เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

กฎความสัมพันธ์

ดัชนี กฎความสัมพันธ์

กฎความสัมพันธ์ (Association Rules) เป็นกระบวนการหนึ่งในการทำ Data Mining ที่ได้รับความนิยมมาก โดยจะใช้ Association Rules ในการหาความสัมพันธ์ของข้อมูลสองชุดหรือมากกว่าสองชุดขึ้นไปภายในกลุ่มข้อมูลที่มีขนาดใหญ่ ในการหากฎความสัมพันธ์นั้นจะมีขั้นตอนวิธีการหาหลายวิธีด้วยกัน แต่ขั้นตอนวิธีที่เป็นที่รู้จักและใช้อย่างแพร่หลายคือ ขั้นตอนวิธี Apriori ตัวอย่างหนึ่งของ Association Rules ที่ใช้กันก็คือ Market Basket Analysis ที่ใช้ในการหาความสัมพันธ์ของสินค้าที่ลูกค้ามักจะซื้อพร้อมกัน เพื่อใช้ในการจัดรายการส่งเสริมการ.

สารบัญ

  1. 3 ความสัมพันธ์: การทำเหมืองข้อมูลการเรียนรู้ของเครื่องคลังข้อมูล

การทำเหมืองข้อมูล

การทำเหมืองข้อมูล (data mining) หรืออาจจะเรียกว่า การค้นหาความรู้ในฐานข้อมูล (Knowledge Discovery in Databases - KDD) เป็นเทคนิคเพื่อค้นหารูปแบบ (pattern) ของจากข้อมูลจำนวนมหาศาลโดยอัตโนมัติ โดยใช้ขั้นตอนวิธีจากวิชาสถิติ การเรียนรู้ของเครื่อง และ การรู้จำแบบ หรือในอีกนิยามหนึ่ง การทำเหมืองข้อมูล คือ กระบวนการที่กระทำกับข้อมูล(โดยส่วนใหญ่จะมีจำนวนมาก) เพื่อค้นหารูปแบบ แนวทาง และความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้น โดยอาศัยหลักสถิติ การรู้จำ การเรียนรู้ของเครื่อง และหลักคณิตศาสตร์ ความรู้ที่ได้จากการทำเหมืองข้อมูลมีหลายรูปแบบ ได้แก่; กฎความสัมพันธ์ (Association rule): แสดงความสัมพันธ์ของเหตุการณ์หรือวัตถุ ที่เกิดขึ้นพร้อมกัน ตัวอย่างของการประยุกต์ใช้กฎเชื่อมโยง เช่น การวิเคราะห์ข้อมูลการขายสินค้า โดยเก็บข้อมูลจากระบบ ณ จุดขาย (POS) หรือร้านค้าออนไลน์ แล้วพิจารณาสินค้าที่ผู้ซื้อมักจะซื้อพร้อมกัน เช่น ถ้าพบว่าคนที่ซื้อเทปวิดีโอมักจะซื้อเทปกาวด้วย ร้านค้าก็อาจจะจัดร้านให้สินค้าสองอย่างอยู่ใกล้กัน เพื่อเพิ่มยอดขาย หรืออาจจะพบว่าหลังจากคนซื้อหนังสือ ก แล้ว มักจะซื้อหนังสือ ข ด้วย ก็สามารถนำความรู้นี้ไปแนะนำผู้ที่กำลังจะซื้อหนังสือ ก ได้; การจำแนกประเภทข้อมูล (Data classification): หากฎเพื่อระบุประเภทของวัตถุจากคุณสมบัติของวัตถุ เช่น หาความสัมพันธ์ระหว่างผลการตรวจร่างกายต่าง ๆ กับการเกิดโรค โดยใช้ข้อมูลผู้ป่วยและการวินิจฉัยของแพทย์ที่เก็บไว้ เพื่อนำมาช่วยวินิจฉัยโรคของผู้ป่วย หรือการวิจัยทางการแพทย์ ในทางธุรกิจจะใช้เพื่อดูคุณสมบัติของผู้ที่จะก่อหนี้ดีหรือหนี้เสีย เพื่อประกอบการพิจารณาการอนุมัติเงินกู้; การแบ่งกลุ่มข้อมูล (Data clustering): แบ่งข้อมูลที่มีลักษณะคล้ายกันออกเป็นกลุ่ม แบ่งกลุ่มผู้ป่วยที่เป็นโรคเดียวกันตามลักษณะอาการ เพื่อนำไปใช้ประโยชน์ในการวิเคราะห์หาสาเหตุของโรค โดยพิจารณาจากผู้ป่วยที่มีอาการคล้ายคลึงกัน; การสร้างมโนภาพ (Visualization): สร้างภาพคอมพิวเตอร์กราฟิกที่สามารถนำเสนอข้อมูลมากมายอย่างครบถ้วนแทนการใช้ขัอความนำเสนอข้อมูลที่มากมาย เราอาจพบข้อมูลที่ซ้อนเร้นเมื่อดูข้อมูลชุดนั้นด้วยจินตทัศน.

ดู กฎความสัมพันธ์และการทำเหมืองข้อมูล

การเรียนรู้ของเครื่อง

การเรียนรู้ของเครื่อง (machine learning) เป็นสาขาหนึ่งของปัญญาประดิษฐ์ที่พัฒนามาจากการศึกษาการรู้จำแบบ เกี่ยวข้องกับการศึกษาและการสร้างอัลกอริทึมที่สามารถเรียนรู้ข้อมูลและทำนายข้อมูลได้ อัลกอริทึมนั้นจะทำงานโดยอาศัยโมเดลที่สร้างมาจากชุดข้อมูลตัวอย่างขาเข้าเพื่อการทำนายหรือตัดสินใจในภายหลัง แทนที่จะทำงานตามลำดับของคำสั่งโปรแกรมคอมพิวเตอร์ การเรียนรู้ของเครื่องมีเกี่ยวข้องอย่างมากกับสถิติศาสตร์ เนื่องจากทั้งสองสาขาศึกษาการวิเคราะห์ข้อมูลเพื่อการทำนายเช่นกัน นอกจากนี้ยังมีความสัมพันธ์กับสาขาการหาค่าเหมาะที่สุดในทางคณิตศาสตร์ที่แงของวิธีการ ทฤษฎี และการประยุกต์ใช้ การเรียนรู้ของเครื่องสามารถนำไปประยุกต์ใช้งานได้หลากหมาย ไม่ว่าจะเป็นการกรองอีเมล์ขยะ การรู้จำตัวอักษร เครื่องมือค้นหา และคอมพิวเตอร์วิทัศน.

ดู กฎความสัมพันธ์และการเรียนรู้ของเครื่อง

คลังข้อมูล

ลังข้อมูล (data warehouse) คือ ฐานข้อมูลขนาดยักษ์ ที่รวบรวมฐานข้อมูลจากหลายแหล่งหลายช่วงเวลา ซึ่งอาจมี schema แตกต่างกัน มาไว้รวม ณ ที่เดียวกัน (และใช้ schema เดียวกัน).

ดู กฎความสัมพันธ์และคลังข้อมูล