ความคล้ายคลึงกันระหว่าง เส้นโค้งและโทรคอยด์
เส้นโค้งและโทรคอยด์ มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รูปวงกลมไฮโพโทรคอยด์เส้นตรง
รูปวงกลม
รูปวงกลมที่แสดงถึงรัศมี เส้นผ่านศูนย์กลาง จุดศูนย์กลาง และเส้นรอบวง รูปวงกลม (อังกฤษ: circle) เป็นรูปร่างพื้นฐานอันหนึ่งในเรขาคณิตแบบยุคลิด รูปวงกลมเป็นโลกัส (locus) ของจุดทุกจุดบนระนาบที่มีระยะห่างคงตัวกับจุดที่กำหนดอีกจุดหนึ่ง ระยะห่างนั้นเรียกว่ารัศมี และจุดที่กำหนดเรียกว่าจุดศูนย์กลาง สามจุดใดๆ ที่ไม่อยู่บนเส้นตรงเดียวกัน จะสามารถวาดรูปวงกลมผ่านทั้งสามจุดได้เพียงวงเดียว เส้นรอบวง คือเส้นรอบรูปของรูปวงกลม ส่วนโค้ง (arc) คือส่วนหนึ่งที่เชื่อมต่อกันของเส้นรอบวง คอร์ด (chord) คือส่วนของเส้นตรงที่มีจุดปลายทั้งสองบรรจบอยู่บนเส้นรอบวง เส้นผ่านศูนย์กลาง คือคอร์ดที่ลากผ่านจุดศูนย์กลาง มีความยาวเป็นสองเท่าของรัศมี และเป็นคอร์ดที่ยาวที่สุดในรูปวงกลม รูปวงกลมเป็นเส้นโค้ง (curve) แบบปิดที่แบ่งระนาบออกเป็นพื้นที่ภายในกับพื้นที่ภายนอก พื้นที่ภายในรูปวงกลมเรียกว่า จาน (disk) รูปวงกลมเป็นกรณีพิเศษของรูปวงรีที่มีโฟกัส (focus) อยู่ที่จุดเดียวกันนั่นคือจุดศูนย์กลาง นอกจากนี้รูปวงกลมยังเป็นภาคตัดกรวยที่เกิดจากการตัดด้วยระนาบที่ตั้งฉากกับแกนของทรงกรวย เป็นต้น.
รูปวงกลมและเส้นโค้ง · รูปวงกลมและโทรคอยด์ ·
ไฮโพโทรคอยด์
ทรคอยด์ (เส้นสีแดง) เมื่อ ''d'' ไฮโพโทรคอยด์ (เส้นสีแดง) เมื่อ ''d'' > ''r'' ไฮโพโทรคอยด์ (hypotrochoid) คือเส้นโค้งชนิดหนึ่ง สร้างขึ้นจากจุดจุดหนึ่งบนรูปวงกลม ซึ่งอาจอยู่บนเส้นรอบวง ข้างในวง หรือข้างนอกวงก็ได้ แล้วกลิ้งรูปวงกลมพร้อมกับจุดนั้นไปตามขอบ ด้านใน ของรูปวงกลมอีกรูปหนึ่งซึ่งอยู่กับที่ จากรอยเคลื่อนที่ของจุดนั้นจะทำให้ได้เส้นโค้งคล้ายรูปดาว รูปวงรี ดอกไม้ หรือขดสปริงหันออก ไฮโพโทรคอยด์จัดว่าเป็นรูเลตต์ชนิดหนึ่ง.
เส้นโค้งและไฮโพโทรคอยด์ · โทรคอยด์และไฮโพโทรคอยด์ ·
เส้นตรง
้นตรงในระนาบสองมิติ เส้นตรง (อังกฤษ: line) คือเส้นโค้งในแนวตรงโดยสมบูรณ์ (ในทางคณิตศาสตร์ เส้นโค้งมีความหมายรวมถึงเส้นตรงด้วย) ที่มีความยาวเป็นอนันต์ ความกว้างเป็นศูนย์ (ในทางทฤษฎี) และมีจำนวนจุดบนเส้นตรงเป็นอนันต์เช่นกัน ในเรขาคณิตแบบยุคลิด จะมีเส้นตรงเพียงหนึ่งเส้นเท่านั้นที่ผ่านจุดสองจุดใด ๆ และเป็นระยะทางที่สั้นที่สุด การวาดเส้นตรงสามารถทำได้โดยใช้เครื่องมือที่มีสันตรง เช่นไม้บรรทัด และอาจเติมลูกศรลงไปที่ปลายทั้งสองข้างเพื่อแสดงว่ามันมีความยาวเป็นอนันต์ เส้นตรงสองเส้นที่แตกต่างกันในสองมิติสามารถขนานกันได้ ซึ่งหมายความว่าเส้นตรงทั้งสองเส้นนั้นจะไม่ตัดกันที่ตำแหน่งใด ๆ ถึงแม้ต่อความยาวออกไปอีกก็ตาม ส่วนในสามมิติหรือมากกว่านั้น เส้นตรงสองเส้นอาจจะไขว้ข้ามกัน (skew) คือไม่ตัดกันแต่ก็อาจจะไม่ขนานกันด้วย และระนาบสองระนาบที่แตกต่างกันมาตัดกันจะทำให้เกิดเป็นเส้นตรงเพียงหนึ่งเส้น เรียกระนาบเหล่านั้นว่า ระนาบร่วมเส้นตรง (collinear planes) สำหรับจุดสามจุดหรือมากกว่าที่อยู่บนเส้นตรงเดียวกันจะเรียกว่า จุดร่วมเส้นตรง (collinear points).
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ เส้นโค้งและโทรคอยด์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง เส้นโค้งและโทรคอยด์
การเปรียบเทียบระหว่าง เส้นโค้งและโทรคอยด์
เส้นโค้ง มี 11 ความสัมพันธ์ขณะที่ โทรคอยด์ มี 12 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 13.04% = 3 / (11 + 12)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง เส้นโค้งและโทรคอยด์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: