ความคล้ายคลึงกันระหว่าง รูปวงกลมและเอพิโทรคอยด์
รูปวงกลมและเอพิโทรคอยด์ มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รัศมีเส้นโค้ง
รัศมี
รูปวงกลมที่แสดงถึงรัศมี เส้นผ่านศูนย์กลาง จุดศูนย์กลาง และเส้นรอบวง รัศมี (อังกฤษ: radius พหูพจน์: radii) ของรูปวงกลมหรือทรงกลม คือส่วนของเส้นตรงใดๆ ที่เชื่อมต่อระหว่างจุดศูนย์กลาง ไปยังเส้นรอบวงหรือพื้นผิวของทรงกลม อีกนัยหนึ่งหมายถึงความยาวของส่วนของเส้นตรงนั้น รัศมีเป็นส่วนครึ่งหนึ่งของเส้นผ่านศูนย์กลาง ในทางวิทยาศาสตร์และวิศวกรรมศาสตร์ มีการใช้คำว่า รัศมีความโค้ง (radius of curvature) แทนความหมายที่คล้ายกับรัศมี ในกรณีทั่วไปที่ไม่ใช่สำหรับรูปวงกลมหรือทรงกลม อาทิ ทรงกระบอก รูปหลายเหลี่ยม กราฟ หรือชิ้นส่วนจักรกลต่างๆ รัศมีสามารถหมายถึงระยะทางที่วัดจากจุดกึ่งกลางหรือแกนสมมาตรไปยังจุดอื่นที่อยู่ภายนอก ซึ่งในกรณีนี้รัศมีอาจมีความยาวมากกว่าครึ่งหนึ่งของเส้นผ่านศูนย์กลางก็ได้ ความสัมพันธ์ระหว่างรัศมี r กับเส้นรอบวง c ของรูปวงกลมคือ.
รัศมีและรูปวงกลม · รัศมีและเอพิโทรคอยด์ ·
เส้นโค้ง
เส้นโค้งเปิด เส้นโค้งปิด เส้นโค้ง (curve) หมายถึงจุดทุกจุดที่ต่อเนื่องกันเป็นเส้นโดยไม่มีการขาดตอน เป็นวัตถุหนึ่งมิติ มีรูปร่างอย่างไรก็ได้ บางชนิดอาจนำเสนอได้ในรูปแบบของฟังก์ชันทางคณิตศาสตร์หรือกราฟของฟังก์ชัน ซึ่งอยู่บนระนาบสองมิติหรือไม่ก็ได้ เส้นโค้งแบ่งได้เป็นสองประเภทได้แก่ เส้นโค้งเปิด คือเส้นโค้งที่ไม่มีจุดจบหรือไม่บรรจบกัน เช่น คลื่นรูปไซน์ พาราโบลา และ เส้นโค้งปิด คือเส้นโค้งที่บรรจบกันเป็นรูปปิดหรือลากทับรอยเดิมเป็นวงวน เช่น รูปวงกลม ไฮโพโทรคอยด์ ชนิดของเส้นโค้งจำนวนมากมีการศึกษาในเรขาคณิต ทุกวันนี้เราให้ความหมายว่า "เส้นตรง" ไม่ได้เป็นเส้นโค้ง แต่ในทางคณิตศาสตร์ ทั้งเส้นตรงและส่วนของเส้นตรงก็คือเส้นโค้งที่ไม่มีความโค้งนั่นเอง สำหรับส่วนโค้งอาจเรียกได้ว่าเป็น "ส่วนของเส้นโค้ง" หมายถึงส่วนหนึ่งของเส้นโค้งที่สามารถหาอนุพันธ์ได้ หมวดหมู่:เรขาคณิต หมวดหมู่:ทอพอโลยี.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ รูปวงกลมและเอพิโทรคอยด์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง รูปวงกลมและเอพิโทรคอยด์
การเปรียบเทียบระหว่าง รูปวงกลมและเอพิโทรคอยด์
รูปวงกลม มี 19 ความสัมพันธ์ขณะที่ เอพิโทรคอยด์ มี 18 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 5.41% = 2 / (19 + 18)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง รูปวงกลมและเอพิโทรคอยด์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: