โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

เครื่องปฏิกรณ์ความร้อนนิวตรอน

ดัชนี เครื่องปฏิกรณ์ความร้อนนิวตรอน

รื่องปฏิกรณ์ความร้อนนิวตรอน (Thermal-neutron reactor) คือ เครื่องปฏิกรณ์นิวเคลียร์แบบใช้ช้าหรือความร้อนนิวตรอน ("ความร้อน" ที่นี้ไม่ได้หมายความถึงความร้อนในทางความรู้สึกจริง แต่หมายถึงในทางสภาพสมดุลทางความร้อนด้วยปฏิกิริยาระดับกลางของเชื้อเพลงเครื่องปฏิกรณ์ ตัวหน่วงความเร็ว และโครงสร้าง ซึ่งมีพลังงานต่ำกว่านิวตรอนเร็วที่เป็นผลิตภัณฑ์ขั้นต้นของการแบ่งแยกนิวเคลียส (ฟิชชัน)) ในเครื่องปฏิกรณ์โรงไฟฟ้านิวเคลียร์ส่วนมากเป็นเครื่องปฏิกรณ์ความร้อนและใข้ตัวหน่วงนิวตรอนในการลดความเร็วนิวตรอน จนกว่ามันจะเข้าใกล้พลังงานจลน์โดยเฉลี่ยของอนุภาคโดยรอบ นั่นคือเพื่อลดความเร็วของนิวตรอนให้ความร้อนนิวตรอนต่ำลง นิวตรอนไม่มีประจุไฟฟ้าช่วยให้พวกมันทะลวงลึกลงไปถึงเป้าหมายและใกล้กับนิวเคลียสได้Squires, G.L. (2012, March 29).

17 ความสัมพันธ์: พลังงานจลน์การแบ่งแยกนิวเคลียสการแผ่รังสีมวลวิกฤตยูเรเนียมยูเรเนียม-238ยูเรเนียมเสริมสมรรถนะระดับอุณหภูมิของนิวตรอนรังสีก่อไอออนวัสดุฟิสไซล์ตัวหน่วงนิวตรอนปฏิกิริยาลูกโซ่นิวเคลียร์นิวตรอนนิวไคลด์โรงไฟฟ้านิวเคลียร์เชื้อเพลิงนิวเคลียร์เครื่องปฏิกรณ์นิวเคลียร์

พลังงานจลน์

ลังงานจลน์ (Kinetic Energy) คือพลังงานที่เกิดกับวัตถุที่กำลังเคลื่อนที่ เช่น รถยนต์กำลังแล่น เครื่องบินกำลังบิน พัดลมกำลังหมุน น้ำกำลังไหลหรือน้ำตกจากหน้าผา ธนูที่พุ่งออกจากคันศร จักรยานที่กำลังเคลื่อนที่ เป็นต้น จึงกล่าวได้ว่า พลังงานจลน์ ล้วนเป็นพลังงานกลที่สามารถเปลี่ยนรูปกลับไป กลับมาได้ "วัตถุที่กำลังเคลื่อนที่ล้วนมีพลังงานจลน์ทั้งสิ้น ปริมาณพลังงานจลน์ในวัตถุจะมีมากหรือน้อยขึ้นอยู่กับมวลและความเร็วของวัตถุนั้น" ถ้าวัตถุมีการเคลื่อนที่ด้วยความเร็วสูงจะมีพลังงานจลน์มาก แต่ถ้าเคลื่อที่เท่ากันวัตถุที่มีมวลมากกว่าจะมีพลังงานจลน์มากกว่า จากนิยามเขียนเป็นสมการได้ว่า Ek.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและพลังงานจลน์ · ดูเพิ่มเติม »

การแบ่งแยกนิวเคลียส

prompt gamma rays) ออกมาด่วย (ไม่ได้แสดงในภาพ) การแบ่งแยกนิวเคลียส หรือ นิวเคลียร์ฟิชชัน (nuclear fission) ในสาขาฟิสิกส์นิวเคลียร์และเคมีนิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์หรือกระบวนการการสลายกัมมันตรังสีอย่างหนึ่งที่นิวเคลียสของอะตอม แตกออกเป็นชิ้นขนาดเล็ก (นิวเคลียสที่เบากว่า) กระบวนการฟิชชันมักจะผลิตนิวตรอนและโปรตอนอิสระ (ในรูปของรังสีแกมมา) พร้อมทั้งปลดปล่อยพลังงานออกมาจำนวนมาก แม้ว่าจะเป็นการปลดปล่อยจากการสลายกัมมันตรังสีก็ตาม นิวเคลียร์ฟิชชันของธาตุหนักถูกค้นพบเมื่อวันที่ 17 ธันวาคม 1938 โดยชาวเยอรมัน นายอ็อตโต ฮาห์นและผู้ช่วยของเขา นายฟริตซ์ Strassmann และได้รับการอธิบายในทางทฤษฎีในเดือนมกราคมปี 1939 โดยนาง Lise Meitner และหลานชายของเธอ นายอ็อตโต โรเบิร์ต Frisch.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและการแบ่งแยกนิวเคลียส · ดูเพิ่มเติม »

การแผ่รังสี

ในทางฟิสิกส์ การแผ่รังสี (อังกฤษ: radiation) หมายถึงกระบวนการที่อนุภาคพลังงานหรือคลื่นเคลื่อนที่ผ่านตัวกลางหรืออวกาศ รังสีสามารถแบ่งออกได้เป็นสองประเภท คือ รังสีที่แตกตัวได้และรังสีที่ไม่ก่อให้เกิดการแตกตัวของประจุ อย่างไรก็ตาม คำว่า "รังสี" มักหมายถึงกัมมันตภาพรังสีเพียงอย่างเดียว (คือ รังสีที่มีพลังงานเพียงพอที่จะทำให้อะตอมเปลี่ยนเป็นไอออน) แต่ความเป็นจริงแล้วก็สามารถหมายถึงรังสีที่ไม่ก่อให้เกิดการแตกตัวของประจุด้วยเช่นกัน (เช่น คลื่นวิทยุหรือแสงที่มองเห็นได้ด้วยตาเปล่า รูปแบบเรขาคณิตของการแผ่รังสีออกจากตัวกลาร่รร่คียยเมวังนำไปสู่ระบบของหน่วยวัดและหน่วยทางฟิสิกส์ที่สามารถใช้ได้กับรังสีทุกประเภท รังสีทั้งสองประเภทล้วนสามารถเป็นอันตรายต่อสิ่งมีชีวิตและสิ่งแวดล้อมทางธรรมชาติ) การแผ่รังสี สามารถนำไปใช้งานในงานทางด้านความร้อนต่าง ๆ เช่น แผ่นรองหัวเตาแก๊สอินฟาเรด การถ่ายเทความร้อนในอุปกรณ์ แลกเปลี่ยนความร้อน การแผ่รังสี หมวดหมู่:ฟิสิกส์ หมวดหมู่:หลักการสำคัญของฟิสิกส์.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและการแผ่รังสี · ดูเพิ่มเติม »

มวลวิกฤต

มวลวิกฤต (critical mass) คือปริมาณที่น้อยที่สุดของวัสดุฟิสไซล์ที่จำเป็นสำหรับการรักษาปฏิกิริยาลูกโซ่นิวเคลียร์ให้ยั่งยิน.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและมวลวิกฤต · ดูเพิ่มเติม »

ยูเรเนียม

ูเรเนียม (Uranium) คือธาตุที่มีหมายเลขอะตอม 92 และสัญลักษณ์คือ U เป็นธาตุโลหะหนักกัมมันตรังสี ตามธรรมชาติมีลักษณะสีเงินวาว อยู่ในกลุ่มแอกทิไนด์ (actinide group) ไอโซโทป U-235 ใช้เป็นเชื้อเพลิงนิวเคลียร์ในเครื่องปฏิกรณ์นิวเคลียร์และอาวุธนิวเคลียร์ ตามธรรมชาติพบยูเรเนียมในปริมาณเล็กน้อยในหิน ดิน น้ำ พืช และสัตว์ รวมทั้งมนุษย์ด้วย ครึ่งชีวิตของธาตุยูเรเนียมคือ 4,500 ล้านปี (U-238).

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและยูเรเนียม · ดูเพิ่มเติม »

ยูเรเนียม-238

ูเรเนียม-238 (238U หรือ U-238) เป็นไอโซโทปกัมมันตรังสีของยูเรเนียม ไอโซโทปนี้สามารถพบได้ในธรรมชาติ ยูเรเนียม-238 ใช้เป็นวัสดุตั้งต้นให้แก่พลูโทเนียม-239 สามารถสลายด้วยวิธีการสลายตัวแอลฟา และ การสลายตัวเบต้าสองครั้ง ไอโซโทป 99.248 % ของยูเรเนียม-238 มีครึ่งชีวิต 1.41 วินาที (4.468 ปี, หรือ 4.468 พันล้านปี).

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและยูเรเนียม-238 · ดูเพิ่มเติม »

ยูเรเนียมเสริมสมรรถนะ

ัดส่วนของยูเรเนียม-238 (ฟ้า) และยูเรเนียม-235 (แดง) ที่พบตามธรรมชาติกับเกรดเสริมสมรรถนะ ยูเรเนียมเสริมสมรรถนะ (Enriched uranium) เป็นยูเรเนียมชนิดหนึ่งซึ่งอัตราส่วนของยูเรเนียม-235 มีปริมาณสูงขึ้นด้วยวิธีการการแยกไอโซโทป (isotope separation) ยูเรเนียมตามธรรมชาติมีไอโซโทป 238U อยู่ 99.284% และมี 235U ประมาณ 0.711% ของน้ำหนัก 235U เป็นเพียงไอโซโทปที่มีอยู่ในธรรมชาติ (ในผลรวมที่พอประเมินค่าได้) ไอโซโทปเดียวที่เป็นวัสดุฟิสไซล์กับนิวตรอนความร้อน ยูเรเนียมเสริมสมรรถนะเป็นส่วนประกอบที่สำคัญในเครื่องกำเนิดไฟฟ้าพลังงานนิวเคลียร์และอาวุธนิวเคลียร์ สำนักงานพลังงานปรมาณูระหว่างประเทศจึงพยายามที่จะดูแลและควบคุมอุปทานของยูเรเนียมเสริมสมรรถนะและดำเนินการในผลกระทบของเครื่องกำเนิดไฟฟฟ้าพลังงานนิวเคลียร์เพื่อให้แน่ใจถึงความปลอดภัยและควบคุมการเพิ่มจำนวนของอาวุธนิวเคลียร์ ในระหว่างโครงการแมนฮัตตัน ยูเรเนียมเสริมสมรรถนะถูกตังชื่อรหัสว่า oralloy (โอราลลอย) มาจากการย่อคำของ Oak Ridge alloy (โลหะเจือโอ๊ก ริดจ์) ซึ่งเป็นที่ตั้งของโรงงานสมรรถนะยูเรเนียมเสริม คำว่า oralloy บางครั้งยังคงถูกใช้เรียกยูเรเนียมเสริมสมรรถนะ มียูเรเนียมเสริมสมรรถนะเกรดสูงอยู่ประมาณ 2,000 ตันในโลก ส่วนมากถูกผลิตขึ้นสำหรับอาวุธนิวเคลียร์, แรงขับเคลื่อนของเรือ, และจำนวนน้อยๆสำหรับการวิจัยเครื่องปฏิกรณ์นิวเคลียร์ 238U ที่เหลือหลังจากการเสริมสมรรถนะหรือที่เรียกว่าหางยูเรเนียม (depleted uranium, DU) ซึ่งถูกพิจารณาว่ามีกัมมันตภาพรังสีน้อยกว่ายูเรเนียมธรรมชาติ หางยูเรเนียมจะถูกนำไปผลิตเป็นกระสุนเจาะ หรือใช้เป็นเกราะสะท้อนนิวตรอนในเครื่องปฏิกรณ์นิวเคลียร์และในระเบิดนิวเคลียร์ หรือใช้ถ่วงท้องเรือเดินสมุทรป้องกันเรือโคลง ใช้ถ่วงสมดุลในเครื่องบิน.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและยูเรเนียมเสริมสมรรถนะ · ดูเพิ่มเติม »

ระดับอุณหภูมิของนิวตรอน

ระดับอุณหภูมิของนิวตรอน (neutron temperature) หรือ พลังงานนิวตรอน (neutron energy) จะแสดง พลังงานจลน์ ของ นิวตรอนอิสระ มีหน่วยเป็น อิเล็กตรอนโวลท์ คำว่า "อุณหภูมิ" ถูกใช้เพราะนิวตรอนร้อน(hot neutron), นิวตรอนความร้อน (thermal neutron) และนิวตรอนเย็น (cold neutron) ถูก หน่วง ในตัวกลางหนึ่งที่มีอุณหภูมิระดับหนึ่ง จากนั้นการกระจายพลังงานของนิวตรอนจะถูกปรับให้เป็นไปตาม การกระจายตัวแบบแมกซ์เวลล์-โบลส์แมนน์ หรือ Maxwellian distribution ที่เรียกว่าการเคลื่อนที่เชิงความร้อน (thermal motion) ในเชิงปริมาณ อุณหภูมิยิ่งสูง พลังงานจลน์ของนิวตรอนอิสระก็ยิ่งมาก พลังงานจลน์, ความเร็ว และ ความยาวคลื่นของนิวตรอน มีความสัมพันธ์ที่เป็นไปตาม ความสัมพันธ์ของเดอเบรย (De Broglie relation).

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและระดับอุณหภูมิของนิวตรอน · ดูเพิ่มเติม »

รังสีก่อไอออน

รังสีก่อไอออน (ionizing radiation) เกิดจากการแผ่รังสีที่มีพลังงานพอที่จะปลดปล่อยอิเล็กตรอนให้เป็นอิสระจากอะตอมหรือโมเลกุล หรือเป็นการแผ่รังสีจากการแตกตัวเป็นไอออน (Ionization) การแผ่รังสีดังกล่าว (หรือสั้น ๆ ว่ารังสี) ถูกสร้างขึ้นจากอนุภาคย่อย, ไอออนหรืออะตอมที่มีพลัง, เคลื่อนที่ด้วยความเร็วสูง (ปกติเร็วกว่าความเร็วแสง 1%) และเป็นคลื่นแม่เหล็กไฟฟ้าที่ปลายสเปคตรัมของคลื่นแม่เหล็กไฟฟ้าพลังงานสูง รังสีแกมมา, รังสีเอกซ์, และส่วนที่เป็นอัลตราไวโอเลตที่สูงกว่าของสเปกตรัมแม่เหล็กไฟฟ้าเป็นพวกแตกตัวเป็นไอออน ในขณะที่ส่วนที่เป็นอัลตราไวโอเลตที่ต่ำกว่าของสเปกตรัมแม่เหล็กไฟฟ้าอีกทั้งส่วนล่างของสเปคตรัมที่ต่ำกว่ายูวีที่รวมทั้งแสงที่มองเห็นได้ (รวมเกือบทุกประเภทของแสงเลเซอร์), อินฟาเรด, ไมโครเวฟ และคลื่นวิทยุ ทั้งหมดนี้ถูกพิจารณาว่าเป็นรังสีที่ไม่มีการแตกตัวเป็นไอออน เขตแดนระหว่างรังสีแม่เหล็กไฟฟ้าแบบแตกตัวเป็นไอออนและที่ไม่ใช่แบบแตกตัวเป็นไอออนที่เกิดขึ้นในรังสีอัลตราไวโอเลตไม่ได้ถูกกำหนดไว้อย่างชัดเจน เนื่องจากโมเลกุลและอะตอมที่แตกต่างกันจะแตกตัวเป็นไอออนที่พลังงานแตกต่างกัน นิยามที่ตกลงกันกำหนดเขตแดนไว้ที่พลังงานของโฟตอนระหว่าง 10 eV ถึง 33 eV ในรังสีอัลตราไวโอเลต อนุภาคย่อยของอะตอมทั่วไปที่แตกตัวเป็นไอออนจากกัมมันตภาพรังสีรวมถึงอนุภาคแอลฟา, อนุภาคบีตา, และนิวตรอน เกือบทั้งหมดของผลิตภัณฑ์จากการสลายให้กัมมันตรังสีจะเป็นพวกที่แตกตัวเป็นไอออนเพราะพลังงานจากการสลายได้กัมมันตรังสีโดยทั่วไปจะสูงกว่าอย่างมากจากที่จำเป็นต้องใช้ในการแตกตัว อนุภาคย่อยของอะตอมที่มีการแตกตัวอื่น ๆที่เกิดขึ้นตามธรรมชาติก็มี มิวออน, มีซอน, โพสิตรอน, นิวตรอนและอนุภาคอื่น ๆ ที่ประกอบขึ้นเป็นรังสีคอสมิกขั้นที่สอง ที่มีการผลิตหลังจากรังสีคอสมิกขั้นที่นึ่งมีปฏิสัมพันธ์กับชั้นบรรยากาศของโลก รังสีคอสมิกยังอาจผลิตไอโซโทปรังสีในโลกอีกด้วย (ตัวอย่างเช่นคาร์บอน-14) ซึ่งเป็นผลให้เกิดการเสื่อมสลายและผลิตรังสีที่เกิดจากการแตกตัวเป็นไอออน รังสีคอสมิกและการเสื่อมสลายของไอโซโทปกัมมันตรังสีเป็นแหล่งที่มาหลักของรังสีที่เกิดจากการแตกตัวเป็นไอออนตามธรรมชาติบนโลกที่เรียกว่ารังสีพื้นหลัง ในอวกาศ การปล่อยรังสีความร้อนตามธรรมชาติจากสสารที่อุณหภูมิสูงมาก (เช่นการปล่อยพลาสมาหรือโคโรนาของดวงอาทิตย์) อาจเป็นการแตกตัวเป็นไอออน รังสีจากการเป็นไอออนอาจถูกผลิตขึ้นตามธรรมชาติโดยการเร่งความเร็วของอนุภาคที่มีประจุโดยสนามแม่เหล็กไฟฟ้าในธรรมชาติ (เช่นฟ้าผ่า), แม้ว่าจะหายากบนโลก การระเบิดแบบซูเปอร์โนวาตามธรรมชาติในอวกาศจะผลิตปริมาณมากของรังสีจากการแตกตัวเป็นไอออนใกล้กับการระเบิด ซึ่งจะเห็นได้จากผลกระทบของมันในเนบิวล่าที่แวววาวที่เกี่ยวข้องกับพวกมัน รังสีจากการแตกตัวยังสามารถสร้างแบบเทียมขึ้นมาได้โดยใช้หลอดรังสีเอกซ์, เครื่องเร่งอนุภาค และวิธีการต่างๆที่ผลิตไอโซโทปรังสีแบบเทียม รังสีจากการแตกตัวจะมองไม่เห็นและจะไม่สามารถตรวจพบได้โดยตรงจากความรู้สึกของมนุษย์, ดังนั้นเครื่องมือตรวจจับรังสีเช่นเครื่องไกเกอร์เคาน์เตอร์จึงจำเป็น อย่างไรก็ตามรังสีจากการแตกตัวอาจนำไปสู่​​การปล่อยครั้งที่สองของแสงที่มองเห็นได้หลังจากการมีปฏิสัมพันธ์กับสสาร เช่นในการฉายรังสีแบบ Cherenkov และการเรืองแสงรังสี (radioluminescence) รังสีจากการแตกตัวถูกนำไปใช้อย่างสร้างสรรค์ในหลากหลายสาขาเช่นยา, การวิจัย, การผลิต, การก่อสร้างและพื้นที่อื่น ๆ แต่ก็ทำให้เกิดอันตรายต่อสุขภาพถ้าไม่ปฏิบัติตามมาตรการที่เหมาะสมที่ต่อต้านกับการสัมผัสที่ไม่พึงประสงค์ การสัมผัสกับรังสีจากการแตกตัวจะทำให้เกิดความเสียหายให้กับเนื้อเยื่อที่มีชีวิตและสามารถส่งผลให้เกิดการกลายพันธุ์, การเจ็บป่วยเนื่องจากรังสี, มะเร็งและการเสียชีวิต.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและรังสีก่อไอออน · ดูเพิ่มเติม »

วัสดุฟิสไซล์

แผนภูมิของนิวไคลด์แสดงค่าตัดขวางฟิชชั่นของนิวตรอนความร้อน วัสดุฟิสไซล์ (fissile material) ในวิศวกรรมนิวเคลียร์, หมายถึงวัสดุที่สามารถรักษาปฏิกิริยาลูกโซ่นิวเคลียร์ฟิชชันให้ยั่งยืน.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและวัสดุฟิสไซล์ · ดูเพิ่มเติม »

ตัวหน่วงนิวตรอน

ใน วิศวกรรมนิวเคลียร์ ตัวหน่วงนิวตรอน (neutron moderator) เป็นตัวกลางที่ช่วยลดความเร็วของ นิวตรอนเร็ว โดยเปลี่ยนพวกมันให้เป็น นิวตรอนความร้อน ที่สามารถสร้างความยั่งยืนให้กับ ปฏิกิริยาลูกโซ่นิวเคลียร์ ที่ใช้ ยูเรเนียม-235 หรือ นิวไคลด์ อื่นที่ทำ ฟิชชัน ได้ที่คล้ายกัน ตัวหน่วงที่ใช้กันทั่วไป ได้แก่ น้ำปกติ (เบา) (ใช้ประมาณ 75% ของเครื่องปฏิกรณ์นิวเคลียร์ของโลก) แท่ง แกรไฟต์ (20% ของเครื่องปฏิกรณ์นิวเคลียร์) และ น้ำหนัก (5% ของเครื่องปฏิกรณ์นิวเคลียร์) เบริลเลียม ก็ได้ถูกนำมาใช้ในรูปแบบเพื่อการทดลองบางอย่าง และพวก ไฮโดรคาร์บอน ก็ได้รับการแนะนำว่ามีความเป็นไปได้อีกตัวหนึ่ง.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและตัวหน่วงนิวตรอน · ดูเพิ่มเติม »

ปฏิกิริยาลูกโซ่นิวเคลียร์

ฟิชชันที่เป็นไปได้ 1. อะตอมยูเรเนียม-235 ดูดซับนิวตรอน และแตกเป็นสองอะตอมใหม่ (การแตกตัว), ปล่อยนิวตรอนใหม่ 3 นิวตรอน และพลังงาน 2. หนึ่งในนิวตรอนเหล่านั้นถูกดูดซับโดยอะตอมของยูเรเนียม-238 และไม่เกิดปฏิกิริยาต่อ นิวตรอนที่เหลือในระบบไม่ถูกดูดซับ อย่างไรก็ตาม นิวตรอนหนึ่งอาจไปชนกับอะตอมยูเรเนียม-235 และแตกตัวปลดปล่อยนิวตรอนสองนิวตรอนและพลังงาน 3. นิวตรอนทั้งสองตัวนั้นไปชนอะตอมยูเรเนียม-235 และแต่ละอะตอมแตกตัวปลดปล่อยนิวตรอนสองสามนิวตรอนซึ่งสามารถไปชนอะตอมยูเรเนียม-235 อื่นอีกไปเรื่อย ๆ ปฏิกิริยาลูกโซ่นิวเคลียร์ (nuclear chain reaction) เกิดขึ้นเมื่อปฏิกิริยานิวเคลียร์หนึ่งทำให้เกิดปฏิกิริยานิวเคลียร์อื่นต่อไปอีก นำไปสู่การเพิ่มจำนวนตนเองของปฏิกิริยาเหล่านี้อย่างต่อเนื่อง ปฏิกิริยานิวเคลียร์หนึ่ง ๆ อาจเป็นฟิชชันของไอโซโทปหนัก (เช่น ยูเรเนียม 235) หรือฟิวชั่นของไอโซโทปเบา (เช่น ดิวทีเรียมหรือทริเทียม) ปฏิกิริยาลูกโซ่นิวเคลียร์จะปลดปล่อยพลังงานออกมามากกว่าปฏิกิริยาเคมีหลายล้านเท.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและปฏิกิริยาลูกโซ่นิวเคลียร์ · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและนิวตรอน · ดูเพิ่มเติม »

นิวไคลด์

นิวไคลด์ (Nuclide; มาจาก นิวเคลียส) คือกลุ่มลักษณะของอะตอมที่เกิดจากคุณลักษณะเฉพาะของนิวเคลียสของมัน เช่นการดูจากจำนวน Z ของโปรตอน (ประเภทจำนวนโปรตอนเท่ากัน), จำนวน N ของนิวตรอน (ประเภทจำนวนนิวตอนเท่ากัน) และระดับพลังงานของอะตอม(ประเภทพลังงานเท่ากัน) คำว่า "นิวไคลด์" ถูกนำเสนอขึ้น โดยนาย Truman P. Kohman ในปี..

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและนิวไคลด์ · ดูเพิ่มเติม »

โรงไฟฟ้านิวเคลียร์

รงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Grafenrheinfeld, รัฐบาวาเรีย, ประเทศเยอรมนี เครื่องปฏิกรณ์นิวเคลียร์อยู่ภายในอาคารเก็บกักรูปโดมที่อยู่ตรงกลาง, ด้านซ้ายและขวาเป็นหอหล่อเย็นซึ่งเป็นอุปกรณ์ระบายความร้อนที่ใช้กันทั่วไปในทุกโรงไฟฟ้าพลังงานความร้อน และเช่นกัน มันจะปล่อยไอน้ำจากส่วนของกังหันไอน้ำที่ไม่มีกัมมันตรังสีออกสู่สิ่งแวดล้อมภายนอก โรงผลิตไฟฟ้าพลังงานนิวเคลียร์ที่ Jaslovské Bohunice ในประเทศสโลวาเกีย โรงไฟฟ้านิวเคลียร์ เป็นโรงไฟฟ้าพลังความร้อนแบบหนึ่งที่ใช้แหล่งพลังงานความร้อนจากเครื่องปฏิกรณ์ที่ใช้พลังงานนิวเคลียร์ในการผลิตไอน้ำแรงดันสูงจ่ายให้กับกังหันไอน้ำ กังหันไอน้ำจะไปหมุนเครื่องกำเนิดไฟฟ้าผลิตเป็นกระแสไฟฟ้าออกมา โดยเครื่องปฏิกรณ์ที่ใช้ในการผลิตพลังงานนิวเคลียร์ สามารถแบ่งออกเป็น 2 ประเภทได้แก่ เครื่องปฏิกรณ์นิวเคลียร์แบบวิจัย (Research Reactor) ที่ใช้ประโยชน์จากนิวตรอนฟลักซ์ในการวิจัย และระบายความร้อนที่เกิดขึ้นออกสู่ชั้นบรรยากาศ และเครื่องปฏิกรณ์นิวเคลียร์กำลัง (Power Reactor) ที่ใช้พลังความร้อนที่เกิดขึ้นเปลี่ยนเป็นพลังงานไฟฟ้า ซึ่งเครื่องปฏิกรณ์นิวเคลียร์กำลัง มีขนาดใหญ่โตกว่าเครื่องปฏิกรณ์นิวเคลียร์วิจัยเป็นอย่างมาก โรงไฟฟ้านิวเคลียร์เป็นโรงไฟฟ้าชนิด Baseload คือผลิตพลังงานคงที่ โดยไม่ขึ้นกับกำลังงานที่ต้องการใช้จริง เนื่องจากต้นทุนเชื้อเพลิงมีราคาถูกเมื่อเทียบกับค่าใช้จ่ายอื่นๆในการผลิต (ในขณะที่โรงไฟฟ้าที่ใช้การต้มน้ำด้วยแหล่งพลังงานอื่น สามารถลดการจ่ายไฟลงครึ่งหนึ่งได้เวลากลางคืนเพื่อประหยัดค่าใช้จ่ายเชื้อเพลิง) กำลังไฟที่หน่วยผลิตจ่ายได้นั้นอาจมีตั้งแต่ 40 เมกะวัตต์ จนถึงเกือบ 2000 เมกะวัตต์ ในปัจจุบันหน่วยผลิตที่สร้างกันมีขอบเขตอยู่ที่ 600-1200 เมกะวัตต์ ข้อมูลของ IAEA ณ วันที่ 23 เมษายน ค.ศ. 2014 มีเครื่องปฏิกรณ์ทำงานอยู่ 435 เครื่องhttp://www.iaea.org/pris/ใน 31 ประเทศทั่วโลก รวมแล้วผลิตกำลังไฟฟ้าเป็น 1 ใน 6 ส่วนของพลังงานไฟฟ้าทั้งหมดในโลก โดยสหรัฐอเมริกามีจำนวนโรงไฟฟ้านิวเคลียร์ มากที่สุด ตามมาด้วย ฝรั่ง.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและโรงไฟฟ้านิวเคลียร์ · ดูเพิ่มเติม »

เชื้อเพลิงนิวเคลียร์

ื้อเพลิงนิวเคลียร์ เป็นเชื้อเพลิงทางเลือกชนิดหนึ่งที่ประเทศไทยโดยการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย เลือกใช้ผลิตกระแสไฟฟ้า เพื่อให้เพียงพอต่อความต้องการใช้ไฟฟ้าปริมาณมากของคนไทย โดยเชื้อเพลิงนิวเคลียร์นี้ผลิตจากแร่ยูเรเนียม ที่ผ่านกระบวนการสกัด แปลงสภาพ และทำให้เข้มข้น (Enriched) ก่อนที่จะทำเป็นเม็ดแล้วนำไปบรรจุในท่อ ซึ่งจะนำไปรวมเป็นมัดเชื้อเพลิงบรรจุในแกนปฏิกรณ์เพื่อใช้งาน เชื้อเพลิงนิวเคลียร์ให้ความร้อนโดยอาศัยปฏิกิริยาแตกตัว (Nuclear fission) แตกต่างจากเชื้อเพลิงทั่วไป ซึ่งให้ความร้อนโดยกระบวนการสันดาป นอกจากนี้ยังมีลักษณะเด่น ดังนี้.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและเชื้อเพลิงนิวเคลียร์ · ดูเพิ่มเติม »

เครื่องปฏิกรณ์นิวเคลียร์

แกนของ CROCUS, เครื่องปฏิกรณ์นิวเคลียร์ขนาดเล็กที่ใช้สำหรับการวิจัยที่ EPFL ในประเทศสวิสเซอร์แลนด์ เครื่องปฏิกรณ์นิวเคลียร์ (Nuclear Reactor) เป็นอุปกรณ์ที่ก่อกำเนิดและควบคุมปฏิกิริยานิวเคลียร์ลูกโซ่ (Nuclear chain reaction) อย่างยั่งยืน มันถูกนำมาใช้ในโรงไฟฟ้านิวเคลียร์ในการผลิตไฟฟ้าและในการขับเคลื่อนเรือ ความร้อนจากนิวเคลียร์ฟิชชั่นถูกส่งไปให้กับของเหลว (น้ำหรือก๊าซ) ให้เป็นตัวทำงาน (working fluid) ของเหลวความร้อนสูงจะไหลไปหมุนกังหันเพื่อหมุนใบพัดเรือหรือหมุนเครื่องกำเนิดไฟฟ้า ไอน้ำที่สร้างโดยนิวเคลียร์ในหลักการสามารถนำมาใช้เพื่อให้ความร้อนในกระบวนการอุตสาหกรรมหรือสำหรับให้ความร้อนชุมชน (district heating) เครื่องปฏิกรณ์บางเครื่องใช้ในการผลิตไอโซโทปสำหรับการใช้งานทางการแพทย์และอุตสาหกรรมหรือผลิตพลูโตเนียมสำหรับทำอาวุธ บางเครื่องก็ใช้สำหรับงานวิจัยเท่านั้น ทุกวันนี้มีประมาณ 450 เครื่องปฏิกรณ์พลังงานนิวเคลียร์ที่ใช้ในการผลิตกระแสไฟฟ้าในประมาณ 30 ประเทศทั่วโลก.

ใหม่!!: เครื่องปฏิกรณ์ความร้อนนิวตรอนและเครื่องปฏิกรณ์นิวเคลียร์ · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »