เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

เส้นโค้งและแฟร็กทัล

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง เส้นโค้งและแฟร็กทัล

เส้นโค้ง vs. แฟร็กทัล

เส้นโค้งเปิด เส้นโค้งปิด เส้นโค้ง (curve) หมายถึงจุดทุกจุดที่ต่อเนื่องกันเป็นเส้นโดยไม่มีการขาดตอน เป็นวัตถุหนึ่งมิติ มีรูปร่างอย่างไรก็ได้ บางชนิดอาจนำเสนอได้ในรูปแบบของฟังก์ชันทางคณิตศาสตร์หรือกราฟของฟังก์ชัน ซึ่งอยู่บนระนาบสองมิติหรือไม่ก็ได้ เส้นโค้งแบ่งได้เป็นสองประเภทได้แก่ เส้นโค้งเปิด คือเส้นโค้งที่ไม่มีจุดจบหรือไม่บรรจบกัน เช่น คลื่นรูปไซน์ พาราโบลา และ เส้นโค้งปิด คือเส้นโค้งที่บรรจบกันเป็นรูปปิดหรือลากทับรอยเดิมเป็นวงวน เช่น รูปวงกลม ไฮโพโทรคอยด์ ชนิดของเส้นโค้งจำนวนมากมีการศึกษาในเรขาคณิต ทุกวันนี้เราให้ความหมายว่า "เส้นตรง" ไม่ได้เป็นเส้นโค้ง แต่ในทางคณิตศาสตร์ ทั้งเส้นตรงและส่วนของเส้นตรงก็คือเส้นโค้งที่ไม่มีความโค้งนั่นเอง สำหรับส่วนโค้งอาจเรียกได้ว่าเป็น "ส่วนของเส้นโค้ง" หมายถึงส่วนหนึ่งของเส้นโค้งที่สามารถหาอนุพันธ์ได้ หมวดหมู่:เรขาคณิต หมวดหมู่:ทอพอโลยี. แฟร็กทัล จาก เซตมานดัลบรอ, วาดโดยการพล็อตสมการวนซ้ำไปเรื่อย ๆ แฟร็กทัล (Fractal) ในปัจจุบันเป็นคำที่ใช้ในเชิงวิทยาศาสตร์และคณิตศาสตร์ หมายถึง วัตถุทางเรขาคณิต ที่มีคุณสมบัติคล้ายตนเอง คือ ดูเหมือนกันไปหมด (เมื่อพิจารณาจากแง่ใดแง่หนึ่ง) ไม่ว่าจะดูที่ระดับความละเอียด (โดยการส่องขยาย) หรือ สเกลใดก็ตาม คำว่า แฟร็กทัล นี้ เบอนัว มานดัลบรอ เป็นคนบัญญัติขึ้นในปี ค.ศ. 1975 จากคำว่า fractus ในภาษาละติน ซึ่งแปลว่า แตก หรือ ร้าว.

ความคล้ายคลึงกันระหว่าง เส้นโค้งและแฟร็กทัล

เส้นโค้งและแฟร็กทัล มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟังก์ชัน (คณิตศาสตร์)อนุพันธ์คณิตศาสตร์เรขาคณิต

ฟังก์ชัน (คณิตศาสตร์)

ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จากเซตหนึ่งที่เรียกว่าโดเมน ไปยังอีกเซตหนึ่งที่เรียกว่าโคโดเมน (บางครั้งคำว่าเรนจ์อาจถูกใช้แทน แต่เรนจ์นั้นมีความหมายอื่นด้วย "โคโดเมน" จึงเป็นที่นิยมมากกว่า เพราะไม่กำกวม) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ.

ฟังก์ชัน (คณิตศาสตร์)และเส้นโค้ง · ฟังก์ชัน (คณิตศาสตร์)และแฟร็กทัล · ดูเพิ่มเติม »

อนุพันธ์

กราฟของฟังก์ชันแสดงด้วยเส้นสีดำ และเส้นสัมผัสแสดงด้วยเส้นสีแดง ความชันของเส้นสัมผัสมีค่าเท่ากับอนุพันธ์ของฟังก์ชันที่จุดสีแดง ในวิชาคณิตศาสตร์ อนุพันธ์ของฟังก์ชันของตัวแปรจริงเป็นการวัดการเปลี่ยนแปลงของค่าของฟังก์ชันเทียบกับการเปลี่ยนแปลงของอาร์กิวเมนต์ (ค่าที่ป้อนเข้าหรือตัวแปรต้น) อนุพันธ์เป็นเครื่องมือพื้นฐานของแคลคูลัส ตัวอย่างเช่น อนุพันธ์ของตำแหน่งของวัตถุที่กำลังเคลื่อนที่เทียบกับเวลา คือ ความเร็วของวัตถุนั้น ซึ่งเป็นการวัดว่าตำแหน่งของวัตถุมีการเปลี่ยนแปลงอย่างรวดเร็วเพียงใดเมื่อเวลาผ่านไป อนุพันธ์ของฟังก์ชันตัวแปรเดียวที่ตัวแปรต้นใด ๆ คือความชันของเส้นสัมผัสที่สัมผัสกับกราฟของฟังก์ชันที่จุดนั้น เส้นสัมผัสคือการประมาณเชิงเส้นของฟังก์ชันที่ดีที่สุดใกล้กับตัวแปรต้นนั้น ด้วยเหตุนี้ อนุพันธ์มักอธิบายได้ว่าเป็น "อัตราการเปลี่ยนแปลงขณะใดขณะหนึ่ง" ซึ่งก็คืออัตราส่วนของการเปลี่ยนแปลงขณะใดขณะหนึ่งของตัวแปรตามต่อตัวแปรต้นหรือตัวแปรอิสระ กระบวนการหาอนุพันธ์เรียกว่า การหาอนุพันธ์ (differentiation หรือ การดิฟเฟอเรนชิเอต) ส่วนกระบวนการที่กลับกันเรียกว่า การหาปฏิยานุพันธ์ (antidifferentiation) ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่าการหาปฏิยานุพันธ์เหมือนกันกับการหาปริพันธ์ (integration หรือ การอินทิเกรต) การหาอนุพันธ์และการหาปริพันธ์เป็นตัวดำเนินการพื้นฐานในแคลคูลัสตัวแปรเดียว อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์).

อนุพันธ์และเส้นโค้ง · อนุพันธ์และแฟร็กทัล · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

คณิตศาสตร์และเส้นโค้ง · คณิตศาสตร์และแฟร็กทัล · ดูเพิ่มเติม »

เรขาคณิต

รขาคณิต (Geometry; กรีก: γεωμετρία; geo.

เรขาคณิตและเส้นโค้ง · เรขาคณิตและแฟร็กทัล · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง เส้นโค้งและแฟร็กทัล

เส้นโค้ง มี 11 ความสัมพันธ์ขณะที่ แฟร็กทัล มี 43 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 7.41% = 4 / (11 + 43)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง เส้นโค้งและแฟร็กทัล หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: