เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

เมทริกซ์ศูนย์และเมทริกซ์สมมาตร

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง เมทริกซ์ศูนย์และเมทริกซ์สมมาตร

เมทริกซ์ศูนย์ vs. เมทริกซ์สมมาตร

ในทางคณิตศาสตร์ โดยเฉพาะพีชคณิตเชิงเส้น เมทริกซ์ศูนย์ หมายถึงเมทริกซ์ที่มีสมาชิกทุกตัวเป็นศูนย์ ตัวอย่างเมทริกซ์ศูนย์เช่น \bold_. ในทางพีชคณิตเชิงเส้น เมทริกซ์สมมาตร คือเมทริกซ์จัตุรัสที่เมื่อสลับเปลี่ยน (transpose) แล้วจะได้ผลลัพธ์เป็นเมทริกซ์ตัวเอง นั่นคือ ความสมมาตรในสมาชิกของเมทริกซ์สมมาตร สามารถสังเกตได้จากเส้นทแยงมุม (จากซ้ายบนไปยังขวาล่าง) ซึ่งสมาชิกทุกตัวที่อยู่เหนือและใต้เส้นทแยงมุม จะมีค่าเท่ากันเหมือนการสะท้อนในกระจกเงา ดังนั้นเราสามารถนิยามเมทริกซ์สมมาตรได้อีกอย่างหนึ่งว่า สำหรับทุกดัชนีที่ i และ j ตัวอย่างต่อไปนี้คือเมทริกซ์สมมาตร ในมิติ 3×3 1 & 2 & 3\\ 2 & 4 & -5\\ 3 & -5 & 6\end^\mathrm.

ความคล้ายคลึงกันระหว่าง เมทริกซ์ศูนย์และเมทริกซ์สมมาตร

เมทริกซ์ศูนย์และเมทริกซ์สมมาตร มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): พีชคณิตเชิงเส้นเมทริกซ์เอกลักษณ์

พีชคณิตเชิงเส้น

ีชคณิตเชิงเส้น (Linear algebra) เป็นสาขาหนึ่งของคณิตศาสตร์ที่ศึกษาเวกเตอร์ ปริภูมิเวกเตอร์ (หรืออีกชื่อหนึ่งคือ ปริภูมิเชิงเส้น) การแปลงเชิงเส้น และระบบสมการเชิงเส้น ปริภูมิเวกเตอร์เป็นเรื่องที่ได้รับความสนใจอย่างมากในคณิตศาสตร์สมัยใหม่ เนื่องจากพีชคณิตเชิงเส้นถูกนำไปใช้อย่างกว้างขวางในคณิตศาสตร์สองสายหลักคือ พีชคณิตนามธรรมและการวิเคราะห์เชิงฟังก์ชัน พีชคณิตเชิงเส้นนั้นมีรูปแบบที่ชัดเจนในเรขาคณิตวิเคราะห์ และถูกขยายให้กว้างขึ้นในทฤษฎีตัวดำเนินการ และมีการประยุกต์ใช้อย่างแพร่หลายในวิชาวิทยาศาสตร์และสังคมศาสตร์ เนื่องจากแบบจำลองไม่เชิงเส้น (nonlinear model) ส่วนมากสามารถประมาณการณ์ได้ด้วยแบบจำลองเชิงเส้น (linear model) การประยุกต์ใช้อย่างหนึ่งของพีชคณิตเชิงเส้นคือการแก้ระบบสมการเชิงเส้นหลายตัวแปร กรณีที่ง่ายที่สุดคือเมื่อมีจำนวนที่ไม่ทราบค่า (ตัวแปร) เท่ากับจำนวนของสมการ ดังนั้นเราสามารถแก้ปัญหาระบบสมการเชิงเส้น n สมการ สำหรับจำนวนที่ไม่ทราบค่า n ตัว.

พีชคณิตเชิงเส้นและเมทริกซ์ศูนย์ · พีชคณิตเชิงเส้นและเมทริกซ์สมมาตร · ดูเพิ่มเติม »

เมทริกซ์เอกลักษณ์

ในพีชคณิตเชิงเส้น เมทริกซ์เอกลักษณ์ หรือ เมทริกซ์หน่วย คือเมทริกซ์จัตุรัส (หรือเมทริกซ์ทแยงมุม) ที่มีตัวเลขบนเส้นทแยงมุมเป็น 1 ซึ่งสมมติให้เส้นทแยงมุมนั้นลากจากสมาชิกบนซ้ายไปยังสมาชิกขวาล่าง (เฉียงลง) ส่วนสมาชิกที่เหลือเป็น 0 ทั้งหมด เขียนแทนด้วยสัญลักษณ์ I_n หรือเพียงแค่ I (ไอ) ส่วนทางกลศาสตร์ควอนตัมจะเขียน 1 ด้วยตัวหนาแทน ตัวอย่างเมทริกซ์เอกลักษณ์เช่น I_1.

เมทริกซ์ศูนย์และเมทริกซ์เอกลักษณ์ · เมทริกซ์สมมาตรและเมทริกซ์เอกลักษณ์ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง เมทริกซ์ศูนย์และเมทริกซ์สมมาตร

เมทริกซ์ศูนย์ มี 9 ความสัมพันธ์ขณะที่ เมทริกซ์สมมาตร มี 7 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 12.50% = 2 / (9 + 7)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง เมทริกซ์ศูนย์และเมทริกซ์สมมาตร หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: