สารบัญ
กฎผลหาร
กฎผลหาร (Quotient rule) เป็นกฎในแคลคูลัส คือวิธีการหาอนุพันธ์ของฟังก์ชัน ซึ่งเป็นผลหาร ของอีกสองฟังก์ชัน ซึ่งหาอนุพันธ์ได้ ถ้าฟังก์ชันที่เราต้องการหาอนุพันธ์ f(x) สามารถเขียนในรูป และ h(x) ≠ 0; ดังนั้น กฎนี้กล่าวว่า อนุพันธ์ของ g(x) / h(x) เท่ากับ ตัวส่วน คูณกับ อนุพันธ์ของ ตัวเศษ ลบกับ ตัวเศษ คูณกับอนุพันธ์ของ ตัวส่วน ทั้งหมดหารด้วยกำลังสองของตัวส่วน ดังนี้ หรือโดยละเอียดกว่านี้แล้ว สำหรับ x ใดๆ ในเซตเปิด ที่มีจำนวน a และ h(a) ≠ 0 และทั้ง g '(a) และ h '(a) หาค่าได้ ดังนั้น f '(a) จะหาค่าได้ดังนี้.
กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ
กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ กอทท์ฟรีด วิลเฮล์ม ฟอน ไลบ์นิซ (Gottfried Wilhelm von Leibniz) (1 กรกฎาคม ค.ศ. 1646 (พ.ศ. 2189) ในเมืองไลพ์ซิจ ประเทศเยอรมนี 1 กรกฎาคม ค.ศ.
ดู กฎผลคูณและกอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ
การหาปริพันธ์ทีละส่วน
ในแคลคูลัส และในคณิตวิเคราะห์ การหาปริพันธ์ทีละส่วน (Integration by parts หรือ Partial Integration) เป็นทฤษฎีบทที่เชื่อมโยงระหว่างปริพันธ์ของผลคูณฟังก์ชันคู่หนึ่ง กับปริพันธ์ของอนุพันธ์และปฏิยานุพันธ์ของฟังก์ชันคู่นั้น มีการหาปริพันธ์วิธีนี้อย่างบ่อยครั้ง โดยการแปลงรูปฟังก์ชันที่หาปฏิยานุพันธ์ยาก แล้วหาปฏิยานุพันธ์ของฟังก์ชันที่หาได้ง่ายกว่า กฎนี้สามารถแปลงให้อยู่ในรูปอย่างง่ายในหนึ่งบรรทัดโดยการหาปริพันธ์ของกฎผลคูณอนุพันธ์ กำหนดให้ และ และกำหนดให้ และ สำหรับการหาปริพันธ์ทีละส่วน จะได้ว่า หรือในรูปที่กระทัดรัดกว.
ดู กฎผลคูณและการหาปริพันธ์ทีละส่วน
อนุพันธ์
กราฟของฟังก์ชันแสดงด้วยเส้นสีดำ และเส้นสัมผัสแสดงด้วยเส้นสีแดง ความชันของเส้นสัมผัสมีค่าเท่ากับอนุพันธ์ของฟังก์ชันที่จุดสีแดง ในวิชาคณิตศาสตร์ อนุพันธ์ของฟังก์ชันของตัวแปรจริงเป็นการวัดการเปลี่ยนแปลงของค่าของฟังก์ชันเทียบกับการเปลี่ยนแปลงของอาร์กิวเมนต์ (ค่าที่ป้อนเข้าหรือตัวแปรต้น) อนุพันธ์เป็นเครื่องมือพื้นฐานของแคลคูลัส ตัวอย่างเช่น อนุพันธ์ของตำแหน่งของวัตถุที่กำลังเคลื่อนที่เทียบกับเวลา คือ ความเร็วของวัตถุนั้น ซึ่งเป็นการวัดว่าตำแหน่งของวัตถุมีการเปลี่ยนแปลงอย่างรวดเร็วเพียงใดเมื่อเวลาผ่านไป อนุพันธ์ของฟังก์ชันตัวแปรเดียวที่ตัวแปรต้นใด ๆ คือความชันของเส้นสัมผัสที่สัมผัสกับกราฟของฟังก์ชันที่จุดนั้น เส้นสัมผัสคือการประมาณเชิงเส้นของฟังก์ชันที่ดีที่สุดใกล้กับตัวแปรต้นนั้น ด้วยเหตุนี้ อนุพันธ์มักอธิบายได้ว่าเป็น "อัตราการเปลี่ยนแปลงขณะใดขณะหนึ่ง" ซึ่งก็คืออัตราส่วนของการเปลี่ยนแปลงขณะใดขณะหนึ่งของตัวแปรตามต่อตัวแปรต้นหรือตัวแปรอิสระ กระบวนการหาอนุพันธ์เรียกว่า การหาอนุพันธ์ (differentiation หรือ การดิฟเฟอเรนชิเอต) ส่วนกระบวนการที่กลับกันเรียกว่า การหาปฏิยานุพันธ์ (antidifferentiation) ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่าการหาปฏิยานุพันธ์เหมือนกันกับการหาปริพันธ์ (integration หรือ การอินทิเกรต) การหาอนุพันธ์และการหาปริพันธ์เป็นตัวดำเนินการพื้นฐานในแคลคูลัสตัวแปรเดียว อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์).
แคลคูลัสกับพหุนาม
แคลคูลัสกับพหุนาม ในคณิตศาสตร์ พหุนามอาจเป็นฟังก์ชันที่ง่ายที่สุดในการทำแคลคูลัส อนุพันธ์ และปริพันธ์เป็นไปตามกฎต่อไปนี้ ดังนั้นอนุพันธ์ของ x^ คือ 100x^ และปริพันธ์ของ x^ คือ \frac+c.