู อนุภาคแอลฟาและปริมาณรังสีสมมูล

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ.

ดู อนุภาคแอลฟาและนิวตรอน

นิวไคลด์กัมมันตรังสี

นิวไคลด์กัมมันตรังสี (radionuclide) คืออะตอมที่มีนิวเคลียสที่ไม่เสถียร มีพลังงานสูงมากจนสามารถสร้างอนุภาคกัมมันตรังสีขึ้นใหม่ภายในนิวเคลียสหรือโดยผ่านการแปลงภายในก็ได้ ระหว่างกระบวนการนี้เราจะเรียกว่านิวไคลด์กัมมันตรังสีนั้นกำลังเกิดการสลายให้กัมมันตรังสี ซึ่งทำให้เกิดการเปล่งรังสีแกมมา และ/หรือ อนุภาคย่อยของอะตอม เช่น อนุภาคอัลฟาหรืออนุภาคบีตา การเปล่งรังสีเช่นนี้สามารถเกิดจากการแผ่รังสีจากการแตกตัวเป็นไอออนก็ได้ นิวไคลด์กัมมันตรังสีสามารถเกิดขึ้นเองตามธรรมชาติ หรือถูกสร้างขึ้นได้เช่นกัน นักเคมีและนักฟิสิกส์มักเรียกนิวไคลด์กัมมันตรังสีว่า ไอโซโทปกัมมันตรังสี หรือ radioisotope ไอโซโทปกัมมันตรังสีที่มีครึ่งชีวิตที่เหมาะสมมีบทบาทสำคัญยิ่งในเทคโนโลยีหลายชนิด (เช่น การรักษาด้วยนิวเคลียร์ (nuclear medicine)) อย่างไรก็ดี นิวไคลด์กัมมันตรังสีอาจทำให้เกิดโทษมหันต์ต่อสุขภาพด้วยเช่นกัน.

ดู อนุภาคแอลฟาและนิวไคลด์กัมมันตรังสี

นิวเคลียสของอะตอม

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'.

ดู อนุภาคแอลฟาและนิวเคลียสของอะตอม

แอลฟา

แอลฟา (alpha) หรือ อัลฟา (άλφα, ตัวใหญ่ Α, ตัวเล็ก α) เป็นอักษรกรีกตัวที่ 1 และมีค่าของเลขกรีกเท่ากับ 1.

ดู อนุภาคแอลฟาและแอลฟา

แอลฟา (แก้ความกำกวม)

แอลฟา หรือ อัลฟา (alpha) สามารถหมายถึง.

ดู อนุภาคแอลฟาและแอลฟา (แก้ความกำกวม)

แคลิฟอร์เนียม

แคลิฟอร์เนียม (Californium) คือธาตุที่มีหมายเลขอะตอม 98 และสัญลักษณ์คือ Cf เป็นธาตุโลหะหนักกัมมันตรังสี มีลักษณะสีเงินวาว อยู่ในกลุ่มแอกทิไนด์ (actinide group) แคลิฟอร์เนียมถูกสังเคราะห์ขึ้นครั้งแรกโดยการยิงคูเรียมด้วยอนุภาคแอลฟา (ฮีเลียมไอออน) ธาตุใหม่ที่ได้ตั้งชื่อตามรัฐแคลิฟอร์เนีย Cf-252 เป็นไอโซโทปที่มีครึ่งชีวิตเท่ากับ 2.6 ปี เป็นตัวปลดปล่อยนิวตรอนอย่างรุนแรง และเป็นธาตุกัมมันตรังสีที่อันตรายมาก คลิฟอร์เนียมค้นพบโดย S.G.

ดู อนุภาคแอลฟาและแคลิฟอร์เนียม

ไอโซโทปของพลูโทเนียม

ลูโทเนียม (Pu) ไม่มีไอโซโทปที่เสถียร จึงไม่มีมวลอะตอมพื้นฐาน.

ดู อนุภาคแอลฟาและไอโซโทปของพลูโทเนียม

เมนเดลีเวียม

มนเดลีเวียม (Mendelevium) เป็นธาตุ ในกลุ่มแอกทิไนด์ ที่มีเลขอะตอมเท่ากับ 101 ในตารางธาตุ และมีสัญลักษณ์ธาตุเป็น Md ชื่อมีที่มาจากการตั้งเพื่อเป็นเกียรติแก่ ดมิตรี เมนเดลีฟ (Dmitri Mendeleev) นักเคมีชาวรัสเซีย ผู้ประดิษฐ์ตารางธาตุ เป็นธาตุกัมมันตรังสี ธาตุบริสุทธิ์มีสถานะเป็นของแข็ง ที่ STP สีเงินวาว สังเคราะห์ได้ครั้งแรกโดยการยิงธาตุไอน์สไตเนียม ด้วยอนุภาคแอลฟา) เกิดจาก รวมตัวกับ เป็นที่ STP.

ดู อนุภาคแอลฟาและเมนเดลีเวียม

เรดอน

รดอน (อังกฤษ: Radon) คือธาตุเคมีที่มีหมายเลขอะตอม 86 และสัญลักษณ์คือ Rn เรดอนเป็นธาตุกัมมันตรังสีที่เป็นก๊าซเฉื่อย (radioactive noble gas) ได้จากการแยกสลายธาตุเรเดียม เรดอนเป็นก๊าซที่หนักที่สุดและเป็นอันตรายต่อสุขภาพ ไอโซโทปของเรดอนคือ Rn-222 ใช้ในงานรักษาผู้ป่วยแบบเรดิโอเธอราปี (radiotherapy) ก๊าซเรดอนที่สะสมในบ้านเป็นสาเหตุของโรคมะเร็งปอดและทำให้ผู้ป่วยในสหภาพยุโรปเสียชีวิตปีละ 20,000 คน เรดอนถูกสร้างขึ้นโดยผ่านกระบวนการอีกขั้นหนึ่งของการย่อยสลายธาตุกัมมันตรังสีทั่วไป โดยที่ธอเรียมและยูเรเนียมซึ่งเป็นธาตุกัมมันตภาพดึกดำบรรพ์ที่มีอยู่ตั้งแต่ครั้งที่โลกเริ่มก่อตัวขึ้น ได้เกิดการสลายตัวของธาตุและให้ผลเป็นธาตุเรเดียม และการสลายตัวของเรเดียมจึงทำให้เกิดธาตุเรดอน ซึ่งเมื่อเรดอนสลายตัว ก็ทำให้เกิดธาตุ radon  daughter อันเป็นชื่อเรียกของธาตุกัมมันตรังสีใหม่ที่ได้มา ซึ่งต่างจากเรดอนที่มีสถานะเป็นแก๊ซตรงที่มีสถานะเป็นของแข็งและเกาะติดกับพื้นผิว.

ดู อนุภาคแอลฟาและเรดอน

เลขมวล

ลขมวล (mass number, A), หรือ เลขมวลอะตอม หรือ เลขนิวคลีออน เป็นผลรวมของจำนวนโปรตอนและนิวตรอน (โปรตอนและนิวตรอมเรียกรวมกันว่านิวคลีออน) ในนิวเคลียสอะตอม เพราะโปรตอนและนิวตรอนต่างก็เป็นแบริออน เลขมวล A ก็คือเลขแบริออน B ของนิวเคลียสของอะตอมหรือไอออน เลขมวลจะต่างกันถ้าเป็นไอโซโทปที่ต่างกันของธาตุเคมี เลขมวลไม่เหมือนกับเลขอะตอม (Z) ที่แสดงถึงจำนวนโปรตอนในนิวเคลียสและสามารถใช้ระบุบธาตุได้ ดังนั้นค่าที่ต่างกันระหว่างเลขมวลและเลขอะตอมจะบ่งบอกถึงจำนวนนิวตรอน (N) ในนิวเคลียส: N.

ดู อนุภาคแอลฟาและเลขมวล

4

4 (สี่) เป็นจำนวน ตัวเลข และเป็นชื่อของสัญลักษณ์ภาพ เป็นจำนวนธรรมชาติที่อยู่ถัดจาก 3 (สาม) และอยู่ก่อนหน้า 5 (ห้า).

ดู อนุภาคแอลฟาและ4

หรือที่รู้จักกันในชื่อ รังสีอัลฟา