โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

ระดับอุณหภูมิของนิวตรอน

ดัชนี ระดับอุณหภูมิของนิวตรอน

ระดับอุณหภูมิของนิวตรอน (neutron temperature) หรือ พลังงานนิวตรอน (neutron energy) จะแสดง พลังงานจลน์ ของ นิวตรอนอิสระ มีหน่วยเป็น อิเล็กตรอนโวลท์ คำว่า "อุณหภูมิ" ถูกใช้เพราะนิวตรอนร้อน(hot neutron), นิวตรอนความร้อน (thermal neutron) และนิวตรอนเย็น (cold neutron) ถูก หน่วง ในตัวกลางหนึ่งที่มีอุณหภูมิระดับหนึ่ง จากนั้นการกระจายพลังงานของนิวตรอนจะถูกปรับให้เป็นไปตาม การกระจายตัวแบบแมกซ์เวลล์-โบลส์แมนน์ หรือ Maxwellian distribution ที่เรียกว่าการเคลื่อนที่เชิงความร้อน (thermal motion) ในเชิงปริมาณ อุณหภูมิยิ่งสูง พลังงานจลน์ของนิวตรอนอิสระก็ยิ่งมาก พลังงานจลน์, ความเร็ว และ ความยาวคลื่นของนิวตรอน มีความสัมพันธ์ที่เป็นไปตาม ความสัมพันธ์ของเดอเบรย (De Broglie relation).

10 ความสัมพันธ์: พลูโทเนียมการบำบัดด้วยการจับยึดนิวตรอนการหักเหนิวตรอนยูเรเนียมเสริมสมรรถนะตัวหน่วงนิวตรอนปฏิกิริยานิวเคลียร์นิวตรอนแหล่งกำเนิดนิวตรอนไอโซโทปของพลูโทเนียมเครื่องปฏิกรณ์ความร้อนนิวตรอน

พลูโทเนียม

ลูโทเนียม (Plutonium) เป็นธาตุที่มีเลขอะตอม 94 และสัญลักษณ์ คือ Pu เป็นธาตุโลหะกัมมันตรังสี เป็นโลหะแอกทิไนด์สีขาวเงิน และจะมัวลงเมื่อสัมผัสอากาศซึ่งเกิดจากการรวมตัวกับออกซิเจน โดยปกติ พลูโทเนียมมี 6 ไอโซโทป และ 4 สถานะออกซิเดชัน สามารถเกิดปฏิกิริยาทางเคมีกับคาร์บอน ฮาโลเจน ไนโตรเจน และซิลิกอน เมื่อสัมผัสอากาศชื้นจะสร้างสารประกอบออกไซด์และไฮไดรด์มากกว่า 70 % ของปริมาตรซึ่งจะแตกออกเป็นผงแป้งที่สามารถติดไฟได้เอง พลูโทเนียมมีพิษที่เกิดจากการแผ่รังสีที่จะสะสมที่ไขกระดูก นอกจากนี้ยังมีคุณสมบัติอื่น ๆ ที่ทำให้การจัดการพลูโทเนียมเป็นเรื่องที่อันตรายมาก ไอโซโทปที่สำคัญของพลูโทเนียม คือ พลูโทเนียม-239 ซึ่งมีครึ่งชีวิต 24,100 ปี พลูโทเนียม-239 และ 241 เป็นวัสดุฟิสไซล์ ซึ่งหมายความว่านิวเคลียสของอะตอมสามารถแตกตัว โดยการชนของนิวตรอนความร้อนเคลื่อนที่ช้า ซึ่งจะปลดปล่อยพลังงาน รังสีแกมมา และนิวตรอนจำนวนมาก ด้วยเหตุนี้ จึงสามารถเกิดปฏิกิริยาลูกโซ่นิวเคลียร์ได้ นำไปสู่การประยุกต์สร้างอาวุธนิวเคลียร์และเครื่องปฏิกรณ์นิวเคลียร์ ไอโซโทปที่เสถียรที่สุด คือ พลูโทเนียม-244 ซึ่งมีครึ่งชีวิตประมาณ 80 ล้านปี นานพอที่จะสามารถพบได้ในธรรมชาติ พลูโทเนียม-238 มีครึ่งชีวิต 88 ปี และปลดปล่อยอนุภาคแอลฟาออกมา มันเป็นแหล่งความร้อนของเครื่องผลิตไฟฟ้าด้วยความร้อนจากไอโซโทปรังสี ซึ่งใช้ในการให้พลังงานในยานอวกาศ พลูโทเนียม-240 มีอัตราของการแตกตัวของนิวเคลียสของอะตอมด้วยตัวเองสูง เป็นการเพิ่มอัตรานิวตรอนพื้นฐานของตัวอย่างที่มีไอโซโทปนี้ประกอบอยู่ด้วย การมีอยู่ของ Pu-240 เป็นข้อจำกัดสมรรถภาพของพลูโทเนียมที่ใช้ในอาวุธหรือแหล่งพลังงานและเป็นตัวกำหนดเกรดของพลูโทเนียม: อาวุธ (19%) ธาตุลำดับที่ 94 สังเคราะห์ได้เป็นครั้งแรกในปี..

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและพลูโทเนียม · ดูเพิ่มเติม »

การบำบัดด้วยการจับยึดนิวตรอน

การบำบัดด้วยการจับยึดนิวตรอน (Neutron capture therapy (NCT)) เป็นการรักษาโรคแบบไม่รุกล้ำ(เข้าในร่างกาย)เพื่อรักษาเนื้องอกร้ายแรงแบบแพร่กระจายเป็นที่ เช่นเนื้องอกในสมองหลักและมะเร็งที่หัวและลำคอกำเริบ มีสองขั้นตอนได้แก่: ขั้นตอนแรก ผู้ป่วยจะถูกฉีดด้วยยาที่ใช้กำหนดตำแหน่งเนื้องอก ยานี้จะประกอบด้วยไอซโทปไม่มีกัมมันตภาพรังสีที่มีความโน้มเอียงหรือภาคตัดขวาง (ฟิสิกส์) (σ) สูงต่อการจับยึดนิวตรอนช้า ตัวแทนการจับยึด (capture agent) จะมีภาคตัดขวางมากกว่าหลายเท่าเมื่อเทียบกับขององค์ประกอบอื่น ๆ ที่ปรากฏอยู่ในเนื้อเยื่อต่าง ๆ เช่นไฮโดรเจน ออกซิเจน และไนโตรเจน ในขั้นตอนที่สอง ผู้ป่วยจะปล่อยรังสีนิวตรอนเอพิเทอร์มัล ซึ่งหลังจากการสูญเสียพลังงานเมื่อพวกมันเจาะข้าไปในเนื้อเยื่อ รังสีเอพิเทอร์มัลจะถูกดูดซึมโดยตัวแทนการจับยึดซึ่งภายหลังก็ปลดปล่อยอนุภาคพลังงานสูงที่มีประจุออกมา ด้วยเหตุนี้จึงส่งผลให้เกิดปฏิกิริยานิวเคลียร์แบบทำลายล้างทางชีวภาพ (รูปที่ 1) ทั้งหมดของประสบการณ์ทางคลินิกกับ NCT จนถึงวันนี้จะทำกับไอโซโทปของโบรอน-10ที่ไม่มีกัมมันตรังสี และถูกเรียกว่าการบำบัดด้วยการจับยึดนิวตรอนจากธาตุโบรอน (BNCT) ในเวลานี้ การใช้ไอโซโทปที่ไม่มีกัมมันตรังสีอื่น ๆ เช่น gadolinium ได้ถูกจำกัด และจนถึงปัจจุบัน มันก็ยังไม่ได้ถูกนำมาใช้ในทางคลินิก.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและการบำบัดด้วยการจับยึดนิวตรอน · ดูเพิ่มเติม »

การหักเหนิวตรอน

การหักเหนิวตรอน (Neutron diffraction) หรือ กระเจิงนิวตรอนแบบยืดหยุ่น (elastic neutron scattering) เป็นการประยุกต์ใช้การกระเจิงนิวตรอนในการกำหนดโครงสร้างของอะตอมและ/หรือโครงสร้างทางแม่เหล็กของวัสดุ ตัวอย่างที่จะทำการตรวจสอบจะถูกวางอยู่ในลำแสงของนิวตรอนความร้อนหรือนิวตรอนเย็นเพื่อสร้างรูปแบบการหักเหที่จะบอกข้อมูลของโครงสร้างของวัสดุนั้น เทคนิคนี้จะคล้ายกับการหักเหของรังสีเอกซ์แต่เนื่องจากคุณสมบัติการกระเจิงที่แตกต่างกันของพวกมัน นิวตรอนและรังสีเอกซ์จึงให้ข้อมูลที่เสริมกัน หมวดหมู่:การเลี้ยวเบน หมวดหมู่:นิวตรอน.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและการหักเหนิวตรอน · ดูเพิ่มเติม »

ยูเรเนียมเสริมสมรรถนะ

ัดส่วนของยูเรเนียม-238 (ฟ้า) และยูเรเนียม-235 (แดง) ที่พบตามธรรมชาติกับเกรดเสริมสมรรถนะ ยูเรเนียมเสริมสมรรถนะ (Enriched uranium) เป็นยูเรเนียมชนิดหนึ่งซึ่งอัตราส่วนของยูเรเนียม-235 มีปริมาณสูงขึ้นด้วยวิธีการการแยกไอโซโทป (isotope separation) ยูเรเนียมตามธรรมชาติมีไอโซโทป 238U อยู่ 99.284% และมี 235U ประมาณ 0.711% ของน้ำหนัก 235U เป็นเพียงไอโซโทปที่มีอยู่ในธรรมชาติ (ในผลรวมที่พอประเมินค่าได้) ไอโซโทปเดียวที่เป็นวัสดุฟิสไซล์กับนิวตรอนความร้อน ยูเรเนียมเสริมสมรรถนะเป็นส่วนประกอบที่สำคัญในเครื่องกำเนิดไฟฟ้าพลังงานนิวเคลียร์และอาวุธนิวเคลียร์ สำนักงานพลังงานปรมาณูระหว่างประเทศจึงพยายามที่จะดูแลและควบคุมอุปทานของยูเรเนียมเสริมสมรรถนะและดำเนินการในผลกระทบของเครื่องกำเนิดไฟฟฟ้าพลังงานนิวเคลียร์เพื่อให้แน่ใจถึงความปลอดภัยและควบคุมการเพิ่มจำนวนของอาวุธนิวเคลียร์ ในระหว่างโครงการแมนฮัตตัน ยูเรเนียมเสริมสมรรถนะถูกตังชื่อรหัสว่า oralloy (โอราลลอย) มาจากการย่อคำของ Oak Ridge alloy (โลหะเจือโอ๊ก ริดจ์) ซึ่งเป็นที่ตั้งของโรงงานสมรรถนะยูเรเนียมเสริม คำว่า oralloy บางครั้งยังคงถูกใช้เรียกยูเรเนียมเสริมสมรรถนะ มียูเรเนียมเสริมสมรรถนะเกรดสูงอยู่ประมาณ 2,000 ตันในโลก ส่วนมากถูกผลิตขึ้นสำหรับอาวุธนิวเคลียร์, แรงขับเคลื่อนของเรือ, และจำนวนน้อยๆสำหรับการวิจัยเครื่องปฏิกรณ์นิวเคลียร์ 238U ที่เหลือหลังจากการเสริมสมรรถนะหรือที่เรียกว่าหางยูเรเนียม (depleted uranium, DU) ซึ่งถูกพิจารณาว่ามีกัมมันตภาพรังสีน้อยกว่ายูเรเนียมธรรมชาติ หางยูเรเนียมจะถูกนำไปผลิตเป็นกระสุนเจาะ หรือใช้เป็นเกราะสะท้อนนิวตรอนในเครื่องปฏิกรณ์นิวเคลียร์และในระเบิดนิวเคลียร์ หรือใช้ถ่วงท้องเรือเดินสมุทรป้องกันเรือโคลง ใช้ถ่วงสมดุลในเครื่องบิน.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและยูเรเนียมเสริมสมรรถนะ · ดูเพิ่มเติม »

ตัวหน่วงนิวตรอน

ใน วิศวกรรมนิวเคลียร์ ตัวหน่วงนิวตรอน (neutron moderator) เป็นตัวกลางที่ช่วยลดความเร็วของ นิวตรอนเร็ว โดยเปลี่ยนพวกมันให้เป็น นิวตรอนความร้อน ที่สามารถสร้างความยั่งยืนให้กับ ปฏิกิริยาลูกโซ่นิวเคลียร์ ที่ใช้ ยูเรเนียม-235 หรือ นิวไคลด์ อื่นที่ทำ ฟิชชัน ได้ที่คล้ายกัน ตัวหน่วงที่ใช้กันทั่วไป ได้แก่ น้ำปกติ (เบา) (ใช้ประมาณ 75% ของเครื่องปฏิกรณ์นิวเคลียร์ของโลก) แท่ง แกรไฟต์ (20% ของเครื่องปฏิกรณ์นิวเคลียร์) และ น้ำหนัก (5% ของเครื่องปฏิกรณ์นิวเคลียร์) เบริลเลียม ก็ได้ถูกนำมาใช้ในรูปแบบเพื่อการทดลองบางอย่าง และพวก ไฮโดรคาร์บอน ก็ได้รับการแนะนำว่ามีความเป็นไปได้อีกตัวหนึ่ง.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและตัวหน่วงนิวตรอน · ดูเพิ่มเติม »

ปฏิกิริยานิวเคลียร์

4) 2 ตัว โปรตอนถูกแสดงด้วยลูกกลมสีแดง และนิวตรอนถูกแสดงด้วยลูกกลมสีน้ำเงิน ปฏิกิริยานิวเคลียร์ (Nuclear reaction) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ หมายถึงกระบวนการที่นิวเคลียส 2 ตัวของอะตอมเดียวกัน หรือนิวเคลียสของอะตอมหนึ่งและอนุภาคย่อย ของอีกอะตอมหนึ่งจากภายนอกอะตอมนั้น ชนกัน ทำให้เกิดนิวเคลียสใหม่หนึ่งตัวหรือมากกว่าหนึ่งตัวที่มีจำนวนอนุภาคย่อยแตกต่างจากนิวเคลียสที่เริ่มต้นกระบวนการ ดังนั้นปฏิกิริยานิวเคลียร์จะต้องทำให้เกิดการเปลี่ยนแปลงของอย่างน้อยหนึ่งนิวไคลด์ ไปเป็นอย่างอื่น หากนิวเคลียสหนึ่งมีปฏิกิริยากับอีกนิวเคลียสหนึ่งหรืออนุภาคอื่นและพวกมันก็แยกออกจากกันโดยไม่มีการเปลี่ยนแปลงลักษณะของนิวไคลด์ใด ๆ กระบวนการนี้เป็นแต่เพียงประเภทหนึ่งของการกระเจิงของนิวเคลียสเท่านั้น ไม่ใช่ปฏิกิริยานิวเคลียร์ ในหลักการ ปฏิกิริยาสามารถเกิดขึ้นจากการชนกันของอนุภาคมากกว่าสองอนุภาค แต่เป็นไปได้น้อยมากที่นิวเคลียสมากกว่าสองตัวจะมาชนกันในเวลาเดียวกันและสถานที่เดียวกัน เหตุการณ์ดังกล่าวจึงเป็นของหายากเป็นพิเศษ (ดูกระบวนการสามอัลฟา ซึ่งเป็นตัวอย่างหนึ่งที่ใกล้เคียงกับการเกิดปฏิกิริยานิวเคลียร์สามเส้า) "ปฏิกิริยานิวเคลียร์" เป็นคำที่หมายความถึงการเปลี่ยนแปลงที่"ถูกเหนี่ยวนำให้เกิด"ในนิวไคลด์ ดังนั้นมันจึงไม่สามารถนำไปใช้กับการสลายกัมมันตรังสีชนิดใด ๆ ได้ (เพราะโดยคำจำกัดความแล้ว การสลายกัมมันตรังสีเป็นกระบวนการที่เกิดขึ้นเอง) ปฏิกิริยานิวเคลียร์ในธรรมชาติจะเกิดขึ้นจากการปฏิสัมพันธ์ระหว่างรังสีคอสมิกและสสาร และปฏิกิริยานิวเคลียร์สามารถถูกประดิษฐ์ขึ้นเพื่อให้ได้พลังงานนิวเคลียร์ในอัตราที่ปรับได้ตามความต้องการ บางทีปฏิกิริยานิวเคลียร์ที่โดดเด่นมากที่สุดจะเป็นปฏิกิริยาลูกโซ่นิวเคลียร์ในวัสดุที่แตกตัวได้ (fissionable material) เพื่อเหนี่ยวนำให้เกิดปฏิกิริยานิวเคลียร์ฟิชชั่นและปฏิกิริยานิวเคลียร์ฟิวชันต่างๆขององค์ประกอบเบาที่ผลิตพลังงานให้กับดวงอาทิตย์และดวงดาวทั้งหลาย ทั้งสองประเภทในการเกิดปฏิกิริยานี้ถูกใช้ในการผลิตอาวุธนิวเคลียร.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและปฏิกิริยานิวเคลียร์ · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและนิวตรอน · ดูเพิ่มเติม »

แหล่งกำเนิดนิวตรอน

ต้นกำเนิดนิวตรอน (neutron source) หมายถึงอุปกรณ์ต่างๆที่ปลดปล่อยนิวตรอนออกมา ไม่จำกัดแค่เครื่องกลไกที่ใช้สร้างนิวตรอนเท่านั้น ตัวแปรต่างๆของต้นกำเนิดนิวตรอนนั้นขึ้นกับ พลังของนิวตรอนที่ปล่อยออกมาจากต้นกำเนิด อัตราการปลดปล่อยนิวตรอนของต้นกำเนิด ขนาดของต้นกำเนิด ราคาการดูแลรักษาต้นกำเนิด และ ข้อบังคับทางราชการที่เกี่ยวข้องกับต้นกำเนิด อุปกรณ์นี้มีใช้ในหลากหลายสาขา ไม่ว่าจะเป็นฟิสิกส์ วิศวกรรม เวชกรรม อาวุธนิวเคลียร์ การสำรวจปิโตรเลียม ชีววิทยา เคมี พลังงานนิวเคลียร์ และ อุตสาหกรรมอื่น.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและแหล่งกำเนิดนิวตรอน · ดูเพิ่มเติม »

ไอโซโทปของพลูโทเนียม

ลูโทเนียม (Pu) ไม่มีไอโซโทปที่เสถียร จึงไม่มีมวลอะตอมพื้นฐาน.

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและไอโซโทปของพลูโทเนียม · ดูเพิ่มเติม »

เครื่องปฏิกรณ์ความร้อนนิวตรอน

รื่องปฏิกรณ์ความร้อนนิวตรอน (Thermal-neutron reactor) คือ เครื่องปฏิกรณ์นิวเคลียร์แบบใช้ช้าหรือความร้อนนิวตรอน ("ความร้อน" ที่นี้ไม่ได้หมายความถึงความร้อนในทางความรู้สึกจริง แต่หมายถึงในทางสภาพสมดุลทางความร้อนด้วยปฏิกิริยาระดับกลางของเชื้อเพลงเครื่องปฏิกรณ์ ตัวหน่วงความเร็ว และโครงสร้าง ซึ่งมีพลังงานต่ำกว่านิวตรอนเร็วที่เป็นผลิตภัณฑ์ขั้นต้นของการแบ่งแยกนิวเคลียส (ฟิชชัน)) ในเครื่องปฏิกรณ์โรงไฟฟ้านิวเคลียร์ส่วนมากเป็นเครื่องปฏิกรณ์ความร้อนและใข้ตัวหน่วงนิวตรอนในการลดความเร็วนิวตรอน จนกว่ามันจะเข้าใกล้พลังงานจลน์โดยเฉลี่ยของอนุภาคโดยรอบ นั่นคือเพื่อลดความเร็วของนิวตรอนให้ความร้อนนิวตรอนต่ำลง นิวตรอนไม่มีประจุไฟฟ้าช่วยให้พวกมันทะลวงลึกลงไปถึงเป้าหมายและใกล้กับนิวเคลียสได้Squires, G.L. (2012, March 29).

ใหม่!!: ระดับอุณหภูมิของนิวตรอนและเครื่องปฏิกรณ์ความร้อนนิวตรอน · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

ระดับความร้อนของนิวตรอน

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »