เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ

เมทริกซ์ทแยงมุม vs. เมทริกซ์ปรกติ

ในพีชคณิตเชิงเส้น เมทริกซ์ทแยงมุม คือเมทริกซ์จัตุรัสที่มีสมาชิกนอกเหนือจากเส้นทแยงมุมเป็นศูนย์ ซึ่งสมมติให้เส้นทแยงมุมนั้นลากจากสมาชิกบนซ้ายไปยังสมาชิกล่างขวา (เฉียงลง ↘) ส่วนสมาชิกบนเส้นทแยงมุมสามารถเป็นค่าใดๆ ก็ได้รวมทั้งศูนย์ หากกำหนดให้เมทริกซ์ D. มทริกซ์ปรกติ (normal matrix) คือเมทริกซ์จัตุรัส A ที่มีสมาชิกเป็นจำนวนเชิงซ้อน ซึ่งมีคุณสมบัติดังนี้ เมื่อ A* แทนเมทริกซ์สลับเปลี่ยนสังยุคของ A ถ้าหาก A เป็นเมทริกซ์ที่ประกอบด้วยจำนวนจริง A* จะมีความหมายเหมือนกับ AT นั่นคือ.

ความคล้ายคลึงกันระหว่าง เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ

เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): เมทริกซ์สมมาตร

เมทริกซ์สมมาตร

ในทางพีชคณิตเชิงเส้น เมทริกซ์สมมาตร คือเมทริกซ์จัตุรัสที่เมื่อสลับเปลี่ยน (transpose) แล้วจะได้ผลลัพธ์เป็นเมทริกซ์ตัวเอง นั่นคือ ความสมมาตรในสมาชิกของเมทริกซ์สมมาตร สามารถสังเกตได้จากเส้นทแยงมุม (จากซ้ายบนไปยังขวาล่าง) ซึ่งสมาชิกทุกตัวที่อยู่เหนือและใต้เส้นทแยงมุม จะมีค่าเท่ากันเหมือนการสะท้อนในกระจกเงา ดังนั้นเราสามารถนิยามเมทริกซ์สมมาตรได้อีกอย่างหนึ่งว่า สำหรับทุกดัชนีที่ i และ j ตัวอย่างต่อไปนี้คือเมทริกซ์สมมาตร ในมิติ 3×3 1 & 2 & 3\\ 2 & 4 & -5\\ 3 & -5 & 6\end^\mathrm.

เมทริกซ์ทแยงมุมและเมทริกซ์สมมาตร · เมทริกซ์ปรกติและเมทริกซ์สมมาตร · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ

เมทริกซ์ทแยงมุม มี 7 ความสัมพันธ์ขณะที่ เมทริกซ์ปรกติ มี 7 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 7.14% = 1 / (7 + 7)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง เมทริกซ์ทแยงมุมและเมทริกซ์ปรกติ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: