โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

เครื่องปฏิกรณ์นิวเคลียร์

ดัชนี เครื่องปฏิกรณ์นิวเคลียร์

แกนของ CROCUS, เครื่องปฏิกรณ์นิวเคลียร์ขนาดเล็กที่ใช้สำหรับการวิจัยที่ EPFL ในประเทศสวิสเซอร์แลนด์ เครื่องปฏิกรณ์นิวเคลียร์ (Nuclear Reactor) เป็นอุปกรณ์ที่ก่อกำเนิดและควบคุมปฏิกิริยานิวเคลียร์ลูกโซ่ (Nuclear chain reaction) อย่างยั่งยืน มันถูกนำมาใช้ในโรงไฟฟ้านิวเคลียร์ในการผลิตไฟฟ้าและในการขับเคลื่อนเรือ ความร้อนจากนิวเคลียร์ฟิชชั่นถูกส่งไปให้กับของเหลว (น้ำหรือก๊าซ) ให้เป็นตัวทำงาน (working fluid) ของเหลวความร้อนสูงจะไหลไปหมุนกังหันเพื่อหมุนใบพัดเรือหรือหมุนเครื่องกำเนิดไฟฟ้า ไอน้ำที่สร้างโดยนิวเคลียร์ในหลักการสามารถนำมาใช้เพื่อให้ความร้อนในกระบวนการอุตสาหกรรมหรือสำหรับให้ความร้อนชุมชน (district heating) เครื่องปฏิกรณ์บางเครื่องใช้ในการผลิตไอโซโทปสำหรับการใช้งานทางการแพทย์และอุตสาหกรรมหรือผลิตพลูโตเนียมสำหรับทำอาวุธ บางเครื่องก็ใช้สำหรับงานวิจัยเท่านั้น ทุกวันนี้มีประมาณ 450 เครื่องปฏิกรณ์พลังงานนิวเคลียร์ที่ใช้ในการผลิตกระแสไฟฟ้าในประมาณ 30 ประเทศทั่วโลก.

12 ความสัมพันธ์: พลังงานนิวเคลียร์การสลายให้กัมมันตรังสีการสลายให้อนุภาคบีตาการแบ่งแยกนิวเคลียสภัยพิบัติเชียร์โนบีลสแครมผลผลิตจากฟิชชันแท่งควบคุมโรงไฟฟ้านิวเคลียร์เศรษฐกิจไฮโดรเจนเครื่องกำเนิดไฟฟ้าเครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด

พลังงานนิวเคลียร์

รงไฟฟ้าพลังไอน้ำ Susquehanna แสดงเครื่องปฏิกรณ์ต้มน้ำร้อน. เครื่องปฏิกรณ์ตั้งอยู่ภายในอาคารเก็บกักรูปสี่เหลี่ยมที่อยู่ด้านหน้าของหอให้ความเย็น. โรงไฟฟ้านี้ผลิตกำลังไฟฟ้า 63 ล้านกิโลวัตต์ต่อวัน เรือรบพลังงานนิวเคลียร์ของสหรัฐฯ, จากบนลงล่าง เรือลาดตระเวน USS Bainbridge (CGN-25), USS Long Beach (CGN-9) and the USS Enterprise (CVN-65), เรือยาวที่สุดและเรือบรรทุกเครื่องบินพลังงานนิวเคลียร์ลำแรก. ภาพนี้ถ่ายในปี 1964 ระหว่างการทำสถิติการเดินทาง 26,540 nmi (49,190 km) รอบโลกใน 65 วันโดยไม่ต้องเติมเชื้อเพลิง. ลูกเรือแปรอักษรเป็นสูตรมวลพลังงานของไอน์สไตน์ว่า ''E.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และพลังงานนิวเคลียร์ · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การสลายให้อนุภาคบีตา

ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และการสลายให้อนุภาคบีตา · ดูเพิ่มเติม »

การแบ่งแยกนิวเคลียส

prompt gamma rays) ออกมาด่วย (ไม่ได้แสดงในภาพ) การแบ่งแยกนิวเคลียส หรือ นิวเคลียร์ฟิชชัน (nuclear fission) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์หรือกระบวนการการสลายกัมมันตรังสีอย่างหนึ่งที่นิวเคลียสของอะตอม แตกออกเป็นชิ้นขนาดเล็ก (นิวเคลียสที่เบากว่า) กระบวนการฟิชชันมักจะผลิตนิวตรอนและโปรตอนอิสระ (ในรูปของรังสีแกมมา) พร้อมทั้งปลดปล่อยพลังงานออกมาจำนวนมาก แม้ว่าจะเป็นการปลดปล่อยจากการสลายกัมมันตรังสีก็ตาม นิวเคลียร์ฟิชชันของธาตุหนักถูกค้นพบเมื่อวันที่ 17 ธันวาคม 1938 โดยชาวเยอรมัน นายอ็อตโต ฮาห์นและผู้ช่วยของเขา นายฟริตซ์ Strassmann และได้รับการอธิบายในทางทฤษฎีในเดือนมกราคมปี 1939 โดยนาง Lise Meitner และหลานชายของเธอ นายอ็อตโต โรเบิร์ต Frisch.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และการแบ่งแยกนิวเคลียส · ดูเพิ่มเติม »

ภัยพิบัติเชียร์โนบีล

รงไฟฟ้าเชียร์โนบีลในปัจจุบัน แผนที่แสดงที่ตั้งของโรงไฟฟ้าเชียร์โนบีล เมือง Pripyat ที่ถูกทิ้งร้าง จะเห็นโรงไฟฟ้าเชียร์โนบีลอยู่ไกล ๆ ภัยพิบัติเชียร์โนบีล (Чорнобильська катастрофа, Čornobyľśka katastrofa; Chernobyl disaster) เป็นอุบัติเหตุทางนิวเคลียร์ขั้นร้ายแรงที่เกิดขึ้นเมื่อวันที่ 26 เมษายน ค.ศ. 1986 ที่โรงไฟฟ้านิวเคลียร์เชียร์โนบีล ตั้งอยู่ที่นิคมเชียร์โนบีล ริมฝั่งแม่น้ำนีเปอร์ ใกล้เมืองพริเพียต แคว้นเคียฟ ทางตอนเหนือของยูเครน ใกล้ชายแดนเบลารุส (ในขณะนั้นยูเครนและเบลารุสยังเป็นส่วนหนึ่งของสหภาพโซเวียต) อุบัติเหตุที่เชียร์โนบีลนี้เป็นอุบัติเหตุที่เกิดกับโรงไฟฟ้าพลังงานนิวเคลียร์ที่ร้ายแรงที่สุดในประวัติศาสตร์ในแง่ของค่าใช้จ่ายและชีวิต อุบัติเหตุเกิดขึ้นเมื่อวิศวกรได้ทำการทดสอบการทำงานของระบบหล่อเย็น และระบบทำความเย็นฉุกเฉินของแกนปฏิกรณ์นิวเคลียร์ แต่การทดสอบระบบได้ล่าช้ากว่ากำหนดจนต้องทำการทดสอบโดยวิศวกรกะกลางคืน ได้เกิดแรงดันไอน้ำสูงขึ้นอย่างฉับพลัน แต่ระบบตัดการทำงานอัตโนมัติไม่ทำงาน ส่งผลให้เกิดความร้อนสูงขึ้นจนทำให้แกนปฏิกรณ์นิวเคลียร์หมายเลข 4 หลอมละลาย และเกิดระเบิดขึ้น ผลจากการระเบิดทำให้เกิดขี้เถ้าปนเปื้อนกัมมันตภาพรังสีพวยพุ่งขึ้นสู่บรรยากาศ ปกคลุมทางตะวันตกของสหภาพโซเวียต ยุโรปตะวันออก ยุโรปตะวันตก ยุโรปเหนือ ทางการยูเครน เบลารุส และรัสเซีย ต้องอพยพประชากรมากกว่า 336,431 คน ออกจากพื้นที่อย่างฉุกเฉิน อุบัติเหตุครั้งนี้เป็นหนึ่งในสองครั้งที่ได้รับการจัดความรุนแรงไว้ที่ระดับ 7 ซึ่งเป็นระดับสูงสุดตามมาตราระหว่างประเทศว่าด้วยเหตุการณ์ทางนิวเคลียร์ อีกครั้งหนึ่งเป็นของภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิในปี 2011 สงครามเพื่อต่อสู้กับการปนเปื้อนและป้องกันไม่ให้เกิดการสูญเสียมากไปกว่านี้เกี่ยวข้องกับคนงานทั้งทหารและพลเรือนกว่า 500,000 คนและค่าใช้จ่ายประมาณ 18 พันล้านรูเบิ้ลGorbachev, Mikhail (1996), interview in Johnson, Thomas,,, Discovery Channel, retrieved 19 February 2014.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และภัยพิบัติเชียร์โนบีล · ดูเพิ่มเติม »

สแครม

Experimental Breeder Reactor I) สแครม หรือ (SCRAM) เป็นการปิดระบบอย่างฉุกเฉินของเครื่องปฏิกรณ์นิวเคลียร์ คำนี้ยังถูกนำไปใช้ให้ครอบคลุมถึงการปิดระบบการทำงานที่ซับซ้อนอื่น ๆ เช่นฟาร์มเซิร์ฟเวอร์และแม้กระทั่งรถไฟจำลองขนาดใหญ่ ในการดำเนินงานของเครื่องปฏิกรณ์เชิงพาณิชย์ การปิดระบบฉุกเฉินนี้มักจะถูกเรียกว่าเป็น "สแครม" สำหรับเครื่องปฏิกรณ์แบบน้ำเดือด (BWR) และจะถูกเรียกว่าเป็น "เครื่องปฏิกรณ์ทริป" สำหรับเครื่องปฏิกรณ์แบบน้ำแรงดันสูง (PWR) ในหลายกรณี สแครมก็เป็นส่วนหนึ่งของขั้นตอนการปิดระบบตามปกติเช่นกัน คำว่า SCRAM นี้มักจะถูกอ้างว่าเป็นตัวย่อของ "safety control rod axe man" ซึ่งคาดว่าจะถูกกำหนดโดยนายเอนรีโก แฟร์ เมื่อเครื่องปฏิกรณ์นิวเคลียร์เครื่องแรกของโลกได้ถูกสร้างขึ้นภายใต้ผู้นั่งชมที่มหาวิทยาลัยชิคาโกที่เมืองสแต๊กซ์ฟิลด์ แต่นักประวัติศาสตร์ของ NRC นายทอม Wellock เรียกเรื่องของ axe man ว่าเป็น "พูดเล่นไร้สาระ" มันน่าจะเป็นคำย่อสำหรับ Safety Control Rods Actuator Mechanism หรือ กลไกเพื่อขับเคลื่อนแท่งควบคุมเพื่อความปลอดภัย คำว่า 'Scram' ยังเป็นคำสั่งด้วยวาจาเพื่อบอกบุคคลหรือสิ่งของบางอย่างให้ออกจากพื้นที่อย่างรวดเร็วและเร่งด่วนอีกด้ว.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และสแครม · ดูเพิ่มเติม »

ผลผลิตจากฟิชชัน

ผลผลิตจากฟิชชัน (Fission product) หรือ ผลผลิตจากปฏิกิริยานิวเคลียร์ฟิชชัน (Nuclear fission product) เป็นชิ้นส่วนที่เหลือหลังจากนิวเคลียสของอะตอมขนาดใหญ่ผ่านขบวนการนิวเคลียร์ฟิชชั่น โดยปกตินิวเคลียสขนาดใหญ่เช่นของยูเรเนียมจะทำการ fission โดยแยกออกเป็นสองนิวเคลียสในขนาดที่เล็กกว่า พร้อมกับนิวตรอนไม่กี่ตัว กับการปล่อยพลังงานความร้อน (พลังงานจลน์ของนิวเคลียส) และรังสีแกมมาออกมา ทั้งสองนิวเคลียสในขนาดที่เล็กกว่าดังกล่าวเป็นผลผลิตจากฟิชชัน (โปรดดูเพิ่มเติม ผลผลิตจากฟิชชัน (แบ่งตามองค์ประกอบ)) ประมาณ 0.2% ถึง 0.4% ของการ fissions เป็น fissions แบบไตรภาค (ternary fissions) ที่ผลิตนิวเคลียสเบาที่สามเช่นฮีเลียม-4 (90%) หรือทริเทียม (7%) ตัวผลผลิตจากฟิชชันฟิชชันเองมักจะไม่เสถียรและแผ่กัมมันตรังสี เนื่องจากมันค่อนข้างจะที่อุดมไปด้วยนิวตรอนสำหรับอะตอมิกนัมเบอร์ของพวกมัน และพวกมันจำนวนมากก็มีการสลายแบบให้อนุภาคบีตา (beta decay) ได้อย่างรวดเร็ว การสลายตัวแบบนี้จะปลดปล่อยพลังงานเพิ่มเติมในรูปของอนุภาคบีตา, อนุภาคต้านนิวทริโน (antineutrinos), และรังสีแกมมา ดังนั้นเหตุการณ์ฟิชชันตามปกติจะส่งผลให้มีการแผ่รังสีบีตาและ antineutrinos แม้ว่าอนุภาคเหล่านี้จะไม่ได้มีการผลิตโดยตรงจากเหตุการณ์ฟิชชันก็ตาม หลายไอโซโทป (ธาตุที่มีคุณสมบัติทางเคมีเหมือนกัน มีจำนวนโปรตอนในนิวเคลียสเท่ากันแต่จำนวนนิวตรอนต่างกัน) เหล่านี้มีครึ่งชีวิตที่สั้นมาก ดังนั้นพวกมันจึงปลดปล่อยรังสีออกมาเป็นจำนวนมาก ยกตัวอย่างเช่น strontium-90, strontium-89 และstrontium-94 ทั้งหมดนี้เป็นผลผลิตจากปฏิกิริยาฟิชชั่น พวกมันถูกผลิตออกมาในปริมาณที่คล้ายกัน และแต่ละนิวเคลียสจะสลายตัวโดยการยิงหนึ่งอนุภาคบีตา (อิเล็กตรอน) ออกมา แต่ Sr-90 มีครึ่งชีวิตที่ 30 ปี, SR-89 มีครึ่งชีวิตที่ 50.5 วันและ Sr-94 มีครึ่งชีวิตที่ 75 วินาที เมื่อถูกสร้างเสร็จใหม่ ๆ Sr-89 จะพ่นอนุภาคบีตาเร็วกว่า Sr-90 ถึง 10,600 เท่าและ Sr-94 จะพ่นอนุภาคบีตาเร็วกว่า Sr-90 ถึง 915 ล้านเท่า เป็นเพราะไอโซโทปครึ่งชีวิตสั้นเหล่านี้ที่ทำให้เชื้อเพลิงใช้แล้วเป็นอันตรายอย่างมาก (นอกเหนือไปจากความร้อนที่ถูกสร้างขึ้นอย่างมาก) ทันทีหลังจากที่เครื่องปฏิกรณ์ได้ถูกปิดลง.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และผลผลิตจากฟิชชัน · ดูเพิ่มเติม »

แท่งควบคุม

แท่งควบคุม (Control rod) มีการใช้ในเครื่องปฏิกรณ์นิวเคลียร์ เพื่อควบคุมอัตราการเกิดปฏิกริยาฟิชชันของยูเรเนียมและพลูโตเนียม มันประกอบด้วยองค์ประกอบทางเคมีเช่นโบรอน เงิน อินเดียมและแคดเมียมที่มีความสามารถในการดูดซับนิวตรอนจำนวนมากโดยไม่เกิดปฏิกริยาฟิชชันเสียเอง เพราะว่าองค์ประกอบเหล่านี้มีพื้นที่หน้าตัดในการดักจับนิวตรอนที่แตกต่างกันสำหรับพลังงานที่แตกต่างกัน องค์ประกอบของแท่งควบคุมจะต้องได้รับการออกแบบสำหรับคลื่นความถี่นิวตรอนของแต่ละเครื่องปฏิกรณ์ฯ เครื่องปฏิกรณ์แบบน้ำเดือด (BWR) เครื่องปฏิกรณ์น้ำแรงดันสูง (PWR) และเครื่องปฏิกรณ์น้ำมวลหนัก (HWR) ทำงานด้วยนิวตรอนความร้อน (thermal neutron) ในขณะที่เครื่องปฏิกรณ์แพร่พันธุ์ (breeder reactor) ทำงานด้วยนิวตรอนเร็ว (fast neutron).

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และแท่งควบคุม · ดูเพิ่มเติม »

โรงไฟฟ้านิวเคลียร์

รงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Grafenrheinfeld, รัฐบาวาเรีย, ประเทศเยอรมนี เครื่องปฏิกรณ์นิวเคลียร์อยู่ภายในอาคารเก็บกักรูปโดมที่อยู่ตรงกลาง, ด้านซ้ายและขวาเป็นหอหล่อเย็นซึ่งเป็นอุปกรณ์ระบายความร้อนที่ใช้กันทั่วไปในทุกโรงไฟฟ้าพลังงานความร้อน และเช่นกัน มันจะปล่อยไอน้ำจากส่วนของกังหันไอน้ำที่ไม่มีกัมมันตรังสีออกสู่สิ่งแวดล้อมภายนอก โรงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Jaslovské Bohunice ในประเทศสโลวาเกีย โรงไฟฟ้านิวเคลียร์ เป็นโรงไฟฟ้าพลังความร้อนแบบหนึ่งที่ใช้แหล่งพลังงานความร้อนจากเครื่องปฏิกรณ์ที่ใช้พลังงานนิวเคลียร์ในการผลิตไอน้ำแรงดันสูงจ่ายให้กับกังหันไอน้ำ กังหันไอน้ำจะไปหมุนเครื่องกำเนิดไฟฟ้าผลิตเป็นกระแสไฟฟ้าออกมา โดยเครื่องปฏิกรณ์ที่ใช้ในการผลิตพลังงานนิวเคลียร์ สามารถแบ่งออกเป็น 2 ประเภทได้แก่ เครื่องปฏิกรณ์นิวเคลียร์แบบวิจัย (Research Reactor) ที่ใช้ประโยชน์จากนิวตรอนฟลักซ์ในการวิจัย และระบายความร้อนที่เกิดขึ้นออกสู่ชั้นบรรยากาศ และเครื่องปฏิกรณ์นิวเคลียร์กำลัง (Power Reactor) ที่ใช้พลังความร้อนที่เกิดขึ้นเปลี่ยนเป็นพลังงานไฟฟ้า ซึ่งเครื่องปฏิกรณ์นิวเคลียร์กำลัง มีขนาดใหญ่โตกว่าเครื่องปฏิกรณ์นิวเคลียร์วิจัยเป็นอย่างมาก โรงไฟฟ้านิวเคลียร์เป็นโรงไฟฟ้าชนิด Baseload คือผลิตพลังงานคงที่ โดยไม่ขึ้นกับกำลังงานที่ต้องการใช้จริง เนื่องจากต้นทุนเชื้อเพลิงมีราคาถูกเมื่อเทียบกับค่าใช้จ่ายอื่นๆในการผลิต (ในขณะที่โรงไฟฟ้าที่ใช้การต้มน้ำด้วยแหล่งพลังงานอื่น สามารถลดการจ่ายไฟลงครึ่งหนึ่งได้เวลากลางคืนเพื่อประหยัดค่าใช้จ่ายเชื้อเพลิง) กำลังไฟที่หน่วยผลิตจ่ายได้นั้นอาจมีตั้งแต่ 40 เมกะวัตต์ จนถึงเกือบ 2000 เมกะวัตต์ ในปัจจุบันหน่วยผลิตที่สร้างกันมีขอบเขตอยู่ที่ 600-1200 เมกะวัตต์ ข้อมูลของ IAEA ณ วันที่ 23 เมษายน ค.ศ. 2014 มีเครื่องปฏิกรณ์ทำงานอยู่ 435 เครื่องhttp://www.iaea.org/pris/ใน 31 ประเทศทั่วโลก รวมแล้วผลิตกำลังไฟฟ้าเป็น 1 ใน 6 ส่วนของพลังงานไฟฟ้าทั้งหมดในโลก โดยสหรัฐอเมริกามีจำนวนโรงไฟฟ้านิวเคลียร์ มากที่สุด ตามมาด้วย ฝรั่ง.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และโรงไฟฟ้านิวเคลียร์ · ดูเพิ่มเติม »

เศรษฐกิจไฮโดรเจน

รษฐกิจไฮโดรเจน เป็นระบบที่ถูกนำเสนอเพื่อนำไฮโดรเจนมาใช้เป็นพลังงานแทนพลังงานจากฟอสซิล มีผู้สนับสนุนในเรื่องนี้เป็นจำนวนมาก ในการใช้เป็นเชื้อเพลิงขับเคลื่อนยานพาหนะ เป็นพลังงานในอาคารและอุปกรณ์อิเล็คโทรนิคส์ต่างๆ แต่ไฮโดรเจนอิสระไม่ได้เกิดขึ้นเองตามธรรมชาติ ต้องสกัดออกมาจากสารอื่น มีวิธีสกัดหลายวิธี ดังนั้น ความเป็นไปได้ในการนำมาใช้ ขึ้นอยู่กับกรรมวิธีในการผลิตนี่เองว่ามีแหล่งผลิตจากที่ใด ผลกระทบต่อสิ่งแวดล้อมเป็นอย่างไร และเป็นการผลิตพลังงานที่ยั่งยืนหรือไม่ วัฎจักรของส่วนประกอบในเศรษฐกิจไฮโดรเจน.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และเศรษฐกิจไฮโดรเจน · ดูเพิ่มเติม »

เครื่องกำเนิดไฟฟ้า

รื่องกำเนิดไฟฟ้าแบบกังหันไอน้ำที่ทันสมัยของสหรัฐฯ เครื่องกำเนิดไฟฟ้า หรือ เครื่องปั่นไฟ (electric generator) คืออุปกรณ์ที่แปลงพลังงานกลเป็นพลังงานไฟฟ้า อุปกรณ์ดังกล่าวจะบังคับกระแสไฟฟ้าให้ไหลผ่านวงจรภายนอก แหล่งที่มาของพลังงานกลอาจจะเป็นลูกสูบหรือเครื่องยนต์กังหันไอน้ำ หรือแรงน้ำตกผ่านกังหันน้ำหรือล้อน้ำ หรือเครื่องยนต์สันดาปภายใน หรือกังหันลม หรือข้อเหวี่ยงมือ หรืออากาศอัด หรือแหล่งพลังงานกลอื่นๆ โดยเครื่องกำเนิดไฟฟ้านั้นจะเป็นวิธีหลักที่ใช้ในการกำเนิดไฟฟ้าเพื่อจ่ายเข้าโครงข่ายพลังงานไฟฟ้าของประเทศ เครื่องกำเนิดไฟฟ้าของ Ganz รุ่นแรกๆใน Zwevegem, West Flanders, Belgium การแปลงย้อนกลับของพลังงานไฟฟ้ากลับไปเป็นพลังงานกลจะกระทำโดยมอเตอร์ไฟฟ้า มอเตอร์และเครื่องกำเนิดไฟฟ้าที่มีความคล้ายคลึงกันมาก มอเตอร์หลายตัวสามารถขับเคลื่อนเครื่องจักรเพื่อผลิตไฟฟ้าและบ่อยครั้งที่ได้รับการยอมรับให้เป็นเครื่องกำเนิดไฟฟ้า alternator ในช่วงต้นของศตวรรษที่ 20 ในห้องโถงของสถานีผลิตไฟฟ้ากำลังน้ำ ทำในบูดาเปสท์ประเทศฮังการี.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และเครื่องกำเนิดไฟฟ้า · ดูเพิ่มเติม »

เครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด

กรวดเชื้อเพลิงสำหรับการทำปฏิกิริยา เครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด (Pebble bed reactor (PBR)) เป็นเครื่องปฏิกรณ์นิวเคลียร์ในยุคที่ 3+ จัดว่าเป็นเทคโนโลยีพลังงานนิวเคลียร์ที่ทันสมัยที่สุดในปัจจุบัน ซึ่งใช้เทคโนโลยีที่มีความปลอดภัยและประสิทธิภาพสูงมากขึ้นและมีต้นทุนถูกกว่าจากเครื่องปฏิกรณ์แบบทั่วไปที่ใช้น้ำเป็นสารหน่วงนิวตรอน และใช้เป็นสารระบายความร้อนด้วย ในขณะที่เครื่องปฏิกรณ์แบบถังกรวดใช้ pyrolytic graphite เป็นสารหน่วงนิวตรอน และใช้ก๊าซเฉื่อย เป็นสารระบายความร้อนที่มีอุณหภูมิสูงมาก ในการขับกังหันของเครื่องกำเนิดไฟฟ้าโดยตรง ทำให้ไม่ต้องใช้ระบบเครื่องกำเนิดไอน้ำที่มีความซับซ้อน รวมทั้งเป็นการเพิ่มประสิทธิภาพในการถ่ายเทพลังงาน โดยทำให้สัดส่วนของการผลิตไฟฟ้าต่อความร้อน มีค่าประมาณ 50% นอกจากนั้น ก๊าซจะไม่ละลายส่วนประกอบที่ปนเปื้อนรังสีออกมา และไม่ดูดกลืนนิวตรอนเหมือนกับการใช้น้ำ ดังนั้นแกนเครื่องปฏิกรณ์จึงมีของเหลวที่มีกัมมันตภาพรังสีในปริมาณที่น้อยกว่าแบบเดิมมาก จึงมีความเสี่ยงด้านผลกระทบทางรังสีที่น้อยลง และยังทำให้ต้นทุนต่ำกว่าเครื่องปฏิกรณ์แบบใช้น้ำมวล.

ใหม่!!: เครื่องปฏิกรณ์นิวเคลียร์และเครื่องปฏิกรณ์นิวเคลียร์แบบถังกรวด · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »