ความคล้ายคลึงกันระหว่าง สมบัติการเปลี่ยนหมู่และเซตกำลัง
สมบัติการเปลี่ยนหมู่และเซตกำลัง มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ยูเนียนสมบัติการสลับที่สมบัติการแจกแจงอินเตอร์เซกชันจำนวนจริงคณิตศาสตร์
ยูเนียน
ูเนียน (union) หรือ ส่วนรวม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการรวมสมาชิกทั้งหมดของเซตต้นแบบเข้าด้วยกัน เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U).
ยูเนียนและสมบัติการเปลี่ยนหมู่ · ยูเนียนและเซตกำลัง ·
สมบัติการสลับที่
ตัวอย่างแสดงสมบัติการสลับที่ของการบวก (3 + 2.
สมบัติการสลับที่และสมบัติการเปลี่ยนหมู่ · สมบัติการสลับที่และเซตกำลัง ·
สมบัติการแจกแจง
ในทางคณิตศาสตร์ สมบัติการแจกแจง (distributivity) คือสมบัติหนึ่งที่สามารถมีได้บนการดำเนินการทวิภาค ซึ่งเป็นกรณีทั่วไปของกฎการแจกแจงจากพีชคณิตมูลฐาน ตัวอย่างเช่น ข้างซ้ายของสมการข้างต้น 2 คูณเข้ากับผลบวกของ 1 กับ 3 ส่วนข้างขวา 2 คูณเข้ากับ 1 และ 3 แต่ละตัวแยกกัน แล้วค่อยนำผลคูณเข้ามาบวก เนื่องจากตัวอย่างข้างต้นให้ผลลัพธ์เท่ากันคือ 8 เราจึงกล่าวว่า การคูณด้วย 2 แจกแจงได้ (distribute) บนการบวกของ 1 กับ 3 เราสามารถแทนที่จำนวนเหล่านั้นด้วยจำนวนจริงใดๆ แล้วทำให้สมการยังคงเป็นจริง เราจึงกล่าวว่า การคูณของจำนวนจริง แจกแจงได้บนการบวกของจำนวนจริง สมบัติการแจกแจงจึงต้องเกี่ยวข้องกับการดำเนินการสองชน.
สมบัติการเปลี่ยนหมู่และสมบัติการแจกแจง · สมบัติการแจกแจงและเซตกำลัง ·
อินเตอร์เซกชัน
อินเตอร์เซกชัน (intersection) หรือ ส่วนร่วม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการหาสมาชิกทั้งหมดที่เหมือนกันในเซตต้นแบบ เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U กลับหัว).
สมบัติการเปลี่ยนหมู่และอินเตอร์เซกชัน · อินเตอร์เซกชันและเซตกำลัง ·
จำนวนจริง
ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).
จำนวนจริงและสมบัติการเปลี่ยนหมู่ · จำนวนจริงและเซตกำลัง ·
คณิตศาสตร์
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ สมบัติการเปลี่ยนหมู่และเซตกำลัง มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง สมบัติการเปลี่ยนหมู่และเซตกำลัง
การเปรียบเทียบระหว่าง สมบัติการเปลี่ยนหมู่และเซตกำลัง
สมบัติการเปลี่ยนหมู่ มี 24 ความสัมพันธ์ขณะที่ เซตกำลัง มี 21 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 13.33% = 6 / (24 + 21)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง สมบัติการเปลี่ยนหมู่และเซตกำลัง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: