เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ

เมทริกซ์ (คณิตศาสตร์) vs. เวกเตอร์ลักษณะเฉพาะ

ในคณิตศาสตร์ เมทริกซ์ หรือ เมตริกซ์ (matrix) คือตารางสี่เหลี่ยมที่แต่ละช่องบรรจุจำนวนหรือโครงสร้างทางคณิตศาสตร์ที่สามารถนำมาบวกและคูณกับตัวเลขได้ เราสามารถใช้เมทริกซ์แทนระบบสมการเชิงเส้น การแปลงเชิงเส้น และใช้เก็บข้อมูลที่ขึ้นกับตัวแปรต้นสองตัว เราสามารถบวก คูณ และแยกเมทริกซ์ออกเป็นผลคูณของเมทริกซ์ได้หลายรูปแบบ เมทริกซ์เป็นแนวความคิดที่มีความสำคัญยิ่งของพีชคณิตเชิงเส้น โดยทฤษฎีเมทริกซ์เป็นสาขาหนึ่งของพีชคณิตเชิงเส้นที่เน้นการศึกษาเมทริกซ์ ในบทความนี้ แต่ละช่องของเมทริกซ์จะบรรจุจำนวนจริงหรือจำนวนเชิงซ้อน หากไม่ได้ระบุเป็นอย่างอื่น. รูปที่1. 1. ในการส่งแบบไข้ว(shear mapping)ของภาพโมนาลิซา, รูปถูกทำให้ผิดปกติในในทางแกนแนวยืนกึ่งกลางของมัน(เวกเตอร์สีแดง)ไม่เปลี่ยนทิศทาง, แต่เวกเตอร์ทแยงมุม(สีน้ำเงิน)มีการเปลี่ยนทิศทาง ด้วยเหตุนี้เวกเตอร์สีแดงเป็น '''เวกเตอร์ลักษณะเฉพาะ''' ของการแปลง ขณะที่เวกเตอร์สีน้ำเงินนั้นไม่ใช่ เวกเตอร์สีแดงไม่มีการขยายหรือหดตัว '''ค่าลักษณะเฉพาะ ''' ของมันจึงคือ 1 ทุกเวกเตอร์ที่มีทิศทางในแนวยืนที่เหมือนกัน เช่น ขนานกับเวกเตอร์นี้เป็นเวกเตอร์ลักษณะเฉพาะเหมือนกันที่มีค่าลักษณะเฉพาะค่าเดียวกัน พร้อมทั้งเวกเตอร์ศูนย์ จาก '''ปริภูมิลักษณะเฉพาะ''' สำหรับค่าลักษณะเฉพาะนี้ ในทางคณิตศาสตร์การแปลงเชิงเส้น เวกเตอร์ลักษณะเฉพาะ (eigenvector) ของการแปลงเชิงเส้นนั้นต้องเป็นเวกเตอร์ที่ไม่ใช่เวกเตอร์ศูนย์ที่เมื่อนำไปใช้ในการแปลงนั้นจะเปลี่ยนระยะแต่ไม่เปลี่ยนทิศทาง สำหรับทุกเวกเตอร์ลักษณะเฉพาะของการแปลงเชิงเส้น จะมีค่าสเกลาร์ที่เรียกว่า ค่าลักษณะเฉพาะ (eigenvalue) สำหรับเวกเตอร์นั้นซึ่งกำหนดผลรวมเวกเตอร์ลักษณะเฉพาะเป็นมาตราส่วนภายใต้การแปลงเชิงเส้น ตัวอย่างเช่น: ค่าลักษณะเฉพาะเท่ากับ +2 หมายความว่าเวกเตอร์ลักษณะเฉพาะมีความยาวและจุดเป็นเท่าตัวในทิศทางเดิม, ค่าลักษณะเฉพาะเท่ากับ +1 หมายความว่าเวกเตอร์ลักษณะเฉพาะไม่มีการเปลี่ยนแปลง, ในขณะที่ค่าลักษณะเฉพาะเท่ากับ −1 หมายความว่าเวกเตอร์ลักษณะเฉพาะจะมีทิศทางผันกลับ ปริภูมิลักษณะเฉพาะ (eigenspace) ของการแปลงที่ให้มาสำหรับค่าลักษณะเฉพาะเฉพาะส่วนเป็นเซต(ผลการแผ่เชิงเส้น(linear span))ของเวกเตอร์ลักษณะเฉพาะที่ความความสัมพันธ์กับค่าลักษณะเฉพาะนี้ พร้อมทั้งเวกเตอร์ศูนย์(ไม่มีทิศทาง) ในพีชคณิตเชิงเส้น ทุกๆการแปลงเชิงเส้นระหว่างปริภูมิเวกเตอร์มิติอันตะ(finite-dimensional vector spaces)สามารถแสดงอยู่ในรูปของเมทริกซ์ซึ่งเป็นแถวลำดับสี่เหลี่ยมของตัวเลขที่อยู่ในแถวและหลัก วิธีพื้นฐานสำหรับการหา ค่าลักษณะเฉพาะ, เวกเตอร์ลักษณะเฉพาะ, และ ปริภูมิลักษณะเฉพาะ ของเมทริกซ์จะกล่าวถึงอยู่ด้านล่าง มันมีบทบาทหลักในหลายๆสาขาของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ — เป็นส่วนสำคัญในพีชคณิตเชิงเส้น, การวิเคราห์เชิงฟังก์ชัน, และเล็กน้อยในคณิตศาสตร์ไม่เป็นเชิงเส้น วัตถุทางคณิตศาสตร์หลายชนิดสามารถเขียนอยู่ในรูปแบบเวกเตอร์ได้เช่น ฟังก์ชัน, ฮาร์มอนิก, กลศาสตร์ควอนตัม, และความถี่, ในกรณีนี้แนวคิดของทิศทางโดยทั่วไปจะสูญเสียความหมายของมันไป และถูกให้นิยามที่เลื่อนลอย ดังนั้นทิศทางที่ไม่มีตัวตนนี้จะไม่เปลี่ยนแปลงตามการแปลงเชิงเส้นที่ให้มา ถ้าใช้"ไอเกน(eigen)"นำหน้า อย่างใน ฟังก์ชันลักษณะเฉพาะ(eigenfunction), วิธีลักษณะเฉพาะ(eigenmode), สภาวะลักษณะเฉพาะ(eigenstate), และ ความถี่ลักษณะเฉพาะ(eigenfrequency).

ความคล้ายคลึงกันระหว่าง เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ

เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): พีชคณิตเชิงเส้นคณิตศาสตร์เวกเตอร์

พีชคณิตเชิงเส้น

ีชคณิตเชิงเส้น (Linear algebra) เป็นสาขาหนึ่งของคณิตศาสตร์ที่ศึกษาเวกเตอร์ ปริภูมิเวกเตอร์ (หรืออีกชื่อหนึ่งคือ ปริภูมิเชิงเส้น) การแปลงเชิงเส้น และระบบสมการเชิงเส้น ปริภูมิเวกเตอร์เป็นเรื่องที่ได้รับความสนใจอย่างมากในคณิตศาสตร์สมัยใหม่ เนื่องจากพีชคณิตเชิงเส้นถูกนำไปใช้อย่างกว้างขวางในคณิตศาสตร์สองสายหลักคือ พีชคณิตนามธรรมและการวิเคราะห์เชิงฟังก์ชัน พีชคณิตเชิงเส้นนั้นมีรูปแบบที่ชัดเจนในเรขาคณิตวิเคราะห์ และถูกขยายให้กว้างขึ้นในทฤษฎีตัวดำเนินการ และมีการประยุกต์ใช้อย่างแพร่หลายในวิชาวิทยาศาสตร์และสังคมศาสตร์ เนื่องจากแบบจำลองไม่เชิงเส้น (nonlinear model) ส่วนมากสามารถประมาณการณ์ได้ด้วยแบบจำลองเชิงเส้น (linear model) การประยุกต์ใช้อย่างหนึ่งของพีชคณิตเชิงเส้นคือการแก้ระบบสมการเชิงเส้นหลายตัวแปร กรณีที่ง่ายที่สุดคือเมื่อมีจำนวนที่ไม่ทราบค่า (ตัวแปร) เท่ากับจำนวนของสมการ ดังนั้นเราสามารถแก้ปัญหาระบบสมการเชิงเส้น n สมการ สำหรับจำนวนที่ไม่ทราบค่า n ตัว.

พีชคณิตเชิงเส้นและเมทริกซ์ (คณิตศาสตร์) · พีชคณิตเชิงเส้นและเวกเตอร์ลักษณะเฉพาะ · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

คณิตศาสตร์และเมทริกซ์ (คณิตศาสตร์) · คณิตศาสตร์และเวกเตอร์ลักษณะเฉพาะ · ดูเพิ่มเติม »

เวกเตอร์

แบบจำลองเวกเตอร์ในหลายทิศทาง เวกเตอร์ (vector) เป็นปริมาณในทางคณิตศาสตร์ ซึ่งมีลักษณะไม่เหมือนกับ สเกลาร์ ซึ่งเป็นจำนวนที่มีทิศทาง เวกเตอร์มีการใช้กันในหลายสาขานอกเหนือจากทางคณิตศาสตร์ โดยเฉพาะในทางวิทยาศาสตร์ฟิสิกส์ และเคมี เช่น การกระจั.

เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ · เวกเตอร์และเวกเตอร์ลักษณะเฉพาะ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ

เมทริกซ์ (คณิตศาสตร์) มี 17 ความสัมพันธ์ขณะที่ เวกเตอร์ลักษณะเฉพาะ มี 17 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 8.82% = 3 / (17 + 17)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง เมทริกซ์ (คณิตศาสตร์)และเวกเตอร์ลักษณะเฉพาะ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: