เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์

รังสีคอสมิก vs. รางวัลโนเบลสาขาฟิสิกส์

ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค รังสีคอสมิก (cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556) ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์ ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่ รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง ที่ 50 จูล รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้ ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J) ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟ. หรียญรางวัลโนเบล รางวัลโนเบลสาขาฟิสิกส์ (Nobelpriset i fysik, Nobel Prize in Physics) เป็นรางวัลโนเบลหนึ่งใน 5 สาขา ริเริ่มโดยอัลเฟรด โนเบล ตั้งแต่ปี ค.ศ. 1895 โดยสถาบัน Royal Swedish Academy of Sciences แห่งประเทศสวีเดน เป็นผู้คัดเลือกผู้รับรางวัล ซึ่งมีผลงานวิจัยด้านฟิสิกส์อย่างโดดเด่น มีพิธีมอบเป็นครั้งแรก เมื่อ ค.ศ. 1901 พิธีมอบรางวัลมีขึ้นในวันที่ 10 ธันวาคมของทุกปี ซึ่งตรงกับวันคล้ายวันเสียชีวิตของอัลเฟรด โนเบล ที่กรุงสตอกโฮล์ม.

ความคล้ายคลึงกันระหว่าง รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์

รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์ มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รังสีเอกซ์โพซิตรอนเครื่องชนอนุภาคแฮดรอนขนาดใหญ่

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

รังสีคอสมิกและรังสีเอกซ์ · รังสีเอกซ์และรางวัลโนเบลสาขาฟิสิกส์ · ดูเพิ่มเติม »

โพซิตรอน

ซิตรอน (positron) หรือ แอนติอิเล็กตรอน (antielectron) เป็นปฏิยานุภาคหรือปฏิสสารของอิเล็กตรอน โพซิตรอนมีประจุไฟฟ้าเป็น +1 มีสปินเป็น 1/2 และมีมวลเท่ากับอิเล็กตรอน ถ้าโพซิตรอนพลังงานต่ำชนกับอิเล็กตรอนพลังงานต่ำจะเกิดการประลัย (annihilation) คือมีการเกิดโฟตอนรังสีแกมมา 2 โฟตอนหรือมากกว่า โพซิตรอนอาจจะเกิดจากการสลายตัวของการปลดปล่อยโพซิตรอนกัมมันตรังสี (ผ่านอันตรกิริยาอย่างอ่อน) หรือโดยการผลิตคู่จากโฟตอนที่มีพลังงานเพียงพอ.

รังสีคอสมิกและโพซิตรอน · รางวัลโนเบลสาขาฟิสิกส์และโพซิตรอน · ดูเพิ่มเติม »

เครื่องชนอนุภาคแฮดรอนขนาดใหญ่

รูปเครื่องเร่งอนุภาค LHC แผนผังแสดงส่วนต่างๆ ของ LHC แผนที่แสดงขอบเขตของ LHC ''superconducting quadrupole electromagnetas'' หรือท่อตัวนำยิ่งยวดแม่เหล็กไฟฟ้าสี่ขั้ว สำหรับใช้นำอนุภาคไปสู่จุดที่กำหนดสำหรับการชน เครื่องชนอนุภาคแฮดรอนขนาดใหญ่ (Large Hadron Collider; LHC) คือเครื่องเร่งอนุภาคที่ใหญ่ที่สุดในโลก มีเป้าหมายที่จะสร้างอนุภาคโปรตอน 7 TeV ขึ้น เพื่อพิสูจน์ข้อเท็จจริงและข้อจำกัดของทฤษฎีทางฟิสิกส์อนุภาคที่มีอยู่ในปัจจุบันอันอยู่ภายใต้กฎของแรงทั้งสี่ องค์กรวิจัยนิวเคลียร์แห่งยุโรป (European Organization for Nuclear Research) หรือ เซิร์น (Conseil Européen pour la Recherche Nucléaire) เป็นผู้สร้างเครื่องนี้ขึ้นที่บริเวณเขตแดนประเทศฝรั่งเศสและสวิตเซอร์แลนด์ ใกล้กับกรุงเจนีวา เป็นท่อใต้ดินลักษณะเป็นวงแหวนขนาดความยาวเส้นรอบวง 27 กิโลเมตร เครื่อง LHC นี้ถือว่าเป็นเครื่องเร่งอนุภาคที่มีขนาดใหญ่ที่สุดและใช้พลังงานสูงที่สุดของโลก สร้างขึ้นจากเงินทุนและการสนับสนุนรวมทั้งความร่วมมือจากนักฟิสิกส์มากกว่า 8,000 คน จาก 85 ประเทศ ในมหาวิทยาลัยและห้องทดลองทั่วโลกนับร้อยแห่ง ในระหว่างการก่อสร้าง เซิร์นเปิดโอกาสให้อาสาสมัครจากทั่วโลก ได้เข้าร่วมบริจาคการทำงานของคอมพิวเตอร์ เพื่อจำลองพฤติกรรมที่เกิดขึ้นภายในเครื่อง LHC เพื่อช่วยในการออกแบบ และปรับแต่งระบบ ด้วยโครงการที่มีชื่อว่า LHC@home ตั้งแต่วันที่ 1 กันยายน พ.ศ. 2547 โครงการนี้ดำเนินการบนระบบ Berkeley Open Infrastructure for Network Computing ของมหาวิทยาลัยแคลิฟอร์เนีย เบิร์กลีย์ เครื่องเร่งนี้สามารถทำความเย็นลงได้ต่ำที่สุดที่ประมาณ 1.9 K (หรือ −271.25 °C) เป็นอุณหภูมิที่ทำลงไปใกล้อุณหภูมิสัมบูรณ์มากที่สุด ได้มีการทดสอบยิงอนุภาคเริ่มต้นสำเร็จแล้วในช่วงวันที่ 8-11 สิงหาคม..

รังสีคอสมิกและเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ · รางวัลโนเบลสาขาฟิสิกส์และเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์

รังสีคอสมิก มี 21 ความสัมพันธ์ขณะที่ รางวัลโนเบลสาขาฟิสิกส์ มี 127 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 2.03% = 3 / (21 + 127)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง รังสีคอสมิกและรางวัลโนเบลสาขาฟิสิกส์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: