เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ผิวกำลังสอง

ดัชนี ผิวกำลังสอง

ผิวกำลังสอง หรือ ควอดริก (quadric surface) ในทางคณิตศาสตร์ หมายถึง ผิว (hypersurface) ใน D มิติ ซึ่งกำหนดโดยคำตอบหรือทางเดินรากของสมการพหุนามกำลังสอง (quadratic polynomial) ถ้าเราพิจารณาพิกัด \ ผิวกำลังสองถูกกำหนดด้วยสมการพีชคณิตดังต่อไปนี้ \sum_^D Q_ x_i x_j + \sum_^D P_i x_i + R.

สารบัญ

  1. 2 ความสัมพันธ์: ทรงคล้ายทรงกลมเวกเตอร์ลักษณะเฉพาะ

ทรงคล้ายทรงกลม

ทรงคล้ายทรงกลม หรือ สเฟียรอยด์ (spheroid) ในทางคณิตศาสตร์ หมายถึง ผิวกำลังสอง ใน 3 มิติ ที่ได้จากการหมุนวงรีรอบแกนมุขสำคัญ หากรูปวงรีนั้นหมุนรอบแกนเอก ผิวที่ได้เรียกว่า ทรงคล้ายทรงกลมแบนข้าง (prolate spheroid) ซึ่งมีรูปคล้ายลูกรักบี้ หรือ เมล็ดข้าว หากรูปวงรีนั้นหมุนรอบแกนโท ผิวที่ได้เรียกว่า ทรงคล้ายทรงกลมแบนขั้ว (oblate spheroid) ซึ่งมีรูปเหมือนลูกโลก ทรงคล้ายทรงกลม คือ ทรงรีที่มีแกน(ในภาษาอังกฤษเรียก semi-axis เพื่อแสดงความแตกต่างจาก axis ซึ่งหมายถึงแกน)ของรูปสองแกนยาวเท่ากัน ดังแสดงในสมการ ทรงคล้ายทรงกลมแบนข้าง มี แกนโทสองแกน สั้นกว่า แกนเอกหนึ่งแกน (b.

ดู ผิวกำลังสองและทรงคล้ายทรงกลม

เวกเตอร์ลักษณะเฉพาะ

รูปที่1. 1. ในการส่งแบบไข้ว(shear mapping)ของภาพโมนาลิซา, รูปถูกทำให้ผิดปกติในในทางแกนแนวยืนกึ่งกลางของมัน(เวกเตอร์สีแดง)ไม่เปลี่ยนทิศทาง, แต่เวกเตอร์ทแยงมุม(สีน้ำเงิน)มีการเปลี่ยนทิศทาง ด้วยเหตุนี้เวกเตอร์สีแดงเป็น '''เวกเตอร์ลักษณะเฉพาะ''' ของการแปลง ขณะที่เวกเตอร์สีน้ำเงินนั้นไม่ใช่ เวกเตอร์สีแดงไม่มีการขยายหรือหดตัว '''ค่าลักษณะเฉพาะ ''' ของมันจึงคือ 1 ทุกเวกเตอร์ที่มีทิศทางในแนวยืนที่เหมือนกัน เช่น ขนานกับเวกเตอร์นี้เป็นเวกเตอร์ลักษณะเฉพาะเหมือนกันที่มีค่าลักษณะเฉพาะค่าเดียวกัน พร้อมทั้งเวกเตอร์ศูนย์ จาก '''ปริภูมิลักษณะเฉพาะ''' สำหรับค่าลักษณะเฉพาะนี้ ในทางคณิตศาสตร์การแปลงเชิงเส้น เวกเตอร์ลักษณะเฉพาะ (eigenvector) ของการแปลงเชิงเส้นนั้นต้องเป็นเวกเตอร์ที่ไม่ใช่เวกเตอร์ศูนย์ที่เมื่อนำไปใช้ในการแปลงนั้นจะเปลี่ยนระยะแต่ไม่เปลี่ยนทิศทาง สำหรับทุกเวกเตอร์ลักษณะเฉพาะของการแปลงเชิงเส้น จะมีค่าสเกลาร์ที่เรียกว่า ค่าลักษณะเฉพาะ (eigenvalue) สำหรับเวกเตอร์นั้นซึ่งกำหนดผลรวมเวกเตอร์ลักษณะเฉพาะเป็นมาตราส่วนภายใต้การแปลงเชิงเส้น ตัวอย่างเช่น: ค่าลักษณะเฉพาะเท่ากับ +2 หมายความว่าเวกเตอร์ลักษณะเฉพาะมีความยาวและจุดเป็นเท่าตัวในทิศทางเดิม, ค่าลักษณะเฉพาะเท่ากับ +1 หมายความว่าเวกเตอร์ลักษณะเฉพาะไม่มีการเปลี่ยนแปลง, ในขณะที่ค่าลักษณะเฉพาะเท่ากับ −1 หมายความว่าเวกเตอร์ลักษณะเฉพาะจะมีทิศทางผันกลับ ปริภูมิลักษณะเฉพาะ (eigenspace) ของการแปลงที่ให้มาสำหรับค่าลักษณะเฉพาะเฉพาะส่วนเป็นเซต(ผลการแผ่เชิงเส้น(linear span))ของเวกเตอร์ลักษณะเฉพาะที่ความความสัมพันธ์กับค่าลักษณะเฉพาะนี้ พร้อมทั้งเวกเตอร์ศูนย์(ไม่มีทิศทาง) ในพีชคณิตเชิงเส้น ทุกๆการแปลงเชิงเส้นระหว่างปริภูมิเวกเตอร์มิติอันตะ(finite-dimensional vector spaces)สามารถแสดงอยู่ในรูปของเมทริกซ์ซึ่งเป็นแถวลำดับสี่เหลี่ยมของตัวเลขที่อยู่ในแถวและหลัก วิธีพื้นฐานสำหรับการหา ค่าลักษณะเฉพาะ, เวกเตอร์ลักษณะเฉพาะ, และ ปริภูมิลักษณะเฉพาะ ของเมทริกซ์จะกล่าวถึงอยู่ด้านล่าง มันมีบทบาทหลักในหลายๆสาขาของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ — เป็นส่วนสำคัญในพีชคณิตเชิงเส้น, การวิเคราห์เชิงฟังก์ชัน, และเล็กน้อยในคณิตศาสตร์ไม่เป็นเชิงเส้น วัตถุทางคณิตศาสตร์หลายชนิดสามารถเขียนอยู่ในรูปแบบเวกเตอร์ได้เช่น ฟังก์ชัน, ฮาร์มอนิก, กลศาสตร์ควอนตัม, และความถี่, ในกรณีนี้แนวคิดของทิศทางโดยทั่วไปจะสูญเสียความหมายของมันไป และถูกให้นิยามที่เลื่อนลอย ดังนั้นทิศทางที่ไม่มีตัวตนนี้จะไม่เปลี่ยนแปลงตามการแปลงเชิงเส้นที่ให้มา ถ้าใช้"ไอเกน(eigen)"นำหน้า อย่างใน ฟังก์ชันลักษณะเฉพาะ(eigenfunction), วิธีลักษณะเฉพาะ(eigenmode), สภาวะลักษณะเฉพาะ(eigenstate), และ ความถี่ลักษณะเฉพาะ(eigenfrequency).

ดู ผิวกำลังสองและเวกเตอร์ลักษณะเฉพาะ

หรือที่รู้จักกันในชื่อ ควอดริก