โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า

รังสีคอสมิก vs. รังสีแม่เหล็กไฟฟ้า

ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค รังสีคอสมิก (cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556) ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์ ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่ รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง ที่ 50 จูล รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้ ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J) ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟ. ในวิชาฟิสิกส์ รังสีแม่เหล็กไฟฟ้า (electromagnetic radiation) หมายถึงคลื่น (หรือควอนตัมโฟตอน) ของสนามแม่เหล็กไฟฟ้าที่แผ่ผ่านปริภูมิโดยพาพลังงานจากการแผ่รังสีแม่เหล็กไฟฟ้า โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นองสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย คลื่นแม่เหล็กไฟฟ้าเกิดเมื่ออนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E.

ความคล้ายคลึงกันระหว่าง รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า

รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รังสีแกมมารังสีเอกซ์โฟตอน

รังสีแกมมา

รังสีแกมมา (Gamma radiation หรือ Gamma ray) มีสัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17 หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น.

รังสีคอสมิกและรังสีแกมมา · รังสีแกมมาและรังสีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

รังสีคอสมิกและรังสีเอกซ์ · รังสีเอกซ์และรังสีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

โฟตอน

ฟตอน (Photon) หรือ อนุภาคของแสง เป็นการพิจารณาแสงในลักษณะของอนุภาค เนื่องจากในทางฟิสิกส์นั้น คลื่นสามารถประพฤติตัวเหมือนอนุภาคเมื่ออยู่ในสภาวะใดสภาวะหนึ่ง ซึ่งในทางตรงกันข้ามอนุภาคก็แสดงสมบัติของคลื่นได้เช่นกัน เรียกว่าเป็นคุณสมบัติทวิภาคของคลื่น-อนุภาค (wave–particle duality) ดังนั้นเมื่อพิจารณาแสงหรือคลื่นแม่เหล็กไฟฟ้าในลักษณะอนุภาค อนุภาคนั้นถูกเรียกว่า โฟตอน ทั้งนี้การพิจารณาดังกล่าวเกิดจากการศึกษาปรากฏการณ์โฟโตอิเล็กทริก ซึ่งเป็นปรากฏการณ์ที่โลหะปลดปล่อยอิเล็กตรอนออกมาเมื่อถูกฉายด้วยคลื่นแม่เหล็กไฟฟ้า อย่างเช่น รังสีเอกซ์ (X-ray) อิเล็กตรอนที่ถูกปล่อยออกมาถูกเรียกว่า โฟโตอิเล็กตรอน (photoelectron) ปรากฏการณ์ดังกล่าวถูกเรียกอีกอย่างหนึ่งว่า Hertz Effect ตามชื่อของผู้ค้นพบ คือ นาย ไฮน์ริช เฮิร์ตซ์ โฟตอนมีปฏิยานุภาค คือ ปฏิโฟตอน (Anti-Photon) ซึ่งมีสปินเหมือนอนุภาคต้นแบบทุกประการ โฟตอนจึงเป็นปฏิยานุภาคของตัวมันเอง.

รังสีคอสมิกและโฟตอน · รังสีแม่เหล็กไฟฟ้าและโฟตอน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า

รังสีคอสมิก มี 21 ความสัมพันธ์ขณะที่ รังสีแม่เหล็กไฟฟ้า มี 29 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 6.00% = 3 / (21 + 29)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง รังสีคอสมิกและรังสีแม่เหล็กไฟฟ้า หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »