โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

พลังงานศักย์

ดัชนี พลังงานศักย์

ในฟิสิกส์ พลังงานศักย์ (Potential energy) คือ พลังงานที่มีในวัตถุเนื่องด้วยตำแหน่งในสนามแรง หรือมีในระบบนั้นเนื่องด้วยการกำหนดค่าในส่วนนั้น ชนิดของพลังงานศักย์ที่พบได้บ่อยคือ พลังงานศักย์โน้มถ่วงของวัตถุที่ขึ้นอยู่กับมวลและตำแหน่งแนวดิ่ง พลังงานศักย์ยืดหยุ่น ของสปริงที่ยืดหยุ่น และพลังงานศักย์ไฟฟ้าของประจุในสนามไฟฟ้า หน่วยเอสไอของพลังงานนี้คือ จูล (สัญลักษณ์คือ J).

18 ความสัมพันธ์: พลศาสตร์ของไหลพลังงานพลังงานยึดเหนี่ยวกลศาสตร์แบบลากรางจ์การก่อตัวของดาวฤกษ์การเก็บพลังงานระดับพลังงานแฟร์มีหลุมพลังงานอะตอมข้อตกลงสำหรับเครื่องหมายพาสซีฟงาน (ฟิสิกส์)ปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชันน้ำตาลแรงแผ่นดินไหวไฟฟ้าเพนดูลัมผกผันเคมีการคำนวณ

พลศาสตร์ของไหล

ลศาสตร์ของไหล(Fluid dynamics) เป็นสาขาวิชาการย่อยของกลศาสตร์ของไหล ที่ศึกษาการเคลื่อนที่ของของไหล ซึ่งหมายรวมถึงของเหลวและแก๊ส โดยพลศาสตร์ของไหลยังแบ่งแยกย่อยออกเป็นหลายสาขาวิชา เช่น อากาศพลศาสตร์ ที่ศึกษาการเคลื่อนที่ของอากาศ และพลศาสตร์ของเหลวที่ศึกษาการเคลื่อนที่ของของเหลว เราใช้พลศาสตร์ของไหลในหลายวิธี เช่นในการคำนวณแรงและโมเมนต์บนอากาศยาน ในการหาอัตราการไหลของมวลของปิโตรเลียมผ่านท่อ คาดคะเนแบบรูปของสภาพอากาศ ทำความเข้าใจเนบิวลาและสสารระหว่างดาว ตลอดจนงานคอมพิวเตอร์กราฟิก.

ใหม่!!: พลังงานศักย์และพลศาสตร์ของไหล · ดูเพิ่มเติม »

พลังงาน

ฟ้าเป็นการเปลี่ยนแปลงพลังงาน รูปแบบหนึ่งที่สามารถมองเห็นได้ ฟ้าผ่าครั้งหนึ่ง อาจมีพลังงานศักย์ไฟฟ้า 500 megajoules ถูกเปลี่ยนให้เป็นพลังงานแสง พลังงานเสียงและพลังงานความร้อน พลังงาน หมายถึงความสามารถซึ่งมีอยู่ในตัวของสิ่งที่อาจให้แรงงานได้ หรือ Energy เป็นกำลังงานที่ใช้ในช่วงเวลาหนึ่ง หรือระยะทางหนึ่ง มีค่าเป็น จูล หรือ Joule ในทางฟิสิกส์ พลังงานเป็นหนึ่งในคุณสมบัติเชิงปริมาณพื้นฐานที่อธิบายระบบทางกายภาพหรือสถานะของวัตถุ พลังงานสามารถเปลี่ยนรูป (แปลงรูป) ได้หลายรูปแบบที่แต่ละแบบอาจจะชัดเจนและสามารถวัดได้ในหลายรูปแบบที่แตกต่างกัน กฎของการอนุรักษ์พลังงานระบุว่า พลังงาน (ทั้งหมด) ของระบบสามารถเพิ่มหรือลดได้โดยการถ่ายโอนเข้าหรือออกจากระบบเท่านั้น พลังงานทั้งหมดของระบบใด ๆ สามารถคำนวณได้โดยการรวมกันอย่างง่าย ๆ เมื่อมันประกอบด้วยชิ้นส่วนที่ไม่มีการปฏิสัมพันธ์ทั้งหลายหรือมีหลายรูปแบบของพลังงานที่แตกต่างกัน รูปแบบของพลังงานทั่วไปประกอบด้วยพลังงานจลน์ของวัตถุเคลื่อนที่, พลังงานที่แผ่รังสีออกมาโดยแสงและการแผ่รังสีของแม่เหล็กไฟฟ้าอื่น ๆ และประเภทต่าง ๆ ของพลังงานศักย์ เช่นแรงโน้มถ่วงและความยืดหยุ่น ประเภททั่วไปของการถ่ายโอนและการเปลี่ยนแปลงพลังงานประกอบด้วยกระบวนการ เช่นการให้ความร้อนกับวัสดุ, การปฏิบัติงานทางกลไกบนวัตถุ, การสร้างหรือการใช้พลังงานไฟฟ้า และปฏิกิริยาทางเคมีจำนวนมาก หน่วยของการวัดพลังงานมักจะถูกกำหนดโดยผ่านกระบวนการของการทำงาน งานที่ทำโดยสิ่งหนึ่งบนอีกสิ่งหนึ่งถูกกำหนดไว้ในฟิสิกส์ว่า เป็นแรง (หน่วย SI: นิวตัน) ที่ทำโดยสิ่งนั้นคูณด้วย ระยะทาง (หน่วย SI: เมตร) ของการเคลื่อนไหวเพื่อต่อสู้กับแรงที่กระทำโดยฝ่ายตรงข้าม ดังนั้น หน่วยพลังงานเป็นนิวตัน-เมตร หรือที่เรียกว่า จูล หน่วย SI ของกำลัง (พลังงานต่อหน่วยเวลา) เป็นวัตต์ หรือแค่ จูลต่อวินาที ดังนั้น จูลเท่ากับ วัตต์-วินาที หรือ 3600 จูลส์เท่ากับหนึ่งวัตต์-ชั่วโมง หน่วยพลังงาน CGS เป็น เอิร์ก, และหน่วยอิมพีเรียลและสหรัฐอเมริกาเป็น ฟุตปอนด์ หน่วยพลังงานอื่น ๆ เช่น อิเล็กตรอนโวลต์, แคลอรี่อาหารหรือกิโลแคลอรีอุณหพลศาสตร์ (ขึ้นอยู่กับการเปลี่ยนแปลงอุณหภูมิของน้ำในกระบวนการให้ความร้อน) และ บีทียู ถูกใช้ในพื้นที่เฉพาะของวิทยาศาสตร์และการพาณิชย์ และมีปัจจัยการแปลงหน่วยที่เกี่ยวข้องให้เป็น จูล พลังงานศักย์เป็นพลังงานที่ถูกเก็บไว้โดยอาศัยอำนาจตามตำแหน่งของวัตถุในสนามพลังเช่นสนามแรงโน้มถ่วง, สนามไฟฟ้าหรือสนามแม่เหล็ก ตัวอย่างเช่น การยกวัตถุที่ต้านกับแรงโน้มถ่วงทำงานบนวัตถุและเก็บรักษาพลังงานที่มีศักยภาพของแรงโน้มถ่วง ถ้ามันตก แรงโน้มถ่วงไม่ได้ทำงานบนวัตถุซึ่งแปลงพลังงานศักย์ให้เป็นพลังงานจลน์ที่เกี่ยวข้องกับความเร็ว บางรูปแบบเฉพาะของพลังงานได้แก่พลังงานยืดหยุ่นเนื่องจากการยืดหรือการเปลี่ยนรูปของวัตถุของแข็ง, พลังงานเคมีเช่นที่ถูกปล่อยออกมาเมื่อเผาไหม้น้ำมันเชื้อเพลิงและพลังงานความร้อน, พลังงานจลน์และพลังงานศักย์ขนาดเล็ก ๆ ของการเคลื่อนไหวที่ไม่มีทิศทางของอนุภาคทำให้เป็นเรื่องขึ้นมา ไม่ใช่ทั้งหมดของพลังงานในระบบจะสามารถถูกเปลี่ยนหรือถูกโอนโดยกระบวนการของงาน; ปริมาณที่สามารถจะถูกปลี่ยนหรือถูกโอนเรียกว่าพลังงานที่มีอยู่ โดยเฉพาะอย่างยิ่งกฎข้อที่สองของอุณหพลศาสตร์จะจำกัดปริมาณของพลังงานความร้อนที่สามารถถูกเปลี่ยนให้เป็นพลังงานรูปอื่น ๆ พลังงานรูปแบบเชิงกลและอื่น ๆ สามารถถูกเปลี่ยนในทิศทางอื่น ๆ ให้เป็นพลังงานความร้อนโดยไม่มีข้อจำกัดดังกล่าว วัตถุใด ๆ ที่มีมวลเมื่อหยุดนิ่ง (จึงเรียกว่ามวลนิ่ง) มีพลังงานนิ่งที่สามารถคำนวณได้โดยใช้สมการ ของ Albert Einstein E.

ใหม่!!: พลังงานศักย์และพลังงาน · ดูเพิ่มเติม »

พลังงานยึดเหนี่ยว

ลังงานยึดเหนี่ยว (Binding energy) คือพลังงานที่ต้องใช้เพื่อแยกระบบสมบูรณ์หนึ่งให้เป็นชิ้นส่วนออกจากกัน ระบบที่ยึดเหนี่ยวเข้าด้วยกันโดยทั่วไปมีพลังงานศักย์ที่ต่ำกว่าผลรวมของชิ้นส่วนที่ประกอบมันขึ้นมา นี่คือพลังงานที่จะรักษาให้ระบบติดอยู่ด้วยกัน มักจะหมายความว่าพลังงานจะถูกปล่อยออกไปในการสร้างสภาวะการยึดเหนี่ยว คำจำกัดความนี้จะสอดคล้องกับพลังงานยึดเหนี่ยวเชิงบวก.

ใหม่!!: พลังงานศักย์และพลังงานยึดเหนี่ยว · ดูเพิ่มเติม »

กลศาสตร์แบบลากรางจ์

กลศาสตร์แบบลากรางจ์ (Lagrangian Machanics) เป็นกลศาสตร์แบบหนึ่งที่อยู่ภายในขอบเขตของกลศาสตร์ดั้งเดิม (Classical Machanics)เช่นเดียวกับกฎของนิวตัน ซึ่งกฎข้อที่สองของนิวตันสามารถทำนายการเคลื่อนที่ของวัตถุโดยมีหัวใจสำคัญ คือ การหาแรงลัพธ์ที่กระทำต่อวัตถุ และโดยทั่วไปปัญหาทางกลศาสตร์มีความซับซ้อนค้อนข้างมาก เช่นการเคลื่อนที่ของวัตถุบนผิวทรงกลม เมื่อการคำนวณหาแรงลัพธ์มีความยากลำบาก กลศาสตร์ของนิวตันจึงไม่เหมาะสมที่จะนำมาศึกษากลศาสตร์ที่มีความซับซ้อนได้ แนวคิดด้านกลศาสตร์แบบใหม่ที่เข้ามาอธิบายกลศาสตร์ที่มีความซับซ้อน คือ กลศาสตร์ลากรางจ์ ถูกเสนอในปี 1788 โดย นักคณิตศาสตร์ชาวฝรั่งเศส - อิตาลี โจเซฟ หลุยส์ ลากรองจ์ (Joseph Louis Lagrange, 1736-1813) ในปี 2331 การคำนวณแบบกลศาสตร์ลากรางจ์สามารถนำไปประยุกต์ใช้กับการเคลื่อนที่แบบต่างๆ ที่มีความซับซ้อนและแก้ปัญหาด้วยกลศาสตร์นิวตันได้ยาก เช่น ปัญหาเพนดูลัมที่มีมวลมากกว่า 1 อัน ความง่ายของกลศาสตร์นี้ คือ ไม่ใช้แรงในการคำนวณ แต่จะใช้พิกัดทั่วไปและระบบพลังงานในการแก้ปัญหา เนื่องจากพลังงานเป็นปริมาณสเกลาร์การคำนวณจึงง่ายกว่าการแก้ปัญหาแบบเวกเตอร์ กลศาสตร์แบบลากรางจ์สามารถพัฒนารูปแบบสมการจนไปถึงสมการความหนาแน่นลากรานจ์ (Lagrangian density) การที่จะได้มาซึ่งกลศาสตร์ลากรางจ์มีอยู่ 3 วิธี 1) การพิสูจน์สมการลากรานจ์จากกฎข้อที่สองของนิวตัน (Newton’s second law) 2) การพิสูจน์สมการลากรานจ์จากหลักการดาล็องแบร์ (D’Alembert Principle) 3) พิสูจน์จากหลักการของฮามิลตัน (Hamilton’s Principle).

ใหม่!!: พลังงานศักย์และกลศาสตร์แบบลากรางจ์ · ดูเพิ่มเติม »

การก่อตัวของดาวฤกษ์

กกล้องฮับเบิล ซึ่งรู้จักกันในชื่อ ''เสาหลักแห่งการสร้าง'' อันเป็นบริเวณที่เป็นแหล่งก่อตัวดาวฤกษ์ภายในเนบิวลานกอินทรี การก่อตัวของดาวฤกษ์ คือกระบวนการที่ส่วนหนาแน่นมากๆ ในเมฆโมเลกุลเกิดการยุบตัวลงกลายเป็นลูกกลมพลาสมาเพื่อก่อตัวขึ้นเป็นดาวฤกษ์ ในฐานะสาขาหนึ่งในการศึกษาดาราศาสตร์ การก่อตัวของดาวฤกษ์ยังรวมไปถึงการศึกษาสสารระหว่างดาวและเมฆโมเลกุลยักษ์ ในฐานที่เป็นสื่อกลางในกระบวนการก่อตัวของดาว และการศึกษาวัตถุดาวฤกษ์อายุน้อยและการก่อตัวของดาวเคราะห์ด้วย ทฤษฎีการก่อตัวของดาวฤกษ์นอกจากศึกษาเกี่ยวกับการกำเนิดดาวฤกษ์เดี่ยวแล้ว ยังรวมไปถึงการศึกษาทางสถิติเกี่ยวกับดาวคู่และฟังก์ชันมวลตั้งต้น.

ใหม่!!: พลังงานศักย์และการก่อตัวของดาวฤกษ์ · ดูเพิ่มเติม »

การเก็บพลังงาน

Pumped-storage hydroelectricity) ในเวลส์. สถานีพลังงานที่อยู่ต่ำลงไปมีกังหันน้ำสี่ชุดที่สามารถผลิตไฟฟ้าได้ทั้งหมด 360 เมกะวัตต์เป็นเวลาหลายชั่วโมง, เป็นตัวอย่างหนึ่งของการจัดเก็บและการแปลงพลังงานแบบประดิษฐ์ การเก็บพลังงาน (Energy storage) สามารถทำได้โดยอุปกรณ์หรือตัวกลางทางกายภาพเพื่อนำมาใช้ในกระบวนการที่เป็นประโยชน์ในภายหลัง, อุปกรณ์เก็บพลังงานบางครั้งเรียกว่าตัวสะสมพลังงาน (accumulator).

ใหม่!!: พลังงานศักย์และการเก็บพลังงาน · ดูเพิ่มเติม »

ระดับพลังงานแฟร์มี

ระดับพลังงานแฟร์มี (Fermi level) คือระดับพลังงานศักย์ของอิเล็กตรอนภายในของแข็งแบบผลึกในสมมุติฐานทางทฤษฎี การที่อิเล็กตรอนอยู่ในระดับพลังงานนี้จะหมายความว่า อิเล็กตรอนนั้นมีพลังงานศักย์เป็น \epsilon ซึ่งมีค่าเท่ากับพลังงานศักย์เคมี \mu ค่าทั้งสองนี้อยู่ในฟังก์ชันการกระจายตัวของแฟร์มี-ดิแรก (Fermi-Dirac distribution function) ซึ่งสามารถคำนวณความน่าจะเป็นที่อิเล็กตรอนซึ่งมีพลังงาน \epsilon สามารถครอบครองสถานะควอนตัมของอนุภาคเดี่ยวหนึ่งๆ ภายในของแข็งดังกล่าวนั้น T หมายถึง อุณหภูมิสัมบูรณ์ และ k คือค่าคงตัวของโบลทซ์มานน.

ใหม่!!: พลังงานศักย์และระดับพลังงานแฟร์มี · ดูเพิ่มเติม »

หลุมพลังงาน

หลุมพลังงาน (potential well) คือบริเวณหนึ่งที่ล้อมรอบด้วยระดับพลังงานศักย์ต่ำสุดในย่านนั้น พลังงานที่ติดอยู่ในหลุมพลังงานจะไม่สามารถแปลงไปเป็นพลังงานในรูปแบบอื่นได้ (เช่น พลังงานจลน์ ในกรณีของหลุมพลังงานความโน้มถ่วง) เนื่องจากมันถูกกักเอาไว้ในขอบเขตหลุมพลังงานต่ำสุดในย่านนั้น ดังนั้นวัตถุจึงไม่สามารถข้ามผ่านระดับพลังงานต่ำสุดได้ดังที่เป็นไปตามธรรมชาติของเอนโทรปี.

ใหม่!!: พลังงานศักย์และหลุมพลังงาน · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: พลังงานศักย์และอะตอม · ดูเพิ่มเติม »

ข้อตกลงสำหรับเครื่องหมายพาสซีฟ

ประกอบของ "ทิศทางอ้างอิง" ของกระแส ('''''i''''') แรงดันไฟฟ้า ('''''v''''') และกำลังไฟฟ้า ('''''p''''') เป็นตัวแปรที่ใช้ในข้อตกลงสำหรับสัญลักษณ์พาสซีฟ ถ้ากระแสบวกถูกกำหนดให้ไหลเข้าที่ขั้วไฟฟ้าซึ่งถูกกำหนดให้มีแรงดันบวก ดังนั้นกำลังไฟฟ้าบวกจะหมายถึงกำลังไฟฟ้าที่ไหลเข้าสู่อุปกรณ์ (''ลูกศรขนาดใหญ่'') ในสาขา วิศวกรรมไฟฟ้า, ข้อตกลงเครื่องหมายพาสซีฟ (Passive sign convention (PSC)) เป็นข้อตกลงเกี่ยวกับเครื่องหมายหรือกฎมาตรฐานที่ถูกพัฒนาขึ้นมาใช้อย่างกว้างขวางโดยชุมชนวิศวกรรมไฟฟ้าเพื่อกำหนดเครื่องหมายของ กำลังไฟฟ้า (electric power) ในวงจรไฟฟ้าหนึ่ง ข้อกำหนดนี้ได้กำหนดให้กำลังไฟฟ้าที่ไหลออกมาจากวงจร เข้า ไปใน ชิ้นส่วนไฟฟ้า มีเครื่องหมายเป็นบวก และกำลังไฟฟ้าที่ไหลเข้าไปในวงจร ออก จากชิ้นส่วนไฟฟ้าหนึ่ง มีเครื่องหมายเป็นลบ ดังนั้น ชิ้นส่วนที่เป็น พาสซีฟ ซึ่งบริโภคกำลังไฟฟ้าเช่นเครื่องใช้ไฟฟ้าหรือหลอดไฟ จะมีการกระจายพลังงาน (power dissipation) เป็น บวก ในขณะที่ชิ้นส่วนที่เป็นแอคทีฟ ได้แก่แหล่งจ่ายพลังงานเช่นเครื่องกำเนิดไฟฟ้าหรือแบตเตอรี่ จะมีการกระจายพลังงานเป็น ลบ นี่คือการกำหนดมาตรฐานของการใช้พลังงานในวงจรไฟฟ้า เพื่อให้สอดคล้องกับข้อตกลง ทิศทางของตัวแปร แรงดัน และ กระแส ที่ใช้ในการคำนวณกำลังไฟฟ้าและความต้านทานในชิ้นส่วน จะต้องมีความสัมพันธ์ที่แน่นอน ตัวแปรกระแสจะต้องถูกกำหนดเพื่อที่ว่ากระแสบวกจะเข้าทางขั้วแรงดันไฟฟ้าบวกของอุปกรณ์ ทิศทางเหล่านี้อาจแตกต่างจากทิศทางของการไหลของกระแสและแรงดันไฟฟ้าที่เกิดขึ้นจริง.

ใหม่!!: พลังงานศักย์และข้อตกลงสำหรับเครื่องหมายพาสซีฟ · ดูเพิ่มเติม »

งาน (ฟิสิกส์)

งาน หรือ งานเชิงกล ในทางฟิสิกส์ คือปริมาณของพลังงานซึ่งถูกส่งมาจากแรงที่กระทำต่อวัตถุให้เคลื่อนที่ไปได้ระยะทางขนาดหนึ่ง งานเป็นปริมาณสเกลาร์เช่นเดียวกับพลังงาน มีหน่วยเอสไอเป็นจูล คำศัพท์ งาน (work) ที่ใช้อธิบายพลังงานเช่นนี้บัญญัติโดย Gaspard-Gustave Coriolis นักคณิตศาสตร์ชาวฝรั่งเศส ทฤษฎีบทงาน-พลังงาน กล่าวว่า ถ้ามีแรงภายนอกมากระทำต่อวัตถุคงรูป ซึ่งทำให้พลังงานจลน์ของวัตถุเปลี่ยนจาก Ek1 เป็น Ek2 ดังนั้นงานเชิงกล W หาได้จากสูตรดังนี้ เมื่อ m คือมวลของวัตถุ และ v คือความเร็วของวัตถุ ถ้าแรง F ที่กระทำต่อวัตถุ ส่งผลให้วัตถุนั้นเคลื่อนที่ไปเป็นระยะทาง d และทิศทางของแรงขนานกับการกระจัด งานที่เกิดขึ้นต่อวัตถุนั้นก็สามารถคำนวณได้จากขนาดของแรง F คูณด้วย d Resnick, Robert and Halliday, David (1966), Physics, Section 7-2 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No.

ใหม่!!: พลังงานศักย์และงาน (ฟิสิกส์) · ดูเพิ่มเติม »

ปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชัน

การขนถ่ายอิเล็กตรอนในไมโทคอนเดรียของยูคาริโอต และการสร้าง ATP ปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชัน (Oxidative phosphorylation) เป็นวิถีเมแทบอลิซึมซึ่งใช้พลังงานที่ปลดปล่อยออกมาจากปฏิกิริยาออกซิเดชันของสารอาหารเพื่อสร้างอะดีโนซีนไตรฟอสเฟต (ATP) ซึ่งเป็นโมเลกุลที่เก็บสะสมพลังงานเพื่อใช้ในเมแทบอลิซึม แม้สิ่งมีชีวิตต่าง ๆ บนโลกจะใช้สารอาหารต่างกัน แต่สิ่งมีชีวิตที่อาศัยออกซิเจนแทบทุกชนิดล้วนเกิดปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชันเพื่อสร้าง ATP สาเหตุที่วิถีนี้พบได้แพร่หลายอาจเป็นเพราะมันเป็นวิถีที่ทรงประสิทธิภาพในการปลดปล่อยพลังงาน เมื่อเทียบกับกระบวนการการหมักทางเลือก เช่น ไกลโคไลสิสแบบไม่ใช้ออกซิเจน (anaerobic glycolysis) ระหว่างปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชัน อิเล็กตรอนจะถูกขนส่งจากตัวให้อิเล็กตรอนไปยังตัวรับอิเล็กตรอน เช่น ออกซิเจน ในปฏิกิริยารีดอกซ์ ปฏิกิริยารีดอกซ์เหล่านี้ปลดปล่อยพลังงาน ซึ่งถูกใช้เพื่อสร้าง ATP ในยูคาริโอต ปฏิกิริยารีดอกซ์เหล่านี้ดำเนินโดยโปรตีนคอมเพลกซ์ภายในผนังระหว่างเยื่อหุ้มไมโทคอนเดรีย ขณะที่ในโปรคาริโอต โปรตีนเหล่านี้พบได้ในช่องว่างระหว่างเยื่อหุ้มเซลล์ ชุดโปรตีนที่เกี่ยวโยงกันนี้เรียกว่า ลูกโซ่ของการขนส่งอิเล็กตรอน (electron transport chain) ในยูคาริโอต มีโปรตีนคอมเพลกซ์จำนวนห้าคอมเพลกซ์เข้ามาเกี่ยวข้อง ขณะที่ในโปรคาริโอต อาจพบเอนไซม์หลายชนิด โดยใช้ตัวให้และรับอิเล็กตรอนที่หลากหลาย พลังงานที่อิเล็กตรอนปลดปล่อยออกมาและไหลผ่านลูกโซ่ของการขนส่งอิเล็กตรอนนี้ถูกนำไปใช้เพื่อขนส่งอิเล็กตรอนข้ามเยื่อหุ้มชั้นในของไมโทคอนเดรีย ในกระบวนการที่เรียกว่า เคมิออสโมซิส (chemiosmosis) ซึ่งสร้างพลังงานศักย์ในรูปของความแตกต่าง (gradient) ของค่า pH และศักย์ไฟฟ้าข้ามเยื่อหุ้มนี้ การเก็บสะสมพลังงานดังกล่าวจะลดลงเมื่อโปรตอนไหลกลับผ่านเยื่อหุ้มและลดความแตกต่างนี้ ผ่านเอนไซม์ขนาดใหญ่ที่เรียกว่า เอทีพีซินเทส (ATP synthase) เอนไซม์นี้ใช้พลังงานดังกล่าวเพื่อสร้าง ATP จากอะดีโนซีนไดฟอสเฟต (ADP) ในปฏิกิริยาฟอสโฟรีเลชัน ปฏิกิริยานี้ถูกขับเคลื่อนโดยการไหลของโปรตอน ซึ่งทำให้เกิดการหมุนบางส่วนของเอนไซม์ เอทีพีซินเทสเป็นมอเตอร์กลแบบหมุน แม้ว่า ปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชันจะเป็นส่วนสำคัญของเมแทบอลิซึม แต่ปฏิกิริยาดังกล่าวก็ผลิตออกซิเจนที่เกิดปฏิกิริยาได้ (reactive oxygen) อย่างซูเพอร์ออกไซด์และไฮโดรเจนเพอร์ออกไซด์ ซึ่งนำไปสู่การแพร่กระจายของอนุมูลอิสระ ซึ่งก่อให้เกิดความเสียหายแก่เซลล์ และเป็นสาเหตุหนึ่งของโรคภัยต่าง ๆ และอาจรวมถึงการสูงวัย (ภาวะสู่วัยชรา) ด้วย ยาและพิษหลายชนิดมีฤทธิ์ยับยั้งกิจกรรมของเอนไซม์ที่ดำเนินวิถีเมแทบอลิซึม.

ใหม่!!: พลังงานศักย์และปฏิกิริยาออกซิเดทีฟฟอสโฟรีเลชัน · ดูเพิ่มเติม »

น้ำตาล

องน้ำตาลดิบ (ไม่ขัดและไม่ฟอกขาว) น้ำตาล เป็นชื่อเรียกทั่วไปของคาร์โบไฮเดรตชนิดละลายน้ำ โซ่สั้น และมีรสหวาน ส่วนใหญ่ใช้ประกอบอาหาร น้ำตาลเป็นคาร์โบไฮเดรตที่ประกอบด้วยธาตุคาร์บอน ไฮโดรเจน และออกซิเจน มีน้ำตาลหลายชนิดเกิดมาจากที่มาหลายแหล่ง น้ำตาลอย่างง่ายเรียกว่าโมโนแซ็กคาไรด์และหมายรวมถึงกลูโคส (หรือ เด็กซ์โตรส) ฟรุกโตส และกาแลกโตส น้ำตาลโต๊ะหรือน้ำตาลเม็ดที่ใช้เป็นอาหารคือซูโครส เป็นไดแซ็กคาไรด์ชนิดหนึ่ง (ในร่างกาย ซูโครสจะรวมตัวกับน้ำแล้วกลายเป็นฟรุกโตสและกลูโคส) ไดแซ็กคาไรด์ชนิดอื่นยังรวมถึงมอลโตส และแลกโตสด้วย โซ่ของน้ำตาลที่ยาวกว่าเรียกว่า โอลิโกแซ็กคาไรด์ สสารอื่น ๆ ที่แตกต่างกันเชิงเคมีอาจมีรสหวาน แต่ไม่ได้จัดว่าเป็นน้ำตาล บางชนิดถูกใช้เป็นสารทดแทนน้ำตาลที่มีแคลอรีต่ำ เรียกว่าเป็น วัตถุให้ความหวานทดแทนน้ำตาล (artificial sweeteners) น้ำตาลพบได้ทั่วไปในเนื้อเยื่อของพืช แต่มีเพียงอ้อย และชูการ์บีตเท่านั้นที่พบน้ำตาลในปริมาณความเข้มข้นเพียงพอที่จะสกัดออกมาได้อย่างมีประสิทธิภาพ อ้อยหมายรวมถึงหญ้ายักษ์หลายสายพันธุ์ในสกุล Saccharum ที่ปลูกกันในเขตร้อนอย่างเอเชียใต้ และเอเชียตะวันออกเฉียงใต้ ตั้งแต่สมัยโบราณ การขยายการผลิตเกิดขึ้นในคริสศตวรรษที่ 18 พร้อมกับการสร้างไร่น้ำตาลในเวสต์อินดีส และอเมริกา เป็นครั้งแรกที่คนทั่วไปได้ใช้น้ำตาลเป็นสิ่งที่ให้ความหวานแทนน้ำผึ้ง ชูการ์บีต โตเป็นพืชมีรากในที่ที่มีอากาศเย็นกว่าและเป็นแหล่งที่มาส่วนใหญ่ของน้ำตาลในศตวรรษที่ 19 หลังจากมีวิธีสกัดน้ำตาลเกิดขึ้นหลายวิธี การผลิตและการค้าน้ำตาลเปลี่ยนแปลงไปตามวิถีชีวิตของมนุษย์ มีอิทธิพลต่อการก่อตั้งอาณานิคม การมีอยู่ของทาส การเปลี่ยนผ่านไปสู่สัญญาแรงงาน การย้ายถิ่นฐาน สงครามระหว่างชาติที่ครอบครองน้ำตาลในศตวรรษที่ 19 การรวมชนชาติและโครงสร้างทางการเมืองของโลกใหม่ โลกผลิตน้ำตาลประมาณ 168 ล้านตันในปี..

ใหม่!!: พลังงานศักย์และน้ำตาล · ดูเพิ่มเติม »

แรง

ในทางฟิสิกส์ แรง คือ อันตรกิริยาใด ๆ เมื่อไม่มีการขัดขวางแล้วจะเปลี่ยนแปลงการเคลื่อนที่ของวัตถุไป แรงที่สามารถทำให้วัตถุซึ่งมีมวลเปลี่ยนแปลงความเร็ว (ซึ่งรวมทั้งการเคลื่อนที่จากภาวะหยุดนิ่ง) กล่าวคือ ความเร่ง ซึ่งเป็นผลมาจากการใช้พลังงาน แรงยังอาจหมายถึงการผลักหรือการดึง แรงเป็นปริมาณที่มีทั้งขนาดหรือทิศทาง วัดได้ในหน่วยของนิวตัน โดยใช้สัญลักษณ์ทั่วไปเป็น F ตามกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน กล่าวว่าแรงลัพธ์ที่กระทำต่อวัตถุมีค่าเท่ากับอัตราของโมเมนตัมที่เปลี่ยนแปลงไปตามเวลา ถ้ามวลของวัตถุเป็นค่าคงตัว จากกฎข้อนี้จึงอนุมานได้ว่าความเร่งเป็นสัดส่วนโดยตรงกับแรงลัพธ์ที่กระทำต่อวัตถุในทิศทางของแรงลัพธ์และเป็นสัดส่วนผกผันกับมวลของวัตถุ แนวคิดเกี่ยวกับแรง ได้แก่ แรงขับซึ่งเพิ่มความเร็วของวัตถุให้มากขึ้น แรงฉุดซึ่งลดความเร็วของวัตถุ และทอร์กซึ่งทำให้เกิดการเปลี่ยนแปลงความเร็วในการหมุนของวัตถุ ในวัตถุที่มีส่วนขยาย แรงที่ทำกระทำคือแรงที่กระทำต่อส่วนของวัตถุที่อยู่ติดกัน การกระจายตัวของแรงดังกล่าวเป็นความเครียดเชิงกล ซึ่งไม่ทำให้เกิดความเร่งของวัตถุมื่อแรงสมดุลกัน แรงที่กระจายตัวกระทำบนส่วนเล็ก ๆ ของวัตถุอาจเรียกได้ว่าเป็นความดัน ซึ่งเป็นความเคลียดอย่างหนึ่งและถ้าไม่สมดุลอาจทำให้วัตถุมีความเร่งได้ ความเครียดมักจะทำให้วัตถุเกิดการเสียรูปของวัตถุที่เป็นของแข็งหรือการไหลของของไหล.

ใหม่!!: พลังงานศักย์และแรง · ดูเพิ่มเติม »

แผ่นดินไหว

แผนที่โลกแสดงจุดศูนย์กลางแผ่นดินไหวระหว่างปี พ.ศ. 2506–2541 ทั้งสิ้น 358,214 จุด แผ่นดินไหว เป็นปรากฏการณ์สั่นสะเทือนหรือเขย่าของพื้นผิวโลก เพื่อปรับตัวให้อยู่ในสภาวะสมดุล ซึ่งแผ่นดินไหวสามารถก่อให้เกิดความเสียหายและภัยพิบัติต่อบ้านเมือง สิ่งมีชีวิต ส่วนสาเหตุของการเกิดแผ่นดินไหวนั้นส่วนใหญ่เกิดจากธรรมชาติ โดยแผ่นดินไหวบางลักษณะสามารถเกิดจากการกระทำของมนุษย์ได้ แต่มีความรุนแรงน้อยกว่าที่เกิดขึ้นเองจากธรรมชาติ นักธรณีวิทยาประมาณกันว่าในวันหนึ่ง ๆ จะเกิดแผ่นดินไหวประมาณ 1,000 ครั้ง ซึ่งส่วนใหญ่จะเป็นแผ่นดินไหวที่มีการสั่นสะเทือนเพียงเบา ๆ เท่านั้น คนทั่วไปจะไม่รู้สึกถึงแรงสั่นสะเทือน แผ่นดินไหวเป็นปรากฏการณ์ธรรมชาติที่เกิดจากการเคลื่อนที่ของแผ่นเปลือกโลก (แนวระหว่างรอยต่อธรณีภาค) ทำให้เกิดการเคลื่อนตัวของชั้นหินขนาดใหญ่เลื่อน เคลื่อนที่ หรือแตกหักและเกิดการโอนถ่ายพลังงานศักย์ ผ่านในชั้นหินที่อยู่ติดกัน พลังงานศักย์นี้อยู่ในรูปคลื่นไหวสะเทือน ศูนย์เกิดแผ่นดินไหวมักเกิดตามรอยเลื่อน อยู่ในระดับความลึกต่าง ๆ ของผิวโลก เท่าที่เคยวัดได้ลึกสุดอยู่ในชั้นแมนเทิล ส่วนจุดที่อยู่ในระดับสูงกว่า ณ ตำแหน่งผิวโลก เรียกว่า จุดเหนือศูนย์เกิดแผ่นดินไหว โดยการศึกษาเรื่องแผ่นดินไหวและคลื่นสั่นสะเทือนที่ถูกส่งออกมา เรียกว่า วิทยาแผ่นดินไหว เมื่อจุดเหนือศูนย์เกิดแผ่นดินไหวของแผ่นดินไหวขนาดใหญ่อยู่นอกชายฝั่ง อาจเกิดคลื่นสึนามิตามมาได้ นอกจากนี้ แผ่นดินไหวยังอาจก่อให้เกิดดินถล่ม และบางครั้งกิจกรรมภูเขาไฟตามมาได้ แผ่นดินไหววัดโดยใช้การสังเกตจากไซสโมมิเตอร์ (seismometer) มาตราขนาดโมเมนต์เป็นมาตราที่ใช้มากที่สุดซึ่งทั่วโลกรายงานแผ่นดินไหวที่มีขนาดมากกว่าประมาณ 5 สำหรับแผ่นดินไหวอีกจำนวนมากที่ขนาดเล็กกว่า 5 แมกนิจูด สำนักเฝ้าระวังแผ่นดินไหวแต่ละประเทศจะวัดด้วยมาตราขนาดท้องถิ่นเป็นส่วนใหญ่ หรือเรียก มาตราริกเตอร์ สองมาตรานี้มีพิสัยความถูกต้องคล้ายกันในเชิงตัวเลข แผ่นดินไหวขนาด 3 หรือต่ำกว่าส่วนใหญ่แทบไม่รู้สึกหรือรู้สึกได้เบามาก ขณะที่แผ่นดินไหวตั้งแต่ขนาด 7 อาจก่อความเสียหายรุนแรงเป็นบริเวณกว้าง ขึ้นอยู่กับความลึก แผ่นดินไหวขนาดใหญ่ที่สุดในประวัติศาสตร์มีขนาดมากกว่า 9 เล็กน้อย แม้จะไม่มีขีดจำกัดว่าขนาดจะมีได้ถึงเท่าใด แผ่นดินไหวใหญ่ล่าสุดที่มีขนาด 9.0 หรือมากกว่า คือ แผ่นดินไหวขนาด 9.0 ที่ประเทศญี่ปุ่นเมื่อปี 2554 และเป็นแผ่นดินไหวครั้งใหญ่ที่สุดเท่าที่เคยมีการบันทึกในญี่ปุ่น ความรุนแรงของการสั่นสะเทือนวัดโดยมาตราเมร์กัลลีที่ถูกดัดแปลง หากตัวแปรอื่นคงที่ แผ่นดินไหวที่อยู่ตื้นกว่าจะสร้างความเสียหายแก่สิ่งก่อสร้างมากกว่าแผ่นดินไหวที่อยู่ลึกกว.

ใหม่!!: พลังงานศักย์และแผ่นดินไหว · ดูเพิ่มเติม »

ไฟฟ้า

ฟฟ้า (ήλεκτρον; electricity) เป็นชุดของปรากฏการณ์ทางฟิสิกส์ มีที่มาจากภาษากรีกซึ่งในสมัยนั้นหมายถึงผลจากสิ่งที่เกิดขึ้นตามธรรมชาติเนื่องจากการปรากฏตัวและการไหลของประจุไฟฟ้า เช่นฟ้าผ่า, ไฟฟ้าสถิต, การเหนี่ยวนำแม่เหล็กไฟฟ้าและกระแสไฟฟ้า นอกจากนี้ ไฟฟ้ายังทำให้เกิดการผลิตและการรับคลื่นแม่เหล็กไฟฟ้า เช่นคลื่นวิทยุ พูดถึงไฟฟ้า ประจุจะผลิตสนามแม่เหล็กไฟฟ้าซึ่งจะกระทำกับประจุอื่น ๆ ไฟฟ้าเกิดขึ้นได้เนื่องจากหลายชนิดของฟิสิกซ์ดังต่อไปนี้.

ใหม่!!: พลังงานศักย์และไฟฟ้า · ดูเพิ่มเติม »

เพนดูลัมผกผัน

Segway)ได้ เพนดูลัมผกผัน (Inverted pendulum) เป็นปัญหาพื้นฐานที่ใช้ในการเรียนการสอนและในการสาธิตการประยุกต์ทฤษฎีระบบควบคุม เพนดูลัมผกผันเป็นระบบที่มีจุดสมดุลอยู่รอบแกนหมุนด้วยกันสองจุด ได้แก่จุดที่เพนดูลัมตั้งตรงอยู่ในแนวดิ่ง และจุดที่เพนดูลัมอยู่ทิ้งตัวลงในดิ่ง แต่จุดที่มีเสถียรภาพเมื่อไม่มีตัวควบคุมนั้นจะมีจุดเดียวคือ จุดที่แกนทิ้งตัวลงเท่านั้น ไม่ว่าเราจะปล่อยเพนดูลัมที่จุดใดก็ตาม เพนดูลัมจะตกลงสู่จุดนี้เสมอ การที่จะทำให้เพนดูลัมนี้สามารถตั้งตรงในแนวดิ่งได้นั้นขึ้นกับการใส่ตัวควบคุมที่เหมาะสมเข้าไปในระบบซึ่งมีได้หลากหลายวิธี และอีกทั้งยังสามารถออกแบบตัวควบคุมให้เป็นเชิงเส้น หรือแบบไม่เชิงเส้นก็ได้ ทั้งนี้ขึ้นอยู่กับความต้องการของผู้ออกแบบและความเหมะสม.

ใหม่!!: พลังงานศักย์และเพนดูลัมผกผัน · ดูเพิ่มเติม »

เคมีการคำนวณ

มีการคำนวณ (Computational chemistry) เป็นสาขาหนึ่งของเคมีทฤษฎี (theoretical chemistry) มีความคาบเกี่ยวกันระหว่างวิทยาศาสตร์คอมพิวเตอร์ (computer science) วิชาเคมี (chemistry) วิชาฟิสิกส์ และวิชาคณิตศาสตร์วัตถุประสงค์หลักก็คือการใช้แนวคิดทางทฤษฎีที่พิสูจน์ได้ทางฟิสิกส์และเคมีมาออกแบบหรือสร้างระบบจำลองที่มีประสิทธิภาพ ยกตัวอย่างเช่น ระบบจำลองของแข็ง ระบบจำลองดีเอ็นเอ ระบบจำลองโปรตีน เป็น้ตน ซึ่งในการประมาณการ (approximation) ทางคณิตศาสตร์จะใช้โปรแกรมการคำนวณ (computer program) มาคำนวณ เนื่องจากมีความซับซ้อนและความยุ่งยากทางคณิตศาสตร์มากเกินกว่าที่มนุษย์จะกระทำได้ ซึ่งคอมพิวเตอร์สมรรถนะสูงนี้เองที่เป็นเครื่องมือที่ช่วยให้นักเคมีคำนวณลดระยะเวลาในการ simulation ลงอย่างมากอีกด้วย สำหรับสิ่งที่ต้องการจะศึกษาก็มีปลายรูปแบบแตกต่างกันไป ขึ้นกับระบบนั้น ๆ โดยส่วนมากจะใช้คำนวณหรือศึกษาคุณสมบัติของโมเลกุล (molecule) เช่น.

ใหม่!!: พลังงานศักย์และเคมีการคำนวณ · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Potential energy

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »