โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

อันตรกิริยาพื้นฐานและแรง

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง อันตรกิริยาพื้นฐานและแรง

อันตรกิริยาพื้นฐาน vs. แรง

อันตรกิริยาพื้นฐาน (fundamental interaction; บางครั้งก็เรียกว่า แรงพื้นฐาน) ในทางฟิสิกส์ คือวิธีการที่อนุภาคชนิดเรียบง่ายที่สุดในเอกภพกระทำต่อกันและกัน อันตรกิริยานั้นจะถือว่าเป็นอันตรกิริยาพื้นฐานเมื่อมันไม่สามารถอธิบายในรูปแบบอันตรกิริยาอื่นใดได้อีก มีอันตรกิริยาพื้นฐานอยู่ 4 ชนิดที่เรารู้จัก ได้แก่ แรงแม่เหล็กไฟฟ้า อันตรกิริยาอย่างเข้ม อันตรกิริยาอย่างอ่อน (บางครั้งก็เรียกว่า แรงนิวเคลียร์ชนิดเข้ม กับ แรงนิวเคลียร์ชนิดอ่อน) และแรงโน้มถ่วง แรงสามชนิดแรกนั้นสามารถอธิบายได้ในรูปแบบของกระบวนการคำนวณต่างๆ ด้วยทฤษฎีที่เรียกชื่อว่า perturbation theory โดยการพิจารณาการแลกเปลี่ยนโบซอนระหว่างอนุภาค ตารางต่อไปนี้แสดงข้อมูลเบื้องต้นเกี่ยวกับอันตรกิริยาแบบต่างๆ ค่าของแรงสัมพัทธ์และระยะที่มีผลที่แสดงในตารางนี้ จะมีความหมายก็ต่อเมื่ออยู่ในกรอบการพิจารณาทางทฤษฎีเท่านั้น พึงทราบด้วยว่าข้อมูลในตารางนี้อ้างอิงจากแนวคิดหลักซึ่งยังเป็นหัวข้อวิจัยที่กำลังดำเนินการอยู่ ในฟิสิกส์แผนใหม่ อันตรกิริยาระหว่างอนุภาคมักจะอธิบายได้ในรูปของการแลกเปลี่ยนหรือการคายและดูดกลืนแบบต่อเนื่องของอะไรบางอย่างที่เรียกอนุภาคสนาม (field particles) หรือ อนุภาคแลกเปลี่ยน (exchange particles) ในกรณีอันตรกิริยาไฟฟ้าอนุภาคสนามก็คือ โฟตอน (photon) ในภาษาของฟิสิกส์แผนใหม่เรากล่าวว่าแรงแม่เหล็กไฟฟ้ามีโฟตอนเป็นสื่อ (mediated) หรือพาหะ (carrier) และโฟตอนก็เป็นอนุภาคสนามของสนามแม่เหล็กไฟฟ้า เช่นกัน แรงนิวเคลียร์ก็มีสื่อเรียก      กลูออน (gluons) (ที่มีชื่อเช่นนี้ เพราะมัน “ยึดติด” นิวคลีออนไว้ด้วยกันเหมือนกาว) แรงอ่อนมีอนุภาคสนามเป็นสื่อ ชื่อ W และ Z โบซอน (bosons) และแรงโน้มถ่วงมีอนุภาคสนามเป็นพาหะเรียก      แกรวิตอน (gravitons) อันตรกิริยาเหล่านี้ พิสัยและความเข้มสัมพัทธ์ของมัน. ในทางฟิสิกส์ แรง คือ อันตรกิริยาใด ๆ เมื่อไม่มีการขัดขวางแล้วจะเปลี่ยนแปลงการเคลื่อนที่ของวัตถุไป แรงที่สามารถทำให้วัตถุซึ่งมีมวลเปลี่ยนแปลงความเร็ว (ซึ่งรวมทั้งการเคลื่อนที่จากภาวะหยุดนิ่ง) กล่าวคือ ความเร่ง ซึ่งเป็นผลมาจากการใช้พลังงาน แรงยังอาจหมายถึงการผลักหรือการดึง แรงเป็นปริมาณที่มีทั้งขนาดหรือทิศทาง วัดได้ในหน่วยของนิวตัน โดยใช้สัญลักษณ์ทั่วไปเป็น F ตามกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน กล่าวว่าแรงลัพธ์ที่กระทำต่อวัตถุมีค่าเท่ากับอัตราของโมเมนตัมที่เปลี่ยนแปลงไปตามเวลา ถ้ามวลของวัตถุเป็นค่าคงตัว จากกฎข้อนี้จึงอนุมานได้ว่าความเร่งเป็นสัดส่วนโดยตรงกับแรงลัพธ์ที่กระทำต่อวัตถุในทิศทางของแรงลัพธ์และเป็นสัดส่วนผกผันกับมวลของวัตถุ แนวคิดเกี่ยวกับแรง ได้แก่ แรงขับซึ่งเพิ่มความเร็วของวัตถุให้มากขึ้น แรงฉุดซึ่งลดความเร็วของวัตถุ และทอร์กซึ่งทำให้เกิดการเปลี่ยนแปลงความเร็วในการหมุนของวัตถุ ในวัตถุที่มีส่วนขยาย แรงที่ทำกระทำคือแรงที่กระทำต่อส่วนของวัตถุที่อยู่ติดกัน การกระจายตัวของแรงดังกล่าวเป็นความเครียดเชิงกล ซึ่งไม่ทำให้เกิดความเร่งของวัตถุมื่อแรงสมดุลกัน แรงที่กระจายตัวกระทำบนส่วนเล็ก ๆ ของวัตถุอาจเรียกได้ว่าเป็นความดัน ซึ่งเป็นความเคลียดอย่างหนึ่งและถ้าไม่สมดุลอาจทำให้วัตถุมีความเร่งได้ ความเครียดมักจะทำให้วัตถุเกิดการเสียรูปของวัตถุที่เป็นของแข็งหรือการไหลของของไหล.

ความคล้ายคลึงกันระหว่าง อันตรกิริยาพื้นฐานและแรง

อันตรกิริยาพื้นฐานและแรง มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟิสิกส์อันตรกิริยาอย่างอ่อนอันตรกิริยาอย่างเข้มทฤษฎีสัมพัทธภาพทั่วไปความโน้มถ่วงแรงแม่เหล็กไฟฟ้า

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ฟิสิกส์และอันตรกิริยาพื้นฐาน · ฟิสิกส์และแรง · ดูเพิ่มเติม »

อันตรกิริยาอย่างอ่อน

อิเล็กตรอนปฏินิวทรืโนอย่างละหนึ่งตัว ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อน (weak interaction) หรือบางครั้งเรียกกันทั่วไปว่า แรงนิวเคลียร์อย่างอ่อน (weak nuclear force) เป็นกลไกที่รับผิดชอบแรงอ่อนหรือแรงนิวเคลียร์อ่อน แรงนี้เป็นหนึ่งในสี่แรงพื้นฐาน่ของธรรมชาติที่รู้จักกันดีในการปฏิสัมพันธ์, แรงที่เหลือได้แก่อันตรกิริยาอย่างเข้ม, แรงแม่เหล็กไฟฟ้าและแรงโน้มถ่วง อันตรกิริยาอย่างอ่อนเป็นผู้รับผิดชอบต่อการสลายให้กัมมันตรังสีของอนุภาคย่อยของอะตอม และมันมีบทบาทสำคัญในปฏิกิริยานิวเคลียร์ฟิชชัน ทฤษฎีของอันตรกิริยาอย่างอ่อนบางครั้งเรียกว่าควอนตัม flavordynamics (QFD), คล้ายกับ QCD และ QED, แต่คำนี้ที่ไม่ค่อยได้ใช้เพราะแรงอ่อนเป็นที่เข้าใจกันดีที่สุดในแง่ของทฤษฎีไฟฟ้าอ่อน (electro-weak theory (EWT)) ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อนเกิดจากการปล่อยหรือการดูดซึมของ W และ Z โบซอน อนุภาคทุกตัวในตระกูลเฟอร์มิออนที่รู้จักกันแล้วมีปฏิสัมพันธ์ต่อกันผ่านทางอันตรกิริยาอย่างอ่อน อนุภาคเหล่านั้นมีสปินครึ่งจำนวนเต็ม (หนึ่งในคุณสมบัติพื้นฐานของอนุภาค) พวกมันสามารถเป็นอนุภาคมูลฐานเช่นอิเล็กตรอนหรืออาจจะเป็นอนุภาคผสมเช่นโปรตอน มวลของ W+ W- และ Z โบซอน แต่ละตัวจะมีขนาดใหญ่กว่ามวลของโปรตอนหรือของนิวตรอนอย่างมาก สอดคล้องกับช่วงระยะทำการที่สั้นของแรงที่อ่อน แรงถูกเรียกว่าอ่อนเพราะความแรงของสนามในระยะทางที่กำหนดโดยทั่วไปจะมีขนาดเป็นเลขยกกำลังที่น้อยกว่าแรงนิวเคลียร์อย่างเข้มและแรงแม่เหล็กไฟฟ้ามาก ๆ ในช่วงยุคของควาร์ก แรงไฟฟ้าอ่อน (electroweak force) แยกออกเป็นแรงแม่เหล็กไฟฟ้​​าและแรงอ่อน ตัวอย่างที่สำคัญของอันตรกิริยาอย่างอ่อนได้แก่การสลายให้อนุภาคบีตา และการผลิตดิวเทอเรียมจากไฮโดรเจนที่จำเป็นเพื่อให้พลังงานในกระบวนการเทอร์โมนิวเคลียร์ของดวงอาทิตย์ เฟอร์มิออนส่วนใหญ่จะสลายตัวโดยอันตรกิริยาอย่างอ่อนไปตามเวลา การสลายตัวดังกล่าวยังทำให้การหาอายุด้วยวืธีเรดิโอคาร์บอน (radiocabon dating) มีความเป็นไปได้เมื่อคาร์บอน-14 สูญสลายผ่านอันตรกิริยาอย่างอ่อนกลายเป็นไนโตรเจน-14 นอกจากนี้มันยังสามารถสร้างสารเรืองแสงรังสี (radioluminescence) ที่ใช้กันทั่วไปในการส่องสว่างทริเทียม (tritium illumination) และในสาขาที่เกี่ยวข้องกับ betavoltaics ควาร์กเป็นผู้สร้างอนุภาคผสมเช่นนิวตรอนและโปรตอน ควาร์กมีหกชนิดที่เรียกว่า "ฟเลเวอร์" (flavour) ได้แก่ อัพ, ดาวน์, สเตรนจ์, ชาร์ม, ทอปและบอตทอม - ซึ่งเป็นคุณสมบัติของอนุภาคผสมเหล่านั้น อันตรกิริยาอย่างอ่อนเป็นหนึ่งเดียวในแง่ที่ว่ามันจะยอมให้ควาร์กสามารถที่จะสลับฟเลเวอร์ของพวกมันไปเป็นอย่างอื่นได้ ตัวอย่างเช่นในระหว่างการสลายตัวในอนุภาคบีตาลบ ดาวน์ควาร์กตัวหนึ่งสลายตัวกลายเป็นอัพควาร์ก เป็นการแปลงนิวตรอนให้เป็นโปรตอน นอกจากนี้อันตรกิริยาอย่างอ่อนยังเป็นปฏิสัมพันธ์พื้นฐานอย่างเดียวเท่านั้นที่ทำลายการสมมาตรแบบเท่าเทียมกัน และในทำนองเดียวกัน มันเป็นอย่างเดียวเท่านั้นที่ทำลาย CP-สมมาตร.

อันตรกิริยาพื้นฐานและอันตรกิริยาอย่างอ่อน · อันตรกิริยาอย่างอ่อนและแรง · ดูเพิ่มเติม »

อันตรกิริยาอย่างเข้ม

นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.

อันตรกิริยาพื้นฐานและอันตรกิริยาอย่างเข้ม · อันตรกิริยาอย่างเข้มและแรง · ดูเพิ่มเติม »

ทฤษฎีสัมพัทธภาพทั่วไป

การทดสอบสัมพัทธภาพทั่วไปความเที่ยงสูงโดยยานอวกาศแคสซินี สัญญาณวิทยุที่ส่งระหว่างโลกและยาน (คลื่นสีเขียว) ถูกหน่วงโดยการบิดของปริภูมิ-เวลา (เส้นสีน้ำเงิน) เนื่องจากมวลของดวงอาทิตย์ สัมพัทธภาพทั่วไปหรือทฤษฎีสัมพัทธภาพทั่วไป (general relativity หรือ general theory of relativity) เป็นทฤษฎีความโน้มถ่วงแบบเรขาคณิตซึ่งอัลเบิร์ต ไอน์สไตน์จัดพิมพ์ใน..

ทฤษฎีสัมพัทธภาพทั่วไปและอันตรกิริยาพื้นฐาน · ทฤษฎีสัมพัทธภาพทั่วไปและแรง · ดูเพิ่มเติม »

ความโน้มถ่วง

หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.

ความโน้มถ่วงและอันตรกิริยาพื้นฐาน · ความโน้มถ่วงและแรง · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

อันตรกิริยาพื้นฐานและแรงแม่เหล็กไฟฟ้า · แรงและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง อันตรกิริยาพื้นฐานและแรง

อันตรกิริยาพื้นฐาน มี 13 ความสัมพันธ์ขณะที่ แรง มี 46 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 10.17% = 6 / (13 + 46)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง อันตรกิริยาพื้นฐานและแรง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »