เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม

สปิน (ฟิสิกส์) vs. อนุภาคย่อยของอะตอม

ในการศึกษาด้านกลศาสตร์ควอนตัมและฟิสิกส์อนุภาค สปิน (spin) คือคุณลักษณะพื้นฐานของอนุภาคมูลฐาน, อนุภาคประกอบ (ฮาดรอน) และนิวเคลียสอะตอม อนุภาคมูลฐานประเภทเดียวกันทุกตัวจะมี เลขควอนตัมสปิน เลขเดียวกัน ซึ่งเป็นส่วนสำคัญของสถานะควอนตัมของอนุภาค เมื่อรวมเข้ากับทฤษฎีสถิติของสปิน (spin-statistics theorem) สปินของอิเล็กตรอนจะส่งผลตามหลักการกีดกันของเพาลี อันเป็นตัวการเบื้องหลังของตารางธาตุ ทิศทางสปิน (บางครั้งก็เรียกย่อๆ ว่า "สปิน") ของอนุภาคหนึ่งเป็นองศาอิสระภายในที่สำคัญของอนุภาคนั้น โวล์ฟกัง เพาลี เป็นบุคคลแรกที่เสนอแนวคิดเรื่องของสปิน แต่เขายังไม่ได้ตั้งชื่อให้กับมัน ปี.. อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ความคล้ายคลึงกันระหว่าง สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม

สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟิสิกส์ของอนุภาคพอล ดิแรกกลศาสตร์ดั้งเดิมกลศาสตร์ควอนตัมว็อล์ฟกัง เพาลีอนุภาคมูลฐาน

ฟิสิกส์ของอนุภาค

ฟิสิกส์ของอนุภาค (particle physics) เป็นสาขาหนึ่งของฟิสิกส์ที่ศึกษาธรรมชาติของอนุภาคทั้งหลายที่รวมตัวกันขึ้นเป็นสสาร (อนุภาคที่มีมวล) และ การฉายรังสี (อนุภาคที่ไม่มีมวล) แม้ว่าคำว่า "อนุภาค" สามารถหมายถึงวัตถุที่มีขนาดเล็กมากหลากหลายชนิด (เช่นโปรตอน อนุภาคก๊าซ หรือแม้กระทั่งฝุ่นในครัวเรือน), "ฟิสิกส์ของอนุภาค" มักจะสำรวจตรวจหาอนุภาคที่มีขนาดเล็กที่สุด สามารถตรวจพบได้ ไม่สามารถลดขนาดลงได้อีก และมีสนามฟิสิกส์ที่มีแรงขนาดพื้นฐานที่ลดขนาดลงไม่ได้ที่จำเป็นต้องใช้ในการที่จะอธิบายตัวมันเองได้ ตามความเข้าใจของเราในปัจจุบัน อนุภาคมูลฐานเหล่านี้เป็นการกระตุ้นของสนามควอนตัมที่ควบคุมการปฏิสัมพันธ์ของพวกมันอีกด้วย ทฤษฎีที่โดดเด่นในปัจจุบันที่ใช้อธิบายอนุภาคมูลฐานและสนามเหล่านี้ พร้อมกับการเปลี่ยนแปลง (ไดนามิกส์) ของพวกมัน จะถูกเรียกว่าแบบจำลองมาตรฐาน ดังนั้นฟิสิกส์ของอนุภาคที่ทันสมัยโดย​​ทั่วไปจะสำรวจแบบจำลองมาตรฐานและส่วนขยายที่เป็นไปได้ต่าง ๆ ของพวกมัน เช่น ส่วนขยายไปที่อนุภาคใหม่ล่าสุด "เท่าที่รู้จักกัน" ที่เรียกว่า Higgs boson หรือแม้กระทั่งไปที่สนามของแรงที่เก่าแก่ที่สุดเท่าที่รู้จักกัน คือแรงโน้มถ่วง.

ฟิสิกส์ของอนุภาคและสปิน (ฟิสิกส์) · ฟิสิกส์ของอนุภาคและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

พอล ดิแรก

อล ดิแรก พอล เอเดรียน มัวริซ ดิแรก (Paul Adrien Maurice Dirac; 8 สิงหาคม 2445 -20 ตุลาคม 2527) เป็นนักฟิสิกส์ทฤษฎีชาวอังกฤษ หนึ่งในผู้ก่อตั้งฟิสิกส์สาขากลศาสตร์ควอนตัม เขาดำรงตำแหน่งศาสตราจารย์ลูคาเซียนที่มหาวิทยาลัยเคมบริดจ์ ก่อนจะไปใช้ชีวิตในช่วงสิบปีสุดท้ายของชีวิตที่มหาวิทยาลัยฟลอริดาสเตต เขาเป็นผู้สร้าง "สมการดิแรก" เพื่อใช้อธิบายพฤติกรรมของแฟร์มิออน นำไปสู่การคาดการณ์ถึงการดำรงอยู่ของปฏิสสาร เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี 2476 ร่วมกับ เออร์วิน ชเรอดิงเงอร์ สำหรับการ "ค้นพบรูปแบบใหม่ของทฤษฎีอะตอม".

พอล ดิแรกและสปิน (ฟิสิกส์) · พอล ดิแรกและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

กลศาสตร์ดั้งเดิม

กลศาสตร์ดั้งเดิม เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของกลศาสตร์ (โดยอีกวิชาหนึ่ง คือ กลศาสตร์ควอนตัม) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของแรง โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้านวิทยาศาสตร์ วิศวกรรม และเทคโนโลยีมากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า กลศาสตร์นิวตัน ในทางฟิสิกส์ กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นส่วนของเครื่องจักรกล เหมือนกันกับวัตถุทางดาราศาสตร์ อาทิ ยานอวกาศ ดาวเคราะห์ ดาวฤกษ์ และ ดาราจักร รวมถึงครอบคลุมไปยังทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และแก๊ส โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับความเร็วแสง กลศาสตร์ดั้งเดิมจะมีความถูกต้องที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความถูกต้องในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของความเป็นคลื่น-อนุภาคในอะตอมและโมเลกุล แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง ทฤษฎีสนามควอนตัมจึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง คำว่า กลศาสตร์ดั้งเดิม ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของไอแซก นิวตันและนักปรัชญาธรรมชาติคนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของโยฮันเนส เคปเลอร์จากข้อมูลการสังเกตที่มีความแม่นยำสูงของไทโค บราเฮ และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของกาลิเลโอ โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมีทฤษฎีสัมพัทธภาพและกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของไอน์สไตน์ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่ถูกต้อง และถูกพัฒนามากที่สุด แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน ไลบ์นิซ และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น กลศาสตร์แบบลากรางจ์ และกลศาสตร์แฮมิลตัน ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ในกลศาสตร์เชิงวิเคราะห์อีกด้วย ในกลศาสตร์ดั้งเดิม วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของอนุภาคจุด (วัตถุที่ไม่มีการอ้างอิงถึงขนาด) โดยเคลื่อนที่ของอนุภาคจุดจะมีการกำหนดลักษณะเฉพาะของวัตถุ ได้แก่ ตำแหน่งของวัตถุ มวล และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็นศูนย์เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็กมาก ๆ อย่างเช่น อิเล็กตรอน กลศาสตร์ควอนตัมจะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีความอิสระของมันเอง (Degrees of freedom) อาทิ ลูกตะกร้อสามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์ของอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่นจุดศูนย์กลางมวลของวัตถุที่แสดงเป็นอนุภาคจุด กลศาสตร์ดั้งเดิมใช้สามัญสำนึกเป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุในปริภูมิ (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า Principle of locality).

กลศาสตร์ดั้งเดิมและสปิน (ฟิสิกส์) · กลศาสตร์ดั้งเดิมและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

กลศาสตร์ควอนตัม

'''ฟังชันคลื่น''' (Wavefunction) ของอิเล็กตรอนในอะตอมของไฮโดรเจนที่ทรงพลังงานกำหนดแน่ (ที่เพิ่มลงล่าง ''n''.

กลศาสตร์ควอนตัมและสปิน (ฟิสิกส์) · กลศาสตร์ควอนตัมและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

ว็อล์ฟกัง เพาลี

ว็อล์ฟกัง แอนสท์ เพาลี (Wolfgang Ernst Pauli, 25 เมษายน พ.ศ. 2443 - 15 ธันวาคม พ.ศ. 2501) เป็นนักฟิสิกส์ทฤษฎีชาวออสเตรีย และหนึ่งในกลุ่มผู้บุกเบิกด้านฟิสิกส์ควอนตัม เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ว็อล์ฟกัง เพาลีและสปิน (ฟิสิกส์) · ว็อล์ฟกัง เพาลีและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

อนุภาคมูลฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ในฟิสิกส์ของอนุภาค อนุภาคมูลฐาน (elementary particle หรือ fundamental particle) หมายถึงอนุภาคหนึ่งที่โครงสร้างย่อยไม่เป็นที่รู้จัก ดังนั้นเราจึงไม่รู้ว่ามันประกอบขึ้นด้วยอนุภาคอื่นหรือไม่ มันเป็นหน่วยย่อยที่สุดในทางทฤษฎีฟิสิกส์ทั่วไป เราไม่ถือว่ามันประกอบขึ้นมาจากสิ่งใดอีก อนุภาคมูลฐานที่เรารู้จักกันดีที่สุดคือ อิเล็กตรอน ซึ่งไม่สามารถแยกย่อยเป็นอนุภาคใดๆได้อีก อนุภาคมูลฐานที่รู้จักแล้ว ได้แก่ เฟอร์มิออนพื้นฐาน (ควาร์ก, เลปตอน, ปฏิควาร์ก และปฏิเลปตอน) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคสสาร" และ "อนุภาคปฏิสสาร" อีกชนิดหนึ่งได้แก่ โบซอนพื้นฐาน (เกจโบซอน และอนุภาคฮิกส์) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคแรง" ที่เป็นตัวเชื่อมปฏิสัมพันธ์พื้นฐานในหมู่เฟอร์มิออนด้วยกัน อนุภาคที่ประกอบด้วยอนุภาคมูลฐานตั้งแต่สองอนุภาคขึ้นไปจะเป็น "อนุภาคผสม" (composite particle) สสารในชีวิตประจำวันจะประกอบด้วยอะตอม ที่ครั้งหนึ่งเคยถูกสันนิษฐานว่ามันเป็นอนุภาคมูลฐานของสสาร คำว่า "อะตอม" แปลว่า "แบ่งไม่ได้" ในภาษากรีก แม้ว่าการมีอยู่ของอะตอมยังคงเป็นที่ถกเถียงกันจนถึงประมาณปี 1910 อย่างที่นักฟิสิกส์ชั้นนำบางคนถือว่าโมเลกุลเป็นภาพลวงตาทางคณิตศาสตร์ และถือว่าสสารอย่างสุดขั้วที่สุดจะประกอบด้วยพลังงาน ในไม่ช้า มีการค้นพบว่าอะตอมประกอบด้วยองค์ประกอบย่อย เมื่อเริ่มทศวรรษที่ 1930 อิเล็กตรอนและโปรตอนได้ถูกค้นพบ พร้อมกับโฟตอนซึ่งเป็นอนุภาคของรังสีแม่เหล็กไฟฟ้า ในช่วงเวลานั้น การค้นพบล่าสุดของกลศาสตร์ควอนตัมได้มีก​​ารเปลี่ยนแปลงอย่างรุนแรงของแนวคิดของอนุภาค อย่างเช่นอนุภาคเดี่ยวดูเหมือนจะสามารถขยายสนามได้อย่างที่คลื่นสามารถทำได้ (ทวิภาคของอนุภาคกับคลื่น (particle-wave duality)) ข้อความที่ขัดแย้งยังคงหลีกเลี่ยงคำอธิบายที่น่าพอใจ โดยผ่านทางทฤษฎีควอนตัม โปรตอนและนิวตรอนถูกพบว่าประกอบด้วยควาร์กหลายตัว ได้แก่อัพควาร์กและดาวน์ควาร์ก ซึ่งในปัจจุบันถือว่าพวกนี้เป็นอนุภาคมูลฐาน และภายในโมเลกุลหนึ่ง สามองศาอิสระของอิเล็กตรอน (ประจุ, สปินและวงโคจร) สามารถแยกผ่านทาง wavefunction ออกเป็นสาม'อนุภาคคล้าย' (quasiparticle) (Holon, spinon และ Orbiton) แต่อิเล็กตรอนอิสระ ซึ่งไม่ได้กำลังโคจรรอบนิวเคลียส จะขาดการเคลื่อนไหวในการโคจร และจะปรากฏในรูปที่แบ่งแยกไม่ได้ จึงยังคงถือว่าเป็นอนุภาคมูลฐาน ราวปี 1980 สถานะของอนุภาคมูลฐานที่เป็นมูลฐานอย่างแท้จริง-"องค์ประกอบสุดชั้ว" ของสสาร- ได้ถูกละทิ้งเป็นส่วนใหญ่สำหรับแนวโน้มที่จะเป็นการปฏิบัติมากขึ้น ได้ถูกประมวลอยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค ซึ่งเป็นทฤษฎีที่ประสบความสำเร็จจากทดลองทางวิทยาศาสตร์มากที่สุด การขยายความและทฤษฎีทั้งหลายที่อธิบายเกินกว่าแบบจำลองมาตรฐาน รวมทั้งทฤษฎี supersymmetry ที่นิยมกันอย่างสุดขั้ว ได้เพิ่มจำนวนอนุภาคมูลฐานเป็นสองเท่าโดยการตั้งสมมติฐานที่แต่ละอนุภาคที่รู้จักกันแล้วควบรวมเข้ากับพันธมิตร"เงา" ทำให้มีจำนวนอนุภาคมากกว่าเดิม แม้ว่าสุดยอดพันธมิตรดังกล่าวทั้งหมดยังคงไม่ได้ถูกค้นพบแต่อย่างใด ในขณะเดียวกัน โบซอนมูลฐานที่เป็นตัวเชื่อมแรงโน้มถ่วงที่เรียกว่า แกรวิตอน (Graviton) ก็ยังคงเป็นสมมุติฐานอยู.

สปิน (ฟิสิกส์)และอนุภาคมูลฐาน · อนุภาคมูลฐานและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม

สปิน (ฟิสิกส์) มี 16 ความสัมพันธ์ขณะที่ อนุภาคย่อยของอะตอม มี 50 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 9.09% = 6 / (16 + 50)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง สปิน (ฟิสิกส์)และอนุภาคย่อยของอะตอม หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: