เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

รูปวงกลมและโลกัส (คณิตศาสตร์)

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง รูปวงกลมและโลกัส (คณิตศาสตร์)

รูปวงกลม vs. โลกัส (คณิตศาสตร์)

รูปวงกลมที่แสดงถึงรัศมี เส้นผ่านศูนย์กลาง จุดศูนย์กลาง และเส้นรอบวง รูปวงกลม (อังกฤษ: circle) เป็นรูปร่างพื้นฐานอันหนึ่งในเรขาคณิตแบบยุคลิด รูปวงกลมเป็นโลกัส (locus) ของจุดทุกจุดบนระนาบที่มีระยะห่างคงตัวกับจุดที่กำหนดอีกจุดหนึ่ง ระยะห่างนั้นเรียกว่ารัศมี และจุดที่กำหนดเรียกว่าจุดศูนย์กลาง สามจุดใดๆ ที่ไม่อยู่บนเส้นตรงเดียวกัน จะสามารถวาดรูปวงกลมผ่านทั้งสามจุดได้เพียงวงเดียว เส้นรอบวง คือเส้นรอบรูปของรูปวงกลม ส่วนโค้ง (arc) คือส่วนหนึ่งที่เชื่อมต่อกันของเส้นรอบวง คอร์ด (chord) คือส่วนของเส้นตรงที่มีจุดปลายทั้งสองบรรจบอยู่บนเส้นรอบวง เส้นผ่านศูนย์กลาง คือคอร์ดที่ลากผ่านจุดศูนย์กลาง มีความยาวเป็นสองเท่าของรัศมี และเป็นคอร์ดที่ยาวที่สุดในรูปวงกลม รูปวงกลมเป็นเส้นโค้ง (curve) แบบปิดที่แบ่งระนาบออกเป็นพื้นที่ภายในกับพื้นที่ภายนอก พื้นที่ภายในรูปวงกลมเรียกว่า จาน (disk) รูปวงกลมเป็นกรณีพิเศษของรูปวงรีที่มีโฟกัส (focus) อยู่ที่จุดเดียวกันนั่นคือจุดศูนย์กลาง นอกจากนี้รูปวงกลมยังเป็นภาคตัดกรวยที่เกิดจากการตัดด้วยระนาบที่ตั้งฉากกับแกนของทรงกรวย เป็นต้น. ลกัสที่ 2 ซม. 4 ซม. 6 ซม. และ 8 ซม. จากเส้นตรง ''l'' ไปยังจุด ''P'' ซึ่งเส้นโค้งเหล่านี้เป็นครึ่งหนึ่งของคอนคอยด์ (Conchoid of Nichomedes) ในทางคณิตศาสตร์ โลกัส (locus พหูพจน์: loci มาจากภาษาละตินแปลว่า สถานที่) คือการรวบรวมจุดทางเรขาคณิตที่มีคุณสมบัติอย่างหนึ่งอย่างใดร่วมกัน คำนี้มักใช้เป็นเงื่อนไขในการนิยามรูปร่างที่ต่อเนื่องกัน โดยเฉพาะเส้นโค้ง (curve) ตัวอย่างเช่น เส้นตรงคือโลกัสของจุดที่อยู่ในระยะห่างเท่ากับสองจุดที่กำหนดตายตัวไว้ หรือจากเส้นขนานสองเส้น.

ความคล้ายคลึงกันระหว่าง รูปวงกลมและโลกัส (คณิตศาสตร์)

รูปวงกลมและโลกัส (คณิตศาสตร์) มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ภาคตัดกรวยรัศมีจุด (เรขาคณิต)โฟกัสเส้นตรงเส้นโค้ง

ภาคตัดกรวย

นิดของภาคตัดกรวย ภาคตัดกรวย (conic section หรือ conic) ในทางคณิตศาสตร์ หมายถึง เส้นโค้งที่ได้จากการตัดพื้นผิวกรวยกลม ด้วยระนาบแบน ภาคตัดกรวยนี้ถูกตั้งเป็นหัวข้อศึกษาตั้งแต่สมัย 200 ปีก่อนคริสต์ศักราชโดย อพอลโลเนียส แห่ง เพอร์กา ผู้ซึ่งศึกษาภาคตัดกรวยและค้นพบสมบัติหลายประการของภาคตัดกรวย ต่อมากรณีการศึกษาภาคตัดกรวยถูกนำไปใช้ประโยชน์หลายแบบ ได้แก่ ในปี..

ภาคตัดกรวยและรูปวงกลม · ภาคตัดกรวยและโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

รัศมี

รูปวงกลมที่แสดงถึงรัศมี เส้นผ่านศูนย์กลาง จุดศูนย์กลาง และเส้นรอบวง รัศมี (อังกฤษ: radius พหูพจน์: radii) ของรูปวงกลมหรือทรงกลม คือส่วนของเส้นตรงใดๆ ที่เชื่อมต่อระหว่างจุดศูนย์กลาง ไปยังเส้นรอบวงหรือพื้นผิวของทรงกลม อีกนัยหนึ่งหมายถึงความยาวของส่วนของเส้นตรงนั้น รัศมีเป็นส่วนครึ่งหนึ่งของเส้นผ่านศูนย์กลาง ในทางวิทยาศาสตร์และวิศวกรรมศาสตร์ มีการใช้คำว่า รัศมีความโค้ง (radius of curvature) แทนความหมายที่คล้ายกับรัศมี ในกรณีทั่วไปที่ไม่ใช่สำหรับรูปวงกลมหรือทรงกลม อาทิ ทรงกระบอก รูปหลายเหลี่ยม กราฟ หรือชิ้นส่วนจักรกลต่างๆ รัศมีสามารถหมายถึงระยะทางที่วัดจากจุดกึ่งกลางหรือแกนสมมาตรไปยังจุดอื่นที่อยู่ภายนอก ซึ่งในกรณีนี้รัศมีอาจมีความยาวมากกว่าครึ่งหนึ่งของเส้นผ่านศูนย์กลางก็ได้ ความสัมพันธ์ระหว่างรัศมี r กับเส้นรอบวง c ของรูปวงกลมคือ.

รัศมีและรูปวงกลม · รัศมีและโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

จุด (เรขาคณิต)

ป็นแนวความคิดที่ใช้กำหนดตำแหน่งที่แน่นอนในปริภูมิ ซึ่งจุดนั้นไม่มีปริมาตร พื้นที่ หรือความยาว มีการใช้อย่างแพร่หลายทั้งในภูมิศาสตร์ ฟิสิกส์ ภาพกราฟิกส์เวกเตอร์ (ทั้งสองมิติและสามมิติ) และในสาขาอื่นๆ อีกมากมาย สำหรับในทางคณิตศาสตร์ จุดเป็นส่วนหนึ่งของทอพอโลยี ซึ่งรูปแบบใด ๆ ในปริภูมิ จุดคือองค์ประกอบพื้นฐานของวัตถุรูปแบบใด ๆ ในปริภูมิ ถึงแม้จุดจะไร้ขนาดและทิศทาง แต่การเขียนจุดขึ้นมาลอย ๆ ยังจำเป็นต้องเขียนแทนด้วยวงกลมทึบขนาดเล็ก (หรือเท่าปลายดินสอ) เพื่อแสดงให้เห็นว่ามีจุดอยู่ ณ ตำแหน่งนั้น.

จุด (เรขาคณิต)และรูปวงกลม · จุด (เรขาคณิต)และโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

โฟกัส

F เป็นจุดโฟกัสของวงกลมสีแดง พาราโบลาสีเขียว และไฮเพอร์โบลาสีน้ำเงิน ในวิชาเรขาคณิต จุดโฟกัส คือตำแหน่งพิเศษที่ใช้ในการอธิบายลักษณะของภาคตัดกรวย ซึ่งมีอยู่ 4 ประเภทได้แก่ วงกลม พาราโบลา วงรี และไฮเพอร์โบลา จุดโฟกัสโดยทั่วไปมี 2 จุด และจะอยู่ในตำแหน่งสมมาตรกันบนแกนเอกของกรวยเสมอ ตำแหน่งของจุดโฟกัสสำหรับภาคตัดกรวยแต่ละชนิดเป็นดังนี้.

รูปวงกลมและโฟกัส · โฟกัสและโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

เส้นตรง

้นตรงในระนาบสองมิติ เส้นตรง (อังกฤษ: line) คือเส้นโค้งในแนวตรงโดยสมบูรณ์ (ในทางคณิตศาสตร์ เส้นโค้งมีความหมายรวมถึงเส้นตรงด้วย) ที่มีความยาวเป็นอนันต์ ความกว้างเป็นศูนย์ (ในทางทฤษฎี) และมีจำนวนจุดบนเส้นตรงเป็นอนันต์เช่นกัน ในเรขาคณิตแบบยุคลิด จะมีเส้นตรงเพียงหนึ่งเส้นเท่านั้นที่ผ่านจุดสองจุดใด ๆ และเป็นระยะทางที่สั้นที่สุด การวาดเส้นตรงสามารถทำได้โดยใช้เครื่องมือที่มีสันตรง เช่นไม้บรรทัด และอาจเติมลูกศรลงไปที่ปลายทั้งสองข้างเพื่อแสดงว่ามันมีความยาวเป็นอนันต์ เส้นตรงสองเส้นที่แตกต่างกันในสองมิติสามารถขนานกันได้ ซึ่งหมายความว่าเส้นตรงทั้งสองเส้นนั้นจะไม่ตัดกันที่ตำแหน่งใด ๆ ถึงแม้ต่อความยาวออกไปอีกก็ตาม ส่วนในสามมิติหรือมากกว่านั้น เส้นตรงสองเส้นอาจจะไขว้ข้ามกัน (skew) คือไม่ตัดกันแต่ก็อาจจะไม่ขนานกันด้วย และระนาบสองระนาบที่แตกต่างกันมาตัดกันจะทำให้เกิดเป็นเส้นตรงเพียงหนึ่งเส้น เรียกระนาบเหล่านั้นว่า ระนาบร่วมเส้นตรง (collinear planes) สำหรับจุดสามจุดหรือมากกว่าที่อยู่บนเส้นตรงเดียวกันจะเรียกว่า จุดร่วมเส้นตรง (collinear points).

รูปวงกลมและเส้นตรง · เส้นตรงและโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

เส้นโค้ง

เส้นโค้งเปิด เส้นโค้งปิด เส้นโค้ง (curve) หมายถึงจุดทุกจุดที่ต่อเนื่องกันเป็นเส้นโดยไม่มีการขาดตอน เป็นวัตถุหนึ่งมิติ มีรูปร่างอย่างไรก็ได้ บางชนิดอาจนำเสนอได้ในรูปแบบของฟังก์ชันทางคณิตศาสตร์หรือกราฟของฟังก์ชัน ซึ่งอยู่บนระนาบสองมิติหรือไม่ก็ได้ เส้นโค้งแบ่งได้เป็นสองประเภทได้แก่ เส้นโค้งเปิด คือเส้นโค้งที่ไม่มีจุดจบหรือไม่บรรจบกัน เช่น คลื่นรูปไซน์ พาราโบลา และ เส้นโค้งปิด คือเส้นโค้งที่บรรจบกันเป็นรูปปิดหรือลากทับรอยเดิมเป็นวงวน เช่น รูปวงกลม ไฮโพโทรคอยด์ ชนิดของเส้นโค้งจำนวนมากมีการศึกษาในเรขาคณิต ทุกวันนี้เราให้ความหมายว่า "เส้นตรง" ไม่ได้เป็นเส้นโค้ง แต่ในทางคณิตศาสตร์ ทั้งเส้นตรงและส่วนของเส้นตรงก็คือเส้นโค้งที่ไม่มีความโค้งนั่นเอง สำหรับส่วนโค้งอาจเรียกได้ว่าเป็น "ส่วนของเส้นโค้ง" หมายถึงส่วนหนึ่งของเส้นโค้งที่สามารถหาอนุพันธ์ได้ หมวดหมู่:เรขาคณิต หมวดหมู่:ทอพอโลยี.

รูปวงกลมและเส้นโค้ง · เส้นโค้งและโลกัส (คณิตศาสตร์) · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง รูปวงกลมและโลกัส (คณิตศาสตร์)

รูปวงกลม มี 19 ความสัมพันธ์ขณะที่ โลกัส (คณิตศาสตร์) มี 13 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 18.75% = 6 / (19 + 13)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง รูปวงกลมและโลกัส (คณิตศาสตร์) หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: